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Anti-Citrullinated Protein Antibodies Induce Macrophage
Subset Disequilibrium in RA Patients
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Abstract—We used samples from rheumatoid arthritis (RA) patients to examine whether Anti-
citrullinated protein antibodies (ACPAs) alter macrophage subset distribution and promote RA devel-
opment. Macrophage subset distributions and interferon regulatory factor 4 (IRF4) and IRFS5 expressions
were analyzed. ACPAs were purified by affinity column. After RA and osteoarthritis (OA) patients’
macrophages were cocultured with ACPAs, macrophage subsets and IRF4 and IRF5 expressions were
measured. Small interfering RNAs (siRNAs) were transfected into ACPA-activated cells to suppress
IRF4 or IRFS5. Fluorescence-activated cell sorting (FACS), Western blot, and immunohistochemistry
were performed. Macrophage subset disequilibrium occurred in RA patient synovial fluids. IRF4 and
IRFS were all expressed in the synovial fluid and synovium. ACPAs (40 IU/ml) could induce macro-
phages to polarize to M1 subsets, and the percentage of increased M1/M2 ratio of RA patients was
higher than that of the OA patients. ACPAs also induce IRF4 and IRF5 protein expressions. IRF5 siRNA
transfection impaired ACPA activity significantly. We demonstrated that macrophage subset disequilib-
rium occurred in RA patients. ACPAs induced IRFS5 activity and led to M1 macrophage polarization.
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Rheumatoid arthritis (RA) is a chronic immune-mediated
disease marked by inflammation in joint linings (i.e., the
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synovium) and cartilage and bone destruction. Anti-
citrullinated protein antibodies (ACPAs) are highly specific
for RA and a powerful tool for its diagnosis and predicting
disease severity [1]. These autoantibodies can be detected
several years before clinical symptom onset, with titers
increasing as disease onset approaches [2—4]. Citrullination
is a posttranslational modification of proteins in which a
peptidyl arginine is converted into the nonstandard amino
acid peptidyl citrulline. The reaction is catalyzed by
calcium-dependent peptidyl arginine deiminase (PAD).
Five PADs have been identified in humans, and PAD-2
and PAD-4 are those found in rheumatoid synovial fluid
cells [5] and in synovial membranes [6]. Citrullinated
proteins have been detected in the synovial membranes
and synovial fluid of patients with various forms of arthritis
[7, 8], suggesting that citrullination is associated with
inflammation in general.

Studies revealed that protein citrullination was in-
volved in immune tolerance breakdown in experimental
autoimmune arthritis [9]. Additionally, ACPAs are strongly
associated with increased risk of healthy individuals
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developing RA. Among those with RA, their presence is
associated with more severe structural damage, radio-
graphic progression, and poorer response to therapy [10,
11]. Clavel et al. [12] demonstrated that immune com-
plexes containing IgG ACPA (ACPA-IC) induce FcyR-
mediated TNF-a secretion in macrophages. Lu et al. [13,
14] demonstrated that ACPAs could selectively activate
extracellular signal-regulated protein kinases 1 and 2
(ERK1/2) and c-Jun N-terminal kinase (JNK) signaling
pathways to enhance IkB kinase alpha (IKKa) phosphory-
lation, which leads to nuclear factor kappaB (NF-kB) acti-
vation and TNF-a production from monocytes/
macrophages via binding to surface-expressed citrullinated
glucose-regulated protein 78 (cit-GRP78).

