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Protective Effect of Astragaloside IVAgainst Paraquat-Induced
Lung Injury in Mice by Suppressing Rho Signaling
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Yangmei Xu,1 Yangyang Song,1 Shoulei Yong,2 Hui Ji,1,4 and Zhanqiang Ma1,3,4

Abstract—The purpose of the present study was to evaluate the protective effects of astragaloside IV
(AS IV) against paraquat (PQ)-induced pulmonary injury in vivo. Fifty BALB/C mice were randomized
into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 5 mg/kg), (4) PQ + AS IV
(50 mg/kg), and (5) PQ + AS IV (100 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally
given to induced acute lung injury. Then, mice were treated with AS IV (50 and 100 mg/kg/day, orally)
for 5 days. At the end of the experiment, animals were euthanized; then, the bronchoalveolar lavage fluid
(BALF) and lung tissues were collected for histological observation, biochemical assay, and Western
blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismut-
ase (SOD), glutathione peroxidase (GSH-Px) in lung tissues, and interleukin-6 (IL-6), IL-1β, tumor
necrosis factor-α (TNF-α) levels in BALF were determined. Histological examination indicated that AS
IVattenuated lung damage caused by PQ. Biochemical results showed that AS IV treatment significantly
reduced the levels of MDA,MPO, and inflammatory cytokines while increased the levels of SOD, CAT,
and GSH-Px compared with those in PQ group. Western blot results revealed that AS IVattenuated the
Txnip/Trx expressions and inhibited Rho/ROCK/nuclear factor kappaB (NF-κB) signaling pathway in
PQ-challenged mice. These findings suggested the protective effect of AS IVas a natural product on PQ-
induced pulmonary injury.
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INTRODUCTION

Paraquat (PQ, 1-10-dimethyl-40-bipyridylium
dichloride), a quaternary nitrogen herbicide, is one of the
most widely used herbicides and a highly toxic compound
for both animals and humans [1]. PQ toxication contributes

to aggressive tissue damage in the lung, kidney, and liver
tissues. It is noteworthy that the major target organ is the
lung in PQ poisoning. PQ-induced lung injury is char-
acterized by edema, hemorrhage, inflammatory cell
infiltration, and alveolar spaces [2]. It is acknowl-
edged that oxidative stress plays a crucial role in
the pathogenesis of PQ-stimulated pulmonary injury
[3]. In addition, evidence emerged that inflammatory
cascade was closely associated with the progression
of lung disorders [4].

It has been widely acknowledged that reduction–ox-
idation (redox) responses at the intracellular and extracel-
lular levels are the critical biological phenomena during the
progression of various diseases. Thioredoxin (Trx) system,
mainly located in the cytoplasm and mitochondria, is an
essential antioxidant system for cellular survival and func-
tion through its disulfide reductase activity. As an
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important Trx-binding protein, thioredoxin-interacting pro-
tein (Txnip) has the reciprocal function with Trx. Substan-
tial researches suggested that Trx/Txnip regulation could
be an attractive target in the pathogenesis of a variety of
diseases including cerebral ischemia injury [5],
Alzheimer’s disease [6], and inflammation [7].

Rho and its downstream effector, Rho-associated
coiled-coil forming protein kinase (ROCK), are implicated
in the cytoskeletal contractile response through their influ-
ence on myosin ATPase activity. Notably, RhoA/ROCK
pathway is highly related to the regulation of the inflam-
matory response [8]. Nuclear factor-kappaB (NF-κB), a
major nuclear transcription factor, is a regulator
which drives the generation of cytokines in inflam-
matory processes. Santos et al. have reported that
NF-κB pathway plays an important role in the devel-
opment of lung diseases [9].

To date, various nature products have been used for
the intervention of disease [10, 11]. Astragaloside IV (AS
IV) is a small molecular saponin found in Astragalus
membranaceus (Fisch.) Bge which is a widely used herb
in China. The herb exerted antioxidative activities by the
elevation of antioxidants enzymes, inhibition of free radi-
cals, and reduction of lipid peroxidation [12]. The pub-
lished literatures showed the diverse pharmacological ac-
tivities such as antiinflammation [13], antiinfarction [14],
antihypertension [15], myocardial protection, and antiheart
failure [16]. However, no available study has evaluated the
effects of AS IV treatment on PQ-induced lung injury in a
mouse model as yet. Herein, we sought to investigate
whether AS IV could protect against pulmonary inflam-
mation in mice. Our experimental results might provide a
pharmacological basis on its folkloric use for the treatment
of PQ-induced lung injury.

