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Intranasal Curcumin Inhibits Pulmonary Fibrosis
by Modulating Matrix Metalloproteinase-9 (MMP-9)
in Ovalbumin-Induced Chronic Asthma

Preeti S. Chauhan,1 D. Dash,2 and Rashmi Singh1,3

Abstract—Pulmonary fibrosis is associated with irreversible, or partially reversible, airflow obstruction
and ultimately unresponsiveness to asthma therapies such as corticosteroids. Intranasal curcumin, an
anti-inflammatory molecule, has been found effective in allergic asthma. To study the effect of intranasal
curcumin on airway remodeling and fibrosis in murine model of chronic asthma, BALB/c mice were
sensitized to ovalbumin (OVA) and exposed to OVA aerosol (2%) from day 21 (after sensitization) for
5 weeks (twice/week). Curcumin (intranasal) was administered during the OVA aerosol challenge. Mice
exposed to OVA developed inflammation dominated by eosinophils which lead to fibrosis and airway
remodeling. Intranasal administration of curcumin significantly inhibited airway inflammation and
pulmonary fibrosis, where MMP-9 activities were decreased along with α-smooth muscle actin (α-
SMA), MMP-9, TIMP-1, and eotaxin expressions. These results suggest that intranasal curcumin
regulates airway inflammation and remodeling in chronic asthma.
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INTRODUCTION

Structural alterations in asthmatic patients are related
to the severity of the disease and results into airway re-
modeling which is a central pathophysiological feature of
chronic asthma. It can be observed from early onset of the
disease and therefore thought to be an important character-
istic [1]. Activated resident cells recruit inflammatory cells
to the tissue site where mediators like IL-4, IL-13, and
TNF-α stimulate the generation of eotaxin (a chemokine
for eosinophils) from lung epithelial cells, fibroblast, and
smoothmuscle cells. Several studies suggest an association
between eosinophils and fibrosis, as they release cytotoxic
mediators, pro-inflammatory cytokines, and TGF-β which
has well-known fibrotic effects [2]. Eosinophil-derived

TGF-β induces fibroblast activation and their differentia-
tion to myofibroblasts [3]. Eosinophils also secrete factors
involved in tissue remodeling and fibrosis like granule
proteins, major basic protein (MBP), lysosomal hydrolytic
enzymes, and peroxidases. Inflammatory mediators ulti-
mately damage the parenchyma and degrade the extracel-
lular matrix (ECM) components.

Extracellular matrix is a dynamic structure playing me-
chanical role in supporting and maintaining tissue architect.
ECM is a scaffold structure where equilibrium is maintained
between its synthesis and degradation [4]. The main ECM
elements include collagen, elastic fibers, fibronectin, and
members of the MMP family (MMP-1, MMP-2, MMP-9,
and MMP-12) in addition to TIMP-1 and TIMP-2 (tissue
inhibitors of MMPs). Inflammatory cell- and structural cell-
derived MMPs also contribute to AHR and remodeling by
altering ECM turnover, which affects smooth muscle con-
traction, airway fibroblast invasion, and accumulation of
collagen. Alpha-smooth muscle actin (α-SMA) expression
acts as a marker of fibroblast differentiation into its activated
state, themyofibroblast. Theα-SMA-positivemyofibroblasts
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actively synthesize ECM components. Once fibroblasts be-
come activated, they transform into alpha-smooth muscle
actin expressing myofibroblasts that secrete ECM compo-
nents. Myofibroblasts are responsible for the deposition of a
dense, fibrotic collagen matrix [5].

Any imbalance between equilibrium of the normal
processes of synthesis and degradation of ECM components
make disease fatal. Investigations suggest that accelerated
proliferation of fibroblasts lead to their accumulation [6].

It is refractory to treatments and carries a high mor-
tality rate characterized by progressive and irreversible
destruction of lung architecture caused by scar formation
that ultimately leads to organ malfunction, disruption of
gas exchanged, and death from respiratory failure and have
limited therapeutic treatment [7].