RA pathogenesis is complex and includes many cell
types, including T cells, B cells, and macrophages. Macro-
phages are of central importance in RA due to their prom-
inent numbers in the inflamed synovial membrane and at
the cartilage—pannus junction. Macrophages display a
highly activated phenotype and produce a panoply of
pro-inflammatory cytokines, chemokines, and growth fac-
tors [15]. One key feature of macrophages is their func-
tional diversity. Depending on the microenvironment, mac-
rophages are polarized into functionally distinct forms:
classically activated (M 1) macrophages and alternatively
activated (M2) macrophages. M1 macrophages are en-
gaged in inflammatory, microbicidal, and tumoricidal ac-
tivities. By contrast, M2 macrophages dampen inflamma-
tion and promote tissue remodeling and repair [16]. Mac-
rophage polarization is plastic, and M1 and M2 cell dis-
equilibrium correlates with the disease [17]. However, the
relationship between macrophage imbalances and RA
pathogenesis is poorly understood. Based on these obser-
vations, we hypothesized that ACPAs may activate macro-
phages, alter macrophage subtype distribution, and corre-
late with RA development. In this study, we demonstrated
that ACPAs activated interferon regulatory factor 5 (IRFS)
and induced macrophages to polarize to M1 subtypes.

MATERIALS AND METHODS

Patients

Thirty-nine RA patients fulfilling the American Col-
lege of Rheumatology criteria for RA [18] were involved
in this study, including 32 women and 7 men. Patients were
evaluated for tender and swollen joint counts, erythrocyte
sedimentation rate (ESR), C-reactive protein (CRP), visual
analog scale (VAS), and a disease activity score of 28 joints
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(DAS28) (mean DAS28 4.3+1.4). The clinical and sero-
logical features, such as rheumatoid factor (RF) and anti-
cyclic citrullinated peptide antibody (ACPA), were also
recorded. In this study, 35 patients with osteoarthritis
(OA) (28 women and 7 men) were studied as controls.
The study protocol was approved by the Institutional
Ethics Committee. All patients gave written informed con-
sent to the study protocol.

For synovial fluid macrophage isolation, synovial
fluid was cultured in a 12-well culture plate for 3 h, adher-
ent cells were washed with PBS, resuspended, and then
adjusted to 1x10°ml in Dulbecco’s modified Eagle’s
medium (DMEM).

ACPA Purification from ACPA-Positive RA Sera

Serum samples with high ACPA titers (>200 IU/ml)
were obtained from RA patients and pooled. The APCA
activity of these serum samples was detected with a com-
mercially available enzyme-linked immunosorbent assay
(ELISA) kit (Pharmacia Diagnostics). We used a first-
generation synthetic cyclic citrullinated peptide (CCP) an-
tigen (QiangYao Co.) in the clinical test designed by
Schellekens et al. [19] to show amino acid sequence
HQCHQESTXGRSRGRCGRSGS (X designates citrul-
line, and C represents the chemical bond between two
cysteines). The synthetic peptide was conjugated to normal
human serum-activated HP column (GE Healthcare Life
Sciences) according to the manufacturer’s instructions and
then packed as a CCP affinity column. The pooled ACPA-
containing RA sera were incubated with the CCP affinity
column overnight at 4 °C. The column was washed with
0.02 M sodium phosphate, pH 7.0, and the unbounded
fraction was collected. The bound ACPAs were washing
with 0.05 M glycine-HC]I, pH 3.0; the effluent was imme-
diately neutralized with 1:10 volume of 1 M Tris buffer
(pH 8.0) and concentrated through a Vivaspin 20 polye-
thersulfone 30,000 MWCO membrane (Sartorious). The
citrullinated peptide-binding activity of the affinity-
purified human ACPAs was measured with ELISA kits
(Pharmacia Diagnostics). The endotoxin levels in purified
ACPAs were confirmed to be <0.5 EU/ml with the limulus
amebocyte lysate assay (Lonza).