MATERIALS AND METHODS

Reagents

AS IV was purchased from the National Institutes for
Food and Drug Control (Beijing, China). Dexamethasone
(Dex) was purchased from Xiansheng Drug Store (Nan-
jing, China). PQ was provided by Sigma. tumor necrosis
factor-α (TNF-α), interleukin-1 beta (IL-1β), and IL-6
enzyme-linked immunosorbent assay (ELISA) kits were
supplied by BioLegend (San Diego, CA, USA). All anti-
bodies were purchased from Cell Signaling Technology.

Animals

A total of 50 female BALB/c mice (18–22 g), ac-
quired from Jiangning Qinglongshan Animal Cultivation
Farm (Nanjing, China), were maintained in an animal
facility under standard laboratory conditions for 5 days
prior to experiments and provided with water and standard
chow ad libitum. All experimental procedures were carried
out in accordance with the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals.

Experimental Design

The animals were randomly divided into five groups
with ten mice in each group as follows: (1) normal control
group; (2) PQ group, mice received PQ (50mg/kg, i.p.), (3)
PQ + Dex group, mice received PQ (50 mg/kg, i.p.) and
Dex (5 mg/kg/day, i.p.); (4) PQ + AS IV (50 mg/kg) group,
mice received PQ (50 mg/kg, i.p.) and AS IV (50 mg/kg/
day, i.p.); (5) PQ + AS IV (100 mg/kg) group, mice
received PQ (50 mg/kg, i.p.) and AS IV (100 mg/kg/day,
i.p.). PQ was dissolved in saline solution (NaCl 0.9 %) and
intraperitoneally given to mice at a single toxic dose of
50 mg/kg. AS IVwas also dissolved in saline (NaCl 0.9 %)
and administered intragastrically. Two hours after PQ stim-
ulation, AS IV was intragastrically treated at the dose of 50
and 100 mg/kg/day for 5 days. Dex was intragastrically
treated as a positive control.

Bronchoalveolar Lavage

Two days after PQ challenge, the animals were
sacrificed and bronchoalveolar lavage was collected three
times through a tracheal cannula with 0.5 ml of autoclaved
PBS to obtain the bronchoalveolar lavage fluid (BALF).
The total leukocyte count was determined with a hemocy-
tometer. BALF samples were centrifuged at 3000 rpm for
10 min at 4 °C; the cell-free supernatants were stored in
−80 °C for the detection of cytokine concentrations, super-
oxide dismutase (SOD) activity. The pellets were resus-
pended in 100 μl of saline, centrifuged onto slides, and
stained with Wright–Giemsa staining (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) for neutrophil
counting.

Cytokine in BALF

The levels of TNF-α, IL-1β, and IL-6 in BALF were
determined using ELISA kits according to the instructions
recommended by the manufacturers. The optical density
(OD) of each well was determined at 450 nm by a micro-
plate spectrophotometer.
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Lung Wet-to-Dry Weight Ratios

The right lungs were excised at the end of the exper-
iment, and the wet weight was determined. Subsequently,
the lungs were placed at 60 °C for 48 h to remove all
moisture. Then, the dry lungs were weighted, and the lung
wet-to-dry (W/D) ratio was calculated.

Pulmonary Histopathology

The lungs were removed at the end of the experiment.
Afterward, the samples were fixed in 4 % neutral buffered
formalin for 48 h, embedded in paraffin, and cut into 4-μm
sections. Then, hematoxylin–eosin staining was performed
according to the standard protocol. After that, pulmonary
pathological changes were observed under a light
microscope.

Western Blot Analysis

Lung tissues were harvested and froze in liquid
nitrogen immediately until homogenization. Proteins
were extracted with lysis buffer (RIPA with protease
and phosphatase inhibitor) for 15 min on ice. The
total protein concentrations were determined by BCA
protein assay kit. Equal amounts of protein were
mixed with five times loading dye (Laemmli buffer)
and 2-mercaptoethanol followed by heating for 5 min
at 95 °C. The samples were loaded per well on a
10 % sodium dodecyl sulfate polyacrylamide gel and
transferred to PVDF membranes. The blots were
blocked with 5 % bovine serum albumin (BSA)
(5 g BSA was dissolved in 100 ml TBST) for 2 h
at room temperature and incubated with primary an-
tibody overnight at 4 °C. After washing, the bound
antibodies were incubated with peroxidase-conjugated
secondary anti-rabbit antibodies The proteins were
visualized by a ECL Key-GEN system (KeyGEN
Biotechnology, Nanjing, China) and scanned with a
Clinx ChemiScope chemiluminescence imaging sys-
tem (Gel Catcher 2850, China). GAPDH was detect-
ed as an internal control of protein loading.