MMPs are implicated in airway remodeling not only
by matrix reorganization (ECM degradation) but also by
alteration of angiogenesis and smooth muscle hyperplasia
[8, 9]. They are involved in inflammation through their
influence of inflammatory cell migration through ECM,
basement membrane, and endothelial layer [10, 11]. It has
been reported that MMP-9 levels are found significantly
high in asthmatic patients as compared to normal subjects.
MMP-9 is able to degrade ECM components such as
laminin, entactin, and fibronectin involved in tissue remod-
eling processes expressed by variety of cells like macro-
phages, lymphocytes, mast cells, and eosinophils. Hy-
droxyproline is a non-proteinogenic amino acid, which is
constituent of elastin and collagen. In tissue hydrolysates, it
is a direct measurement of the amount of collagen present
and responsible for fibrotic factors involved in fibrosis.

Once fibrotic changesmake their impression in asthmat-
ic airways, the survival rate decreases and till date no proven
effective therapies exist to treat it completely. The prevalence
of asthma has rapidly increased over the last few decades to
epidemic proportions and around 300million sufferers world-
wide, a total that is expected to rise dramatically over the next
15–20 years [12]. In developed countries, prevalence of asth-
ma in adult is about 10% and even higher in children, while in
developing countries, it is low but growing rapidly, imposing
enormous burden on health care [13].

Despite lack of effective treatments to reverse the
fibrosis, a potential therapeutic intervention to inhibit or
control airway remodeling is needed to be explored. The
chemical constituents present in herbal remedies are a part
of the physiological functions of living flora and hence
they are believed to have better compatibility with the
human body [14]. Curcumin derived from Curcuma longa
(Turmeric) has shown its effectiveness in the treatment of
asthma. However, poor bioavailability limits its therapeutic

approval. Enhanced bioavailability of curcumin in the near
future is likely to bring this promising natural product to
the forefront of therapeutic agents for the treatment of
allergic disease [15].

Recently, we have reported better efficacy of curcumin
in OVA-induced airway inflammation after intranasal ad-
ministration at lower doses without any side effect than
currently used corticosteroid, dexamethasone, and disodium
cromoglycate, a known mast cell stabilizer [16, 17]. There-
fore, intranasal administration of curcumin might be effec-
tive in attenuatingMMP activities and pulmonary fibrosis in
OVA-induced mouse model of chronic asthma.

MATERIALS AND METHODS

Animals

Four- to six-week-old balb/c mice (22–26 g) were
obtained from Central Drug Research Institute, Lucknow,
India, and acclimatized for a week. All animals were
maintained under standard conditions of 12-h light and
dark cycle. The maintenance protocol was approved by
the Institutional Animal Ethical Committee, Banaras Hin-
du University, Varanasi, India.

Grouping of Mice

Mice were randomly divided into five groups (6
mice/group) and named according to sensitization/chal-
lenge/treatment protocol. Group I-normal (Nor), OVA
(Ovalbumin) + alum sensitized/saline challenge/no treat-
ment; Group II-asthmatic (Asth), OVA + alum sensitized/
OVA challenge/no treatment; Group III-vehical asthmatic
(Veh asth), OVA + alum sensitized/OVA challenge/treated
with DMSO (dimethylsulfoxide); Group IV-curcumin-
treated (Cur), OVA + alum sensitized/OVA challenge/treat-
ed with 5 mg/kg bw curcumin i.n.; and Group V-standard
drug (Sd) treated, OVA + alum sensitized/OVA challenge/
treated with dexamethasone (1 mg/kg bw, i.p.).

Asthma Model

OVA-induced allergic asthma was developed in mice
as described earlier with slight modification [18]. Mice
were sensitized and challenged as shown in Fig. 1. Mice
received 200 μl of 50 μg OVA emulsified in 4-mg alumi-
num hydroxide (Alum) on days 0, 7, and 14 for sensitiza-
tion. From day 21, all mice were challenged except normal
with 2% OVA in saline for the period of 5 weeks (twice/
week). Aerosolized saline was used to challenge normal
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mice. After 24 h of the last OVA aerosol challenge, mice
were sacrificed and different asthmatic parameters were
studied in bronchoalveolar lavage fluid (BALF), lung,
and blood as described earlier [17, 18].