Macrophages Cultured with Purified ACPAs

RA and OA patients’ peripheral blood mononuclear
cells (PBMCs) were isolated from freshly drawn anti-
coagulated blood using 1.077 g/ml Ficoll-Hypaque gradi-
ent centrifugation (2000 rpm for 20 min). The isolated
PBMCs were cultured for 6 h and then discarded the



ACPAs Altered Macrophage Subtype Distribution

nonadherent cell. To induce macrophages, the adherent
cells were cultured with phorbol 12-myristate 13-acetate
(PMA) (50 ng/ml) for 48 h, and then, the macrophages
were cultured with or without purified ACPAs (40 IU/ml)
for 48 h. After being cultured with ACPAs, the macro-
phages were harvested for assay. The following formula
was used to analyze the fluorescence-activated cell sorting
(FACS) results:

Increased M1/M2 ratio = [M1/M2(ACPAs)-M1/M2(NEG)]
/IM1/M2(NEG)].

Flow Cytometry

Standard FACS analysis was performed to evaluate
macrophage subsets. ACPA-induced macrophages or sy-
novial fluid macrophages were stained and incubated at
4 °C for 30 min with Percp-cy5.5-conjugated anti-CD68
(BD Biosciences), which are human macrophage-specific
markers. APC-conjugated anti-HLA-DR (BD Biosciences)
and PE-conjugated anti-CD163 (BD Biosciences) were
used to discriminate M1 and M2 macrophage populations.
CD68 HLA-DR" cells were identified as M1 macrophages
and CD68'CD163" cells as M2 macrophages.

Western Blot

Equal amounts of protein were resolved by 10 %
SDS-PAGE and transformed onto a PVDF membrane.
The membrane was blocked with 5 % nonfat dried milk
and incubated with antibody specific for IRF4, IRFS5, and
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
overnight at 4 °C. After washing with TBST, the mem-
branes were incubated with horseradish peroxidase-linked
secondary antibody. The proteins were visualized using
ECL chemiluminescence and exposed to X-ray film.
Bands were quantified with images. Protein expressions
were determined by densitometry analysis of the target
protein normalized to GAPDH.

Immunohistochemistry

Frozen synovium sections were stained with mouse
anti-human IRF4 or IRF5 followed by a horseradish
peroxidase-labeled anti-mouse secondary antibody and a
3,30-diaminobenzidine (DAB) substrate to detect IRF4
and IRF5 expressions. Section areas and positive cells were
measured from digital images using IMAGE PRO PLUS
software (Media Cybernetics, Silver Springs, MD). The
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results were averaged and expressed as integrated optical
density (IOD)/positive cell.

IRF4 or IRFS5 Suppression with siRNA

IRF4siRNAs or IRF5siRNAs were transfected into
macrophages according to the manufacturer’s instructions
(GenePharma). Briefly, adherent cells from RA patients’
PBMCs were cultured with PMA (50 ng/ml) for 48 h, and
IRF4siRNAs or IRF5siRNAs were transfected into macro-
phages using transfection reagents (Gene Pharma). Six
hours later, the transfection reagents were removed and
macrophages cultured with ACPA (40 IU/ml). After 48 h,
cells were harvested for FACS and Western blot assay.
FACS was used to detect transfection efficiency and mac-
rophage distribution. Western blot was used to determine if
IRF4 or IRF5 protein expressions were inhibited. Protein
expressions were determined by densitometry analysis of
the target protein normalized to GAPDH. The following
formula was used to analyze the FACS results:

Increased M1/M2 ratio = [M1/M2(ACPAs)-M1/M2(NEG)]
[M1/M2(NEG)].

Statistical Analysis

All statistical analyses were performed with SPSS
17.0 software (IBM, USA). Data are expressed as the
means+SD. Statistical significance was determined using
the independent samples ¢ test, and P<0.05 was considered
statistically significant.

RESULTS

Macrophage Subset Disequilibrium in Synovial Fluid

FACS was used to discriminate macrophage subsets
in synovial fluid. To keep the same conditions, synovial
fluid cells were not cultured with DMEM in vitro. Synovial
fluids were only cultured 3 h to separate macrophages from
other cells. As shown in Fig. 1, the M1/M2 macrophage
ratio was 32.76+11.02 in RA patients, while only 9.01+5.35
in OA patients. The results show macrophage subset
disequilibrium occurred in RA patient synovial fluids.
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Fig. 1. The macrophage subtype distribution in RA patient synovial fluid. Twelve synovial fluids from RA patients and nine synovial fluids from OA patients
were analyzed independently by FACS. a The gate is CD68" cell. b The CD68-positive cell. Bar graphs summarize the data. ***P<0.001, versus OA

patients. n=12 (RA), n=9 (OA).