Statistical Analysis

The results were expressed as mean value±SD and
analyzed with one-way analysis of variance (ANOVA)
with Tukey multiple comparison test. A P value less than
0.05 was considered statistically significant.

RESULTS

Effects of AS IV on PQ-Induced Lung Wet-to-Dry
Ratio

The index of lung edema was measured by calculat-
ing the W/D ratio of lung tissue. As revealed in Fig. 1, the
lung W/D ratios in PQ-stimulated mice were evidently
higher versus those in control mice. On the contrary, the
W/D ratios in AS IV (50 and 100 mg/kg) groups and the
Dex (5 mg/kg) group significantly decreased compared
with those in PQ group. The data clearly indicated the
obvious reduction of pulmonary edema content with the
treatment of AS IV.

Effects of AS IV on Inflammatory Cells in BALF
and MPO Activity in Lung Tissues

The myeloperoxidase (MPO) activity was mea-
sured to elucidate the neutrophil accumulation in
pulmonary tissues. Meanwhile, the number of total
cells and neutrophils were analyzed to the migration
and infiltration of pulmonary cells. As illustrated in
Fig. 1, the number of total cells, neutrophils, and
MPO activity in PQ group significantly increased as
compared with those in control group. Treatment
with AS IV (50 and 100 mg/kg) and Dex (5 mg/kg)
effectively decreased the number of total cells, neu-
trophils, and MPO level compared with those in PQ
group. Our results suggested that AS IV exhibited an
inhibitory effect on cell infiltration.

Effects of AS IV on Cytokines in BALF

Cytokines participate in the initiation and amplifica-
tion of inflammatory cascade of acute lung injury (ALI).
As shown in Fig. 2, it was proved that the levels of TNF-α,
IL-1β, and IL-6 in BALF were significantly increased in
PQ group compared with those in control group. AS IV (50
and 100 mg/kg) and Dex (5 mg/kg) treatment remarkably
decreased the generations of TNF-α, IL-1β, and IL-6 in
dose-dependent manners. Herein, AS IV reduced the syn-
thesis and release of inflammatory cytokines in PQ-
induced ALI.

Effects of AS IVon Oxidative Stress

Lipid peroxidation in lung tissues was determined by
assaying the generations of malondialdehyde (MDA),
SOD, glutathione peroxidase (GSH-Px), and catalase
(CAT). As revealed in Fig. 3, PQ stimulation significantly
declined the SOD, CAT activities, and GSH-Px content,
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while AS IV administration effectively restored the levels
of GSH-Px, CAT, and SOD. Meanwhile, exposure to PQ
displayed a strikingly high MDA level, whereas the treat-
ment with AS IV remarkably ameliorated this condition.
Our experimental data demonstrated that AS IV was capa-
ble of ameliorating oxidative stress in PQ-stimulated mice.

Effect of AS IVon PQ-Induced Pathological Changes
of the Lung

Hematoxylin and eosin (H&E) staining was per-
formed to evaluate the protective effects of AS IV
physiological impairment. Scarce obvious histological
alteration was observed in lung specimen. By con-
trast, in PQ group, histological evaluation of lungs
by light microscopy showed alveolar wall hyperemia
and excessive neutrophil infiltration around the pul-
monary vessel after the simulation of PQ. AS IV

treatment groups obviously attenuated the severity
of lung injury. These findings suggested that AS IV
significantly attenuated the histopathology conditions
in PQ-induced ALI (Fig. 4).

Effects of AS IVon PQ-Induced Txnip/Trx

It is assumed that protection from oxidative
stress is mediated by Trx systems. Thus, we detected
the expressions of Trx and Txnip by Western blot
analysis. As shown in Fig 5, PQ challenge respec-
tively induced an obvious increase in the expression
of Txnip and a pronounced decrease in the expres-
sion of Trx. It was proved that the treatment with AS
IV significantly activated Trx and restrained Txnip.
These observations indicated that Trx system was
involved in the inhibitory effect of AS IV on PQ-
stimulated acute lung injury.

a b

c d

Fig. 1. The effects of AS IVon PQ-induced acute lung injury: a lung W/D ratio, b lung MPO activity, c the number of total cells in BALF, d the number of
neutrophils in BALF. Values are expressed as mean±SD. #P<0.05, ##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and
***P<0.001 compared with PQ group.
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Effects of AS IVon PQ-Induced RhoA/Rho Kinase Pathway
Activation

RhoA/Rho kinase pathway plays a key role in the
regulation of inflammatory mediator production.We found
that the expressions of RhoA, ROCK1, and ROCK2 were
significantly upregulated in lung tissues after PQ stimula-
tion. By contrast, treatment withAS IV (50 and 100mg/kg)

and Dex (5 mg/kg) obviously ameliorated these situations
(Fig. 6).