Treatment

To evaluate the therapeutic effects of intranasal
curcumin on chronic asthma, mice were treated with intra-
nasal curcumin regularly from 21st to 55th day and on
challenge day 1 h before (Pre treatment) the OVA aerosol
challenge. Curcumin was dissolved in dimethysulphoxide
(DMSO) and administered in each nostril in the form of
nasal drops (2.5 μl /nostril) according to the dose regime
(5 mg/kg) and mice were kept in supine position to ease
inhalation for few minutes. Dexamethasone (1 mg/kg bw,
i.p.) was used as standard drug [16, 17].

Collection of Bronchoalveolar Lavage Fluid (BALF)
and Lung

After the last OVA aerosol challenge, mice were
sacrificed by cervical dislocation. BALF was collected by
trachea cannulation by washing off the airway lumen.
Briefly, lungs were washed three times with 1 ml of ice-
cold PBS and were centrifuged at 3000 rpm for 10 min at
4 °C. BALF was centrifuged and cell pellet was used to
study inflammation by total and differential cell count
(eosinophils and neutrophils). Differential cell count was
performed by cytospin (Medspin, USA) preparations and
Giemsa staining. Inflammatory cells were identified on the
basis of morphological characteristics. BALF supernatant
and half left lobe of lungs were fixed in 4% neutral buffer
formalin rest were stored at −80 °C for further analysis.

Lung Histopathology

Lung sections (5 μm) were stained with hematoxylin
and eosin (H&E) for inflammation and structural alterations.

To study fibrosis (collagen deposition), lung sections were
stained with Masson’s trichrome and Picrosirius red stain.

Hydroxyproline Determination in Lungs

Hydroxyproline content in lung was used to quantify
collagen content in lung tissue and measured by a com-
bined method described earlier with some modifications
[19]. Briefly, lung was excised and 10% homogenate was
prepared in PBS. Sample and 12NHCLwas taken in equal
volume and hydrolyzed at 110 °C for 16–18 h. Samples
(50 μl) were suspended in citrate-acetate buffer (5% citric
acid, 1.2% glacial acetic acid, 7.24% sodium acetate, and
3.4% NaOH dissolved in distilled water pH 6.0), 150 μl of
freshly prepared chloramine-T solution (1.4% chloramine-
T, 10%N-propanol), and 80% citrate-acetate buffer was
added and kept at room temperature for 20 min. Freshly
prepared Ehrl ich ’s solut ion 150 μ l (4 .5 g 4-
dimethylaminobenzaldehyde dissolved in 18.6 ml n-
propanol, 7.8 ml of 70% perchloric acid) was added at
65 °C for 15 min. Sample was cooled on ice and absor-
bance was taken at 550 nm. A standard curve of hydroxy-
proline was generated and results were expressed as mi-
crograms of hydroxyproline contained in total lung tissue.

Gelatin Zymography to Determine Collagenase
Activity

Gelatin zymography was used to assess MMP-9 pro-
tease (collagenase) activity in BALF and lung tissue ho-
mogenate. Briefly, 10% SDS-PAGE mini-gels was pre-
pared with gelatin (10mg/ml), BAL fluid (20 μl) and tissue
homogenate supernatant (50 μg) were run at constant
voltage of 100 V under non-reducing conditions at 4 °C.
Gel was washed thrice for 15 min in renaturing buffer
containing 2.5% Triton X-100 to remove the sodium do-
decyl sulphate (SDS). After washing, gel was incubated in
incubation buffer (50 mM Tris–HCl, 50 mM Tris base,
5 mM CaCl2, 0.2 M NaCl and 0.02% NaN3 (pH 7.5) at

Sensetization (Days)

0          7th 14th

Challenge (2% OVA twice in a week)

(21-27)  (28-34)  (35-41)  (42- 48)  (49-55)
1st wk         2nd wk      3rd wk        4th wk       5th wk

Treatment

Sacrifice

56th day

Fig. 1. Sensitization, challenge, and treatment protocol of the study.
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37 °C for 48 h. The gel was stained for 30 min with
Coomassie Brilliant Blue R 250 stain and destained (5%
methanol, 7% acetic acid in distilled water) till the appear-
ance of clear white bands against blue background. Bands
were analyzed by densitometry.