IRF4 and IRF5 Overexpress in Synovial Fluid Cells

IRFs were originally described as type I IFN
expression and signaling regulators. However, it is
now well established that they have additional im-
portant functions, including regulating macrophages
and DC ontogeny [20]. IRFS5 is a crucial transcription
factor in a number of immune and homeostatic pro-
cesses. IRF5 activation downstream of Toll-like
receptors (TLRs) and RIG-I-like RNA helicases, in-
volving IRAK and IKK. IKKf( phosphorylated
IRFS5 at Ser462 and induced the dimerization of
wild-type IRFS. IRF5" mice are resistant to lethal
endotoxin-induced shock and show diminished pro-
duction of pro-inflammatory mediators such as TNF-
«, IL-6, and IL-12 in response to in vitro stimulation
of macrophages with TLR agonists, and IRF5~
macrophages are polarized to an anti-inflammatory
M2 phenotype. IRF5 has the dual function of acti-
vating M1 genes while repressing M2 genes by bind-
ing to similar cis-acting elements in gene promoters
[21, 22]. Macrophage M2 phenotype is promoted by
several transcription factors, including STAT3,
STAT6, IRF4, PPARYy, and KLF-4. IRF4 specifically
regulates M2 macrophage polarization in response to

parasites or the fungal cell wall component chitin.
This pathway involves the histone demethylase
JMJD3, which functions by removing an inhibitory
histone modification, H3K27me [23]. In this study,
IRF4 and IRFS protein expressions were detected in
synovial fluids. As shown in Fig. 2, IRF4 and IRFS
were expressed in synovial fluid, but IRF4 and IRF5
levels were higher in RA patients than in OA pa-
tients (P<0.01). Although IRF5 protein expressions
were higher than IRF4 protein expressions in RA
patients, the difference was not significant.

Increased IRFS Expression in RA Patient Synovium
Tissues

The synovium from RA and OA patients were proc-
essed as indicated in the MATERIALS AND METHODS
section to detect IRF4 and IRF5 by immunohistochemistry.
IRFS expression in RA patients’ synovium (21.10£3.51
10D/positive cell) versus OA patients’ (13.88+1.99 10D/
positive cell) was significantly increased (Fig. 3, P<0.01).
IRF4 expressions in synovium were lower than IRF5 ex-
pressions, but the difference between RA and OA was not
significant (Fig. 3).
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Fig. 2. IRF4 and IRF5 protein expression detected by Western blotting in RA patient synovial fluid. Protein expressions were determined by densitometry
analysis of the target protein normalized to GAPDH. a IRF4 protein expression. Bar graphs summarize the data. b IRF5 protein expression. Bar graphs

summarize the data. ¥**P<0.01, versus OA patients. n=9 (RA), n=6 (OA).

ACPAs Altered Macrophage Subtype Distributions
in RA Patients

To determine whether ACPAs correlate with
macrophage subset imbalances in RA patients,
ACPAs were purified from RA sera by CCP affin-
ity columns, then cultured with macrophages from
RA and OA patients in vitro. As shown in Fig. 4,
ACPAs (40 1U/ml) could induce macrophages to
polarize to M1 subsets. After culturing with
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ACPAs, the M1/M2 ratio increased 61.03+£15.90 %
in OA patients, while it increased 158.62+26.91 %
in RA patients.