Effects of AS IVon PQ-Induced NF-κB Pathway Activation

To identify the activation of the NF-κB pathway in
lung after PQ stimulation, the phosphorylated and
nonphosphorylated forms of NF-κBp65 and IкBα were

a b

c d

Fig. 2. The effects of AS IVon the oxidative stress of PQ-inducedmice. The levels of aMDA, b SOD, cGSH-Px, and dCAT in lung tissues. Values are expressed
as mean±SD. #P<0.05, ##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and ***P<0.001 compared with PQ group.

a b c

Fig. 3. The effects of AS IVon the generations of inflammatory cytokines a IL-1β, b IL-6, and c TNF-α on PQ-induced mice. Values are expressed as
mean±SD. #P<0.05, ##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and ***P<0.001 compared with PQ group.
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measured by Western blot. Our results implied that the
treatment with AS IV (50 and 100 mg/kg) and Dex
(5 mg/kg) effectively blocked the phosphorylation of
NF-кBp65 and IкBα in lung tissues of PQ-induced
ALI. The analytical results suggested that the AS IV
was invo lv ed in t he deg r ada t i on and the
phosphosphorylation of IκBα, which contributed to
the activation of NF-κBp65 (Fig. 7).

DISCUSSION

In this study, our results showed that the natural
product AS IV could attenuate PQ-induced pulmonary
and lung injury in mice. The ability of AS IV to reduce
PQ-induced toxicity was due to its antioxidant and
antiinflammatory effects in lung tissues.

Paraquat is the widely used herbicide around the
world. Since its first application on agriculture in 1962,
thousands of people died yearly from the intentional or
accidental ingestion of PQ. The lung tissue is the major
target organ as PQ is actively taken up by the alveolar
epithelium [17]. Therefore, the injection of PQ is usually
used as an inducer for acute lung injury in scientific
studies.

ALI is a severe clinical syndrome characterized by
noncardiogenic pulmonary edema, severe hypoxemia, ac-
cumulation of pulmonary cells, and overproduction of
inflammatory cytokines [18]. Unfortunately, there has been
few effective drugs to treat ALI as yet [19]. Thus, there is
an urgent need to find safer medicine for the management
of acute lung injury.

A. membranaceus is a longstanding Chinese herbal
and traditionally used for multiple disease including in-
flammatory disorders [20]. As its critical component,

a

c d e

b

Fig. 4. The effects of AS IVon PQ-stimulated lung histopathologic changes in lung tissues. a The lung section from the control mice, b the lung section from
PQ mice, c the lung section from the mice administered with PQ and dexamethasone (5 mg/kg), d the lung section from the mice administered with PQ and
AS IV (5 0 mg/kg), and e the lung section from the mice administered with PQ and AS IV (100 mg/kg).

a b c

Fig. 5. The effects of AS IV on the expressions of Txnip and Trx in the lung tissues of PQ-induced mice. Values are expressed as mean±SD. #P<0.05,
##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and ***P<0.001 compared with PQ group.
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astragaloside IV showed the potential effects on infarction,
hypertension, heart failure, asthma, and inflammation [21].
However, the therapeutic efficacy as well as the mecha-
nism of astragaloside IV on acute lung injury remains
unknown.

Edema is the pivotal feature of systemic and partial
inflammation. The W/D ratio was calculated to determine
the water content of lung tissues [22]. As suggested by the
evident reduction ofW/D ratio, our data confirmed that AS
IV was capable of attenuating the pulmonary edema. The
migration and infiltration of neutrophils into the lung is the

characteristic symptom of pulmonary disease. More-
over, the suppression of neutrophils participates in
the mediation of oxygen species, cytokines,
chemokines, and granular enzyme-mediated lung in-
jury. MPO drives superabundant oxidative production
which leads to the tissue damage under inflammatory
conditions [23]. The experimental results indicated
that AS IV effectively inhibited the MPO activity
and the inflammatory cell infiltration. Furthermore,
the histopathological observation also confirmed the
protective effects of AS IV on PQ-challenged mice.

a b c d

Fig. 6. The effects of AS IV on the expressions of Rho/ROCK1/ROCK2 signaling in the lung tissues of PQ-induced mice. Values are expressed as
mean±SD. #P<0.05, ##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and ***P<0.001 compared with PQ group.