Protein Expressions of Eotaxin, MMP-9, and TIMP

Lung tissues were homogenized in lysis buffer con-
taining protease inhibitor cocktail (Aprotinin (Sisco Re-
search Laboratory-62179), Leupeptin (Amresco-J580),
PMSF (Sisco Research laboratory-1648171), EDTA (Sisco
Research laboratory-054448), and Na Orthovanadate
(Enzo Life Science-127458). Tissue homogenate superna-
tant was separated and protein concentration was deter-
mined by Bradford method. Equal amount of protein
(50 μg) with loading dye at ratio of 1:1 was loaded onto
SDS-PAGE gel (12%) and separated at 60 V in stacking gel
and 70 V in resolving gel. Separated proteins were trans-
ferred onto PVDF membranes. Membranes were blocked
(4% BSA in TBST (Tris buffered saline with tween 20) for
2 h, incubated with MMP-9 (1: 1000, Thermo Scientific-
PA5-3199), TIMP-1 (1:500, Thermo Scientific-MA1-773),
Eotaxin (1:1000, Thermo Scientific-PA1-29219), α
smooth muscle actin (5 μg/ml, e bioscience-14-9760), β
actine (1: 2000, Genscript-A00702), or β actine (1: 2000,
Cell Signalling Technology-4970P) antibody for over-
night at 4 °C. To study eotaxin expression, 20% gel
was run as its molecular weight is ∼15 KDa. After
primary antibody incubation, membranes were washed
thrice in TBST buffer at room temperature for 15 min
followed by horseradish peroxidase (HRP)-conjugated
anti-goat secondary antibody (1:10,000, Cayman-
10004302) or HRP-conjugated anti-rabbit secondary
antibody (1:3000, CST-7074P2) for 2 h at room temp.
Membranes were again rewashed in TBST buffer and
protein expressions were detected with ECL reagent
(Millipore-WBKLS01000). β-actin was used as a load-
ing control. Band intensities were determined by
densitometry.

Measurement of Alanine Aminotransferase and
Aspartate Aminotransferase Levels in Serum

The liver function test was performed to test the
toxicity of intranasal curcumin on liver. Alanine ami-
notransferase (AST) and aspartate aminotransferase
(ALT) levels were determined by modified Reitman
and Frankel’s colorimetric DNPH method by using
standard kits (Avecon).

Measurement of Creatinine Level in Blood Serum

Serum creatinine level was measured by using creat-
inine reagent kit (Beacon). The principle was based on the
formation of orange-colored complex by the reaction of
picric acid with creatinine and intensity was measured at
490 nm.

Statistical Analysis

Values are presented as the mean ± SEM. Differences
between two means were evaluated using Student’s t test.
Statistical significance between control and OVA inhaled
animals (Asth) was estimated using the two-tailed Stu-
dent’s t test. Differences between more than two groups
were assessed via ANOVAwith Tukey’s and post hoc test
comparison. To define statistically significant differences
among different groups (Nor vs Asth and Veh asth, Asth vs
Cur and SD), the data were subjected to the ANOVA
followed by Tukey’s and post hoc tests. Statistical signif-
icance was considered at P < 0.05 by using SPSS 16
software.

