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Vitamin D Improves Cognitive Function and Modulates
Ty17/T,es Cell Balance After Hepatectomy in Mice

Ayong Tian,' Hong Ma,'** Xuezhao Cao,' Rongwei Zhang,” Xiaolong Wang,' and Binyang Wu'

Abstract—It is known that surgery-induced tissue damage activates the peripheral immune system
resulting in the release of inflammatory mediators and cognitive impairment in aged mice. Vitamin D has
been shown to have immunomodulatory function, but the molecular basis for it has not been well
understood. In this study, we mainly investigated the efficacy and mechanism of vitamin D against
postoperative cognitive dysfunction (POCD). The treatment of C57BL mice with vitamin D signifi-
cantly preserves postoperative cognitive function, markedly inhibits surgery-induced interleukin (IL)-
17, IL-6, transforming growth factor beta (TGF-{3), and retinoic acid-related orphan receptor (RORyt)
production, and obviously induces IL-10 and forkhead box p3 (Foxp3) expression. These findings
indicate that vitamin D amelioration of POCD is, to a large extent, due to inhibit inflammatory CD4 T
cell lineage, T helper 17 (T,17) cells, accompanied with expansion in regulatory T cells (T, cells), a
subset of CD4 T cells that are important in inhibiting inflammation. Our results suggest that T;,17 and
Ticg cell imbalance may play a role in the development of POCD. Vitamin D is useful in the control of

inflammatory diseases.
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INTRODUCTION

Postoperative cognitive dysfunction (POCD) is rec-
ognized as a complication associated with surgery [1-3].
Although a number of perioperative factors have been
implicated, the pathogenic mechanisms of POCD remain
largely unknown [4-6]. Our previous study suggests that
cognitive impairment may be induced by surgically in-
duced inflammation, particularly in the hippocampus,
which plays a crucial role in processing memory [7, §].
According to this hypothesis, surgery activates the host
innate immune system resulting in a peripheral inflamma-
tion with elevated levels of proinflammatory cytokines
such as interleukin (IL)-1[3, tumor necrosis factor alpha
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(TNF-x), and IL-6. Using multiple signaling pathways,
these peripheral cytokines [9, 10] are thought to affect the
inflammatory state of the brain contributing to cognitive
dysfunction. To date, adaptive immune responses and
CD4 T cell subsets function have not been addressed in
the pathogenesis of POCD, although CD4 T cell lineage,
inflammatory T helper 17 (T,17) cells, and regulatory T
cells (Tyeg cells), a subset of CD4_T cells that are important
in inhibiting inflammation, have been reported in numer-
ous inflammatory diseases, including systemic lupus ery-
thematosus, rheumatoid arthritis, and multiple sclerosis
MS) [11-14].

As a new subset of CD4 T cells, T,,17 cells were
reported to have an important role in inducing local inflam-
mation [15-17]. T, 17 cells produce proinflammatory mol-
ecules, IL-17A, IL-17 F, and IL-22, which act on tissue
resident cells to promote inflammation. Transforming
growth factor beta (TGF-f3) and IL-6 are critical in the
differentiation of Tj,17 cells by inducing the transcription
factors, retinoic acid-related orphan receptor (RORyt) [18],
and IL-23 is also important to stabilize and maintain T;,17
cells [19, 20]. Of interest, a previous report indicated that
vitamin D is able to prevent experimental autoimmune
uveitis, partially because of its suppressive effect directly
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on Ty,17 cells [21]. However, it is not known whether the
effect can be observed in POCD.

Vitamin D is an essential nutrient that regulates calci-
um and phosphate transport and bone mineralization [22].
In recent years, however, vitamin D has been found to have
a much broader range of actions, including regulation of
cell differentiation, proliferation, and apoptosis [23]. The
role of vitamin D in immune system is complex and
diverse. The systemic or locally produced active form of
vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH),D3), can
act directly on T cells or indirectly on dendritic cells to
modulate T cell function [24-27]. Modulation of CD4 T
cells by 1,25(0OH),D; is intriguing because several studies
have demonstrated that 1,25(OH),D5 is capable of sup-
pressing inflammation in vivo [21, 28-30].