ACPAs Promote IRF4 and IRF5 Expressions in RA
Patients

Since IRF4 and IRF5 were overexpressed in
synovial fluid cells, we next detected whether ACPAs
induce macrophages to polarize to M1 subsets
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Fig. 3. IRF4 and IRFS5 expression analyzed by immunohistochemistry in RA patient synovium. Protein expressions were measured from digital images using
IMAGE PRO PLUS software. The results were averaged and expressed as IOD/positive cell. a IRF4 protein expression. Arrows show the positive cell. Bar
graphs summarize the data. b IRFS protein expression. Arrows show the positive cell. Bar graphs summarize the data. **P<0.01, versus OA patients. n=06.
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induce macrophage, and then, the macrophages were untreated or treated with purified ACPAs (40 IU/ml) for 48 h. Macrophages from OA patients were
studied as controls. a The gate is CD68 " cell. b The CD68-positive cell. Bar graphs summarize the data. NEG cells were untreated with ACPAs. ***P<(.001,

versus OA patients. n=10.

through IRF signaling pathways. As shown in Fig. 5,
ACPAs significantly promote IRF4 and IRF5 expres-
sion in macrophages. Without ACPAs, IRF4 and
IRF5 relative expressions were 0.006+0.0007 and
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Fig. 5. ACPAs upregulated IRF4 and IRFS protein expression in RA patients. Adherent cells from RA and OA patients’ PBMCs were cultured with PMA to
induce macrophage, and then, the macrophages were untreated or treated with purified ACPAs (40 IU/ml) for 48 h. Macrophages from OA patients were
studied as controls. a IRF4 protein expression. Bar graphs summarize the data. b IRF5 protein expression. Bar graphs summarize the data. NEG cells were
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ACPAs Altered Macrophage Subtype Distribution

IRFS5 Correlates with ACPA-Induced Macrophage
Subset Disequilibrium in RA

To confirm that IRFs are involved in the ACPA-
induced macrophage subset disequilibrium in RA,
IRF4siRNAs or IRF5siRNAs were transfected into macro-
phages from RA patients. FACS results show that 45 % of
macrophages were transfected with IRF4siRNA or
IRF5siRNA. As shown in Fig. 6, IRF4siRNA or
IRF5siRNA transfection reduced ACPA-induced IRF4 or
IRFS5 protein expression in macrophages, and IRF5siRNA
transfection reduced ACPA-induced the increased M1/M2
ratio significantly (P<0.001). ACPAs alone, the percent-
age of M1/M2 ratio was increased 161.01+15.35 %,
whereas transfected with IRF5siRNA, the percentage
of M1/M2 ratio was only increased 54.97+7.80 %.
Although, transfected with IRF4siRNAs also influence
ACPA function, but the effect of IRF4 was lower than that
of IRFS, the percentage of M1/M2 ratio was increased
132.12+13.12 %.

DISCUSSION

Rheumatoid arthritis is characterized by synovial
hyperplasia and inflammation, with increased num-
bers of macrophages, fibroblasts, and lymphocytes
in the synovium. Evidence indicates that CD4'T
cell-mediated autoimmune responses, especially Th
cell imbalances, play a critical role in RA pathogen-
esis [24, 25]. The earliest attempts to delete CD4 + T
cells in RA treatments were disappointing [26]. Mac-
rophages are of central importance in to RA patho-
genesis, and disease severity correlates with the num-
ber of activated macrophages in the inflamed tissues
and in circulation [27]. Li et al. [28] demonstrated
that anti-human DRS5 antibody TRA-8 specifically
eliminates inflammatory macrophages, leading to the
IL-23/Th17 axis and Tregs rebalance and arthritis
resolution in a mouse arthritis model. Macrophages
are characterized by considerable diversity and plas-
ticity. Depending on the microenvironment, macro-
phages are polarized into functionally distinct forms:
M1 macrophages which are engaged in inflammation
and M2 macrophages which dampen inflammation.
M1 and M2 cell disequilibrium was associated with
colitis development [17]. This study demonstrates
that macrophage imbalances occur in RA patients’
synovial fluid cells, and the M1/M2 macrophage ratio
was 32.76+11.02 in RA patients.
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IRFs were originally described as type I IFN
expressions and signaling regulators. Recent studies
show that IRFs were involved in RA pathogenesis.
IRF4 has emerged as a crucial controller of both IL-
17 and IL-21 production in RA. Satoh et al. [21]
demonstrated that IRF4 specifically regulates M2
macrophage polarization, while Krausgruber et al.
[22] detected that IRF5 promotes inflammatory mac-
rophage polarization and THI1-TH17 responses.
Weiss et al. [29] also demonstrated that IRFS5 is
highly expressed in pro-inflammatory macrophages
and should be utilized as a reliable marker for mac-
rophages at inflammation sites. In this study, consis-
tent with macrophage subset ratio FACS results in
synovial fluid, IRF5 protein expressions were higher
than IRF4 protein expressions in synovial fluid and
synovium.