RESULTS

Curcumin Suppresses Inflammatory Cell Recruitment

Curcumin is effective in ameliorating infiltration of
inflammatory cells to the lungs as total leukocyte count
was reduced as compared to OVA-induced (asthmatic)
group. Total inflammatory cell count and recruitment of
eosinophils and neutrophils was significantly reduced in
Giemsa-stained cytospin BALF preparations. Expression
of eotaxin, an eosinophil chemokine, was also suppressed
after intranasal curcumin treatment which could be corre-
lated with reduced eosinophil recruitment (Fig. 2).

Curcumin Inhibits Structural Alterations in Lungs

Inflammation along with airway wall and lung injury
like epithelial wall shedding and ruptured alveolar space
with massive accumulation of inflammatory cells around
bronchioles were seen in OVA-induced lung sections after
H&E staining while curcumin treatment had reduced the
inflammation and structural integrity of the airways were
well maintained (Fig. 3).

Curcumin Ameliorates ECM Deposition

Subepithelial fibrosis is one of the well-
established hallmarks of airway remodeling in chronic
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asthma. In OVA exposed mice, collagen deposition
was promising as compared to curcumin-treated group.
Masson’s trichrome and Sirius red staining is also
showing fibrosis where blue-stained collagen bands
and dark orange fibers around bronchioles and vessels
confirm ECM deposition in asthmatic group while little
collagen deposition was observed in curcumin groups.
Hydroxyproline level, Masson’s trichrome and Sirius
red staining results confirm regulation of fibrosis in
murine model of chronic asthma (Figs. 3 and 4). Sig-
nificant difference in hydroxyproline level is found in
OVA-induced and curcumin-treated groups. Higher

hydroxyproline content was significantly reduced after
curcumin treatment.

Curcumin Inhibits Gelatinolytic Activity of MMP-9

MMP-9 is a well-known extracellular matrix
degrading enzyme and has been reported for its vital
role in chronic asthma disease process. OVA-exposed
BALF had shown marked increased MMP-9 activity
as compared to control mice. Intranasal administration
of curcumin had significantly inhibited MMP-9
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Fig. 2. Effect of curcumin on airway inflammation: a Cytospin preparations of BALF cells after Giemsa staining; inflammatory cell accumulation was
reduced in curcumin-treated group. b Total inflammatory cell count. c Eosinophils and neutrophils counts in different groups.
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activity, whereas dexamethasone-treated BALF and
lungs both had shown significant inhibition in
MMP-9 activity (Fig. 5).

Expression Profile of Collagen Degrading and Fibrosis
Factors (MMP-9, TIMP-1, Eotaxin, and Alpha-Smooth
Muscle Actin)

The balance between MMPs and TIMPs is mainly
responsible for the remodeling event process in tissues
as they are thought to play role in trafficking of in-
flammatory cells and inducing airway smooth muscle

cells hyperplasia. Gelatinolytic activity of MMP-9 was
reduced after curcumin treatment; therefore, we looked
into MMP-9 and TIMP-1 balance. TIMP-1 level re-
mains unaltered in asthmatic and curcumin treatment
groups. Eotaxin being chemokine, responsible for ac-
cumulation of eosinophils trafficking at tissue injury
site, was feebly expressed after curcumin treatment as
compared to asthmatic group which can be correlated
with reduced number of eosinophil infiltration after
curcumin treatment. As inflammation was prominent
in asthmatic group as compared to curcumin-treated
group, we further confirmed its expression in lungs.
Airway fibrosis was confirmed by alpha-smooth mus-
cle actin expression in lungs as curcumin was able to
control the ASM mass proliferation in OVA-induced
chronic asthma (Figs. 6 and 7).