Based on these properties, we are interested in that
whether vitamin D can be developed as a potential treat-
ment for POCD. The present study was conducted to test
the hypothesis that vitamin D improves POCD via regula-
tion of T}, 17/Ty, cell balance.

MATERIALS AND METHODS

Animals

C57BL/6 (14 months old) female mice were pur-
chased from Shanghai SLAC Laboratory Animal Co.,
Ltd. and were housed under a 12-h light/dark cycle in
microisolator cages contained within a laminar flow sys-
tem to maintain a pathogen-free environment. The studies
were conducted in accordance with the Animal Compo-
nent of Research Protocol guidelines at the China Medical
University.

Surgical Procedures

C57BL mice undergoing the water maze cognitive
test were trained for five consecutive days and then ran-
domly assigned to three groups: (1) control group (group
C; n=32), mice received no intervention; (2) surgery group
(group S; n=32), mice underwent partial hepatectomy
under general anesthesia. For hepatectomy, the liver was
exposed through a 1-2-cm midline abdominal incision.
The left lateral lobes of the liver (approximately corre-
sponding to 30 % of the organ) were excised. The wound
was then infiltrated with 0.25 % bupivacaine and closed by
sterile suture. (3) In surgery plus vitamin D group (group
SD; n=32), mice were treated as in the S group, and they
underwent surgery with administration of 1,25(OH),Ds.
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Treatment Protocol

1,25(0OH),D5 was stored at 4 °C. 1,25(OH),D; treat-
ment (50 ng) by intraperitoneal (i.p.) injection started at
day 3 before operation and injection of 1,25(OH),D; q.d.
continued until the end of the experiment (days 3 and 7
after surgery). Surgery group was treated with an equal
volume of saline.

Cognitive Test: Morris Water Maze

The Morris water maze (MWM) is a hippocampal-
dependent test of spatial learning for rodents [31]. Mice
underwent testing daily with three trials per day for five
consecutive days before surgery and 7 days after surgery.
Swimming distance, speed, and escape latency to the plat-
form were recorded by video camera mounted to the ceil-
ing, and digital images were analyzed by water maze
software (HVS Image, UK). Additionally, on postoperative
days 3 and 7, mice were subjected to a probe test in which
the platform was removed and the mouse allowed swim-
ming for 90 s. The time spent in the quadrant previously
containing the submerged platform was recorded and rep-
resented an index of memory. Mice were sacrificed on
postoperative days 3 and 7 after cognitive tests. Hippocam-
pal tissues and spleens of mice in each group were quickly
dissected and stored at —70 °C until they were used for
messenger RNA (mRNA) and Western blot studies.

Pathological Examination

For histopathological studies, hippocampal tissues
were dissected from female mice on day 3 after surgery,
fixed in 10 % formalin in PBS, and embedded in a single
paraffin block. The 6- to 10-um-thick sections were stained
with hematoxylin and eosin (H&E), and stained sections
were evaluated for immune cell infiltration. For electron
microscope (EM) studies, samples were fixed in 2.5 %
glutaraldehyde in phosphate buffer pH 7.4 and
postosmicated and processed routinely for EM. Sections
of hippocampal tissues were examined using an H-600
transmission electron microscopy (TEM).