ACPAs are strongly associated with an increased
risk of developing RA in healthy individuals and are
detectable in healthy persons’ blood prior to clinical
RA. Geneticists and epidemiologists hold ACPA-
positive RA to be a homogeneous phenotype of
severe RA. ACPA is strongly associated with the
HLA-DRBI1-shared epitope [30] and PTPN22 [31],
strong genetic risk factors for RA. However, ACPAs’
roles in RA pathogenesis are poorly understood. Lu
et al. [13, 14] demonstrated that ACPAs could bound
to surface-expressed citrullinated Grp78 protein on
monocyte/macrophages and selectively activate
ERK1/2 and JNK signaling pathways, which leads
to NF-«kB activation and TNF-« production. Yoo
et al. [32] demonstrated that RA synoviocytes
expressed higher levels of GRP78 than OA
synoviocytes. Downregulation of Grp78 transcripts
increased the apoptosis of RA synoviocytes while
abolishing TNF- or TGF-f-induced synoviocyte pro-
liferation. Our research detected that macrophage
subset imbalances occur in synovial fluid. We hy-
pothesized that ACPAs may activate macrophages
and polarize to M1 macrophages. ACPAs was puri-
fied from RA sera through an affinity columnand
cultured with M-CSF-induced macrophages that were
derived from RA and OA patients’ PBMCs. To in-
vestigate the effect of ACPAs on RA, macrophages
from OA patients were also studied as controls. After
culturing with ACPAs, the MI1/M2 ratio increased
61.03+£15.90 % in OA patients, while it increased
158.62+26.91 % in RA patients. We demonstrated
that ACPAs could induce IRF4 and IRF5 protein
expressions and lead macrophages to polarize to M1
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Bar graphs summarize the data. NEG cells were untreated with ACPAs or/and siRNA. *P<0.05, ***P<0.001, versus ACPAs. n=4.

subsets. Recent studies show that IRF4 regulates M2
macrophage polarization [21], while IRF5 regulates
M1 macrophage polarization and represses anti-
inflammatory cytokine transcription [22, 23]. In this
study, ACPAs enhanced IRF4 protein expression but
did not lead to M2 macrophage polarization. We
deduced that repression of IRF5 function may be
associated with it.

To confirm that IRFs were involved in ACPAs-
induced macrophage polarization, IRF4siRNAs or
IRF5siRNAs were transfected into macrophages and cul-
tured with ACPAs. FACS results show that IRF5siRNA
transfection reduced ACPAs-induced M1 macrophage po-
larization significantly. With ACPA alone, the M1/M2 ratio
percentage increased to 161.01+15.35 %. After
IRF5siRNA transfection, the M1/M2 ratio percentage only
increased to 54.97+7.80 %. IRF4siRNA transfection also
influenced ACPA function, but IRF4 effects were lower
than those of IRFS. This demonstrated that IRF5 regulates
M1 macrophage polarization in RA patients.

In summary, this study demonstrates that macrophage
subset disequilibrium occurred in RA patients. ACPAs
induce IRF5 activity and lead to M1 macrophage
polarization.
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