Curcumin Toxicity

Although we already had studied that curcumin is
safe in acute asthma. Since in chronic asthma model, it
has been administered for longer duration; therefore, AST,
ALT, and creatinine level was tested in blood serum to
observe any toxic effect. No significant difference was
noticed in AST and ALT levels while creatinine level was
found significantly higher in OVA-induced and Dexa-
treated groups (Fig. 8).
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Fig. 3. Histology of (top panel) showing increased infiltration of inflammatory cells in alveolar spaces, around bronchioles and loss of structural integrity in
terms of epithelial shedding and destruction of airway lumen. Staining of lung sections by Masson’s trichrome (middle panel) revealed blue color collagen
fiber accumulation has confirmed presence of collagen around bronchiole and blood vessel in lung tissues. The collagen fibers are blue stained and nuclei are
stained black with red background. Picro Sirius red staining (bottom panel) is showing total collagen deposition. Intense orange red fibrous protein is more
prominent in Asth and Veh asth group while Cur treatment has less ECM deposition.
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DISCUSSION

In the present study, murine model of chronic asthma
was developed where OVA-immunized mice were given
eleven OVA challenges and then fibrotic factors were
measured like ECM deposition around bronchioles, hy-
droxyproline content, MMP-9/TIMP-1 balance, and

alpha-smooth muscle actin expression. These parameters
along with inflammation and eotaxin (eosinophil chemo-
tactic factor) were significantly enhanced in the asthma.
Several changes were noted in asthmatic lungs like cellular
inflammation where eosinophils and neutrophil numbers
were found elevated (Figs. 2 and 3). Evidences suggest that
infiltrating inflammatory cells, such as eosinophils, play
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an active role in airway remodeling by promoting the
activation of fibroblasts and endothelial cells [20–22].
These eosinophils are one of the major sources of fibrotic
factors which stimulate the differentiation of airway sub-
mucosal fibroblasts to myofibroblasts which are thought to
synthesize and secrete collagen into the airway submucosal
space which results in airway fibrosis [11]. Airway

eosinophilic inflammation is responsible for the develop-
ment of airway remodeling in murine model of asthma. We
also found the significant accumulation of eosinophils
where IL-5 has been considered as the central mediator
for eosinophilic proliferation, differentiation, and inflam-
mation, as we already have reported elevated level of IL-5
where intranasal curcumin treatment had diminished its
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level in BALF [17]. Present study confirms regulation of
increased level of eotaxin by intranasal curcumin treat-
ment. Results of recent studies suggest that besides IL-5,
eotaxin also contributes to asthma pathogenesis. It is a
potent eosinophil chemoattractant and a critical mediator
for the development and perpetuation of allergen-induced
eosinophilic airway inflammation. Eotaxin selectively
binds to a specific receptor (CCR3) highly expressed on
eosinophils, basophils, and mast cells being important in
the pathogenesis of asthma [23, 24]. Recent report suggests
that eotaxin may play an important role in airway remod-
eling and has a pro-fibrogenic effect on lung and bronchial
fibroblasts [25]. Curcumin being anti-inflammatory mole-
cule is able to inhibit inflammation, IL-5 level, and eotaxin
expression in OVA-sensitized and challenged mice which
confirms reduced eosinophil recruitment to the lungs.

Subepithelial fibrosis and extracellular matrix depo-
sition is one of the key features of remodeling [25, 26].
Various attempts have been made to control these features
but none found effective. The subepithelial fibrosis occurs
in the lamina reticularis layer just below the basement
membrane, which leads to the thickening of the basement
membrane just underneath the epithelium. Fibrosis is the
result of increased deposition of extracellular matrix
(ECM) proteins, including collagens I, III, and V, fibronec-
tin, tenascin, lumican, and biglycan by fibroblasts [27, 28].

In the present study, ECM deposition was confirmed
by histological assessment of lung sections (Masson’s
trichrome and Sirius red staining) and hydroxyproline con-
tent in lungs. Allergen-induced mice have shown thick and
intense fibers around bronchioles whereas curcumin had
significantly inhibited elevated hydroxyproline level as
well as collagen deposition. MMPs and their physiological