b c

a

Fig. 7. The effects of AS IVon the phosphorylations of the IκBα and NF-κBp65 in the lung tissues of PQ-inducedmice. Values are expressed as mean±SD.
#P<0.05, ##P<0.01, and ###P<0.001 compared with control group. *P<0.05, **P<0.01, and ***P<0.001 compared with PQ group.
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Inflammatory cytokines appear in the early stage of
the inflammatory response and contribute to the severity of
lung dysfunction [24]. IL-1β conduces to the alveolar
epithelial repairment and induces the release of other cyto-
kines [25]. IL-6 is highly related to the acute-phase re-
sponse of inflammation and the initiation of inflammatory
cascade [26]. TNF-α, an important molecule in the moti-
vation of innate immune reaction, is responsible for the
pathogenesis of inflammation [27]. As expected, AS IV
was found to effectively downregulate the contents of IL-
1β, IL-6, and TNF-α, which indicated that the protective
effects of AS IV on PQ-induced acute lung injury were
partly attributed to the suppression of inflammatory
mediators.

Accumulating evidences proposed the common link
between acute lung injury and oxidative stress [28]. The
excessive oxygen-free radical which occurs during the
pathogenesis of pulmonary lesion also contributes to bio-
logical membrane lipid peroxidation and severe cell dam-
age [29]. Thus, the attenuation of oxidative stress might be
beneficial to the treatment of pulmonary disease. MDA is
the end product of polyunsaturated fatty acid and usually
used as an indicator for the lipid peroxidation [30]. SOD
exhibits various physiological activities including
antiinflammatory and antioxidative effects [31]. GSH-Px
is a critical nonprotein antioxidant and participates in scav-
enging the lipid peroxide radicals [32]. Previous reports
demonstrated that CAT was implicated in the pulmonary
lesion [33]. The analytical results suggested that AS IV
evidently decreased the content of MDA and restored
SOD, GSH-Px, and CAT activity. Our results suggested
that the therapeutic effects of AS IV might result from the
antioxidative activity.

Txnip, combined with thioredoxin in physiological
condition, is considered as the negative regulator of Trx
and redox. A recent report described Txnip as the sensitive
target to oxidative stress [34]. Excessive ROS promoted
the dissociation of Txnip from Trx [35]. Mounting evi-
dence suggested the critical role of the oxidoreductase
thioredoxin (Trx) in the mediation of NF-κB activity
[36]. It is noteworthy that Txnipmay be a therapeutic target
for pulmonary diseases. In this study, the data demonstrat-
ed that AS IV participated in the mediation of Trx system,
which governed the lipid peroxidation.

The Rho family of small GTPases is an important
regulator which is involved in various intracellular signal-
ing pathways; ROCKs are the downstream events of Rho
guanosine triphosphatases [37]. ROCK is involved in var-
ious cellular processes, such as actomyosin contractility,
cell adhesion, and inflammatory response [38]. There are
two known ROCK isoforms: ROCK1 and ROCK2. As
two isoforms of ROCK in mammalian cells, ROCK1 and
ROCK2 share 65 % overall identity and 92 % identity in
the kinase domain [39]. Former researches proposed the
effects of ROCK1/ROCK2 in inflammatory pathogenesis
[40]. NF-κB plays a crucial role in the regulation of im-
mune and inflammatory progressions including acute lung
injury [41]. PQ challenge brings about the activation of
NF-κB through the phosphorylation and degradation of the
IκBα. Evidence has emerged indicating that Rho/ROCK/
NF-κB pathway was involved in the pulmonary disorder
[42]. Substantial researches also elicited that NF-κB path-
way was implicated in the lipid peroxidation and inflam-
matory process [43]. Our Western blotting data ascertained
that AS IV significantly attenuated the expressions of Rho/
ROCK/NF-κB cascade in response to PQ challenge.

Fig. 8. Pathways of AS IV in PQ-induced acute lung injury.
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Simplified overview of the above signaling pathways was
as illustrated in Fig. 8.

In conclusion, the results of the present study revealed
that AS IV could effectively attenuate PQ-induced ALI
in vivo. The potential mechanism of AS IV might be
involved in the ameliorations of inflammatory cytokines
and oxidative stress through the Trx/Txnip regulation and
the blockade of Rho/ROCK/NF-κB signalings. However,
there still remain several limitations in the current work.
The future investigation might be focused on the critical
role of Trx/Txnip and Rho/ROCK/NF-κB molecules with
knockdown or overexpression methods in vitro. More
studies are warranted to capitalize on the protective effects
of AS IV in humans and to make it an effective functional
medicine in the prevention of ALI caused by PQ.
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