inhibitors, TIMPs, which degrade and remodel the excess
extracellular matrix, are believed to play an important role
in the development of fibrotic tissue. Locally, in the extra-
cellular space, MMPs are tightly regulated by TIMPs. In
idiopathic pulmonary fibrosis, gelatinase B (MMP-9) ex-
pression is increased in cultured alveolar macrophages and
in bronchoalveolar lavage fluid [29]. Inflammatory stimu-
lations can lead to increased MMP-9 expression in many
cell types including endothelial cells, alveolar cells, mac-
rophages, fibroblasts, and other connective tissue cells
[30]. In adults, constitutive expression of MMP-9 is re-
stricted to neutrophils and eosinophils [31, 32]. Normal
lungs contain only basal levels of MMP-2 expressed by
endothelial cells and do not contain MMP-9. Under in-
flammatory conditions, there is an induction of MMP-9
transcription by cells such as fibroblasts, as well as in-
creased MMP-9 expression due to the infiltration of neu-
trophils and eosinophils that contain pre-formedMMP-9 in
their granules. Normally, the levels of the gelatinase return
to baseline; however, several pulmonary pathologies are
characterized by sustained, elevated expression of MMP-2
and/or MMP-9 as well as altered expression of the TIMPs.
There are many reports on altered gelatinase levels in
pulmonary diseases; however, detailed understanding of
the involvement of gelatinases in disease pathology is still
evolving [33]. Patients with stable chronic asthma also
show increased levels of both MMP-2 and MMP-9 in the
sputum and BAL fluid [34, 35]. SinceMMP-9 and TIMP-1
balance is a key element that regulates ECM homeostasis
and tissue remodeling. Earlier studies do report that MMP-
9 have relevance to chronic structural airway changes in
asthma, which can be generated by structural and inflam-
matory cells and have the ability to degrade proteoglycans
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and thus potentially enhance airway fibrosis and smooth
muscle proliferation through their ability to release and
activate latent, matrix-bound growth factors [36].

To identify the possible protective role of curcumin
on MMP-9 activity and expression, we used gelatin
zymography and western blot analysis in lungs. Curcumin
treatment showed reduced activity and expression of
MMP-9 in lungs as compared to OVA-challenged mice.
These results are consistent with ECM deposition and
hydroxyproline levels. This increased activity may be cor-
related to exaggerated airway inflammation and
remodeling.

Our studies suggest that the inhibition of MMPs
could be new therapeutic strategy for bronchial asthma,
although further investigations are needed for clear cut
understanding of the regulatory mechanisms of MMP
expression and definite role of different MMPs in
asthmatic airways. Fibrosis is a dynamic process that
involves the balance of MMPs and their inhibitors,
TIMPs. Other studies have also reported exaggerated
quantities of MMP-9 in sputum and biopsies from
patients with asthma [37–39]. Another report suggests
that MMP-9 levels were increased in sputum after
allergen challenge allergic asthmatics as compared to
control subjects and correlated to the percentage of
eosinophils while TIMP-1 levels did not vary signifi-
cantly [40]. Increased ASM mass is the prominent
feature of airway remodeling where it increases dispro-
portionately as compared to the increase in total wall
thickness. It has been documented in both fatal and
non fatal asthma and correlates with both disease se-
verity and duration. Greater ASM mass is fatal in older
patients than younger patients [41–43].

ASM cells are key cells that release fibrotic growth
factor and their mass spontaneously increases in severe
form of asthma. We already had reported that thickening
of ASM layer in lung section of asthmatic group and its
expression (Fig. 7). Curcumin treatment has attenuated
increase in the ASM mass over OVA-induced asthma.
These findings suggest that intranasal route of curcumin
administration may prove as better alternative and could be
protective in interfering fibrotic changes and thereby air-
way remodeling by directly targeting lungs without any
degradation.

Present study suggests that intranasal curcumin has
significantly decreased inflammatory cell recruitment
mainly eosinophils in BALF and lungs both. It is effective
in maintaining ECM composition by modulating fibrotic
factors involved in airway remodeling. Attenuated levels
of eotaxin, MMP-9 and α-smooth muscle actin could be

correlated with reduced eosinophil numbers after curcumin
treatment in asthmatic mice. A detailed and integrated
understanding of the cellular and molecular mechanisms
involved in airway fibrosis could help to answer for effec-
tive intranasal curcumin therapy for complex disease like
asthma.
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