RNA Isolation and Quantitative Real-Time PCR

Total RNA was extracted from the hippocampus and
spleens using an RNA isolation kit (Takara, Japan). Com-
plementary DNA was prepared as recommended and used
as the template for quantitative PCR. Levels of mRNA for
IL-17, IL-6, TGF-f3, IL-10, RORYt, and forkhead box p3
(Foxp3) from all groups were analyzed by real-time PCR.
Real-time PCR was performed according to the



502

manufacturer’s instructions. Specific primers are shown in
Table 1. The amplification conditions were 8 min at 95 °C,
followed by 45 cycles 0of 95 °C for 5 s, 60 °C for 34 s, and
72 °C for 15 s. The data were analyzed using the standard
curve method, and the mRNA level of target gene for each
sample was normalized against reference gene glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) mRNA. All
values were expressed relative to the expression of
GAPDH (2724,

Western Blot Analysis

Hippocampal samples were homogenized in cold ly-
sis buffer containing protease inhibitors and then centri-
fuged (12,000g, 10 min, 4 °C). Protein concentration of
tissue samples was measured using the bicinchoninic
acid (BCA) protein assay. Normalized protein sam-
ples were resolved by 10 % SDS-PAGE and then
transferred onto polyvinylidene difluoride (PVDF)
membrane (Millipore, Billerica, MA, USA). Mem-
branes were blocked in 5 % skim milk, incubated
with antibodies against IL-17 (1:100), IL-6 (1:100),
TGF-f (1:100), and IL-10 (1:100) followed by HRP-
labeled secondary antibodies (1:5000). Signals were
detected by enhanced chemiluminescence (ECL;
Amershan Biosciences, Chalfont St. Giles, UK) according
to the manufacturer’s instructions. 3-Actin was used as a
protein-loading control.

ELISA

The cytokine production from spleens was assessed
with 1L-17, IL-6, TGF-f3, and IL-10 ELISA kits (R&D
Systems) according to the manufacturer’s instructions. A
standard curve was generated using known amounts of the
respective purified recombinant cytokines.
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Statistics

The data are expressed as the mean+SEM. SPSS
version 16 (SPSS, Chicago, IL, USA) was used for analy-
sis. Statistical significance was determined by one-way
analysis of variance (ANOVA). The Student-Newman-
Keuls method was used for comparison between groups.
A p value <0.05 was considered significant.

RESULTS

Vitamin D Ameliorates the Cognition
of Hepatectomized Mice

To elucidate the effect of partial hepatectomy on
learning and memory, we conducted the MWM test.
It is particularly sensitive to hippocampus-dependent
learning and memory formation. In our tests, mice in
all groups were able to rescue themselves, and the
escape latency gradually decreased over the five con-
secutive training days. On the fifth training day, the
latency was reduced by 49, 44, and 50 % compared
to the first day of training in the control group,
surgery group, and surgery plus vitamin D group,
respectively (Fig. la, p>0.05). On the first postoper-
ative day, all three groups were able to locate the
platform within a short time (24-31 s). However, the
hepatectomized mice showed a significant increase in
the escape latency time from 42 s on the second
postsurgical day to 52 s on three postoperative days
with a peak latency when compared with that of the
control group at the corresponding time points
(Fig. 1b, p<0.05). However, after 1,25(OH),D5 treat-
ment, the escape latencies of the hepatectomized
mice decreased obviously (Fig. 1b, p<0.05). As ex-
pected, the swimming speed was not significantly

Table 1. Specific Primer Sequence for Real-Time PCR

Gene Forward (5'-3") Reverse (5'-3")

IL-17 CTGTGTCTCTGATGCTGTTGC GTGGAACGGTTGAGGTAGTCT

IL-6 ACTTCCATCCAGTTGCCTTCTT TCATTTCCACGATTTCCCAGA

TGF- GCAACAATTCCTGGCGTTACCT GAAAGCCCTGTATTCCGTCTCC

IL-10 CCAGTTTTACCTGGTAGAAGTGATG TGTCTAGGTCCTGGAGTCCAGCAGACTCAA
RORvyt CAGTATGTGGTGGAGTTTGCCAA TGTAGGCCCTGCACATTCTGAC

Foxp3 CAGCTCTGCTGGCGAAAGTG TCGTCTGAAGGCAGAGTCAGGA

GAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA

IL interleukin, TGF-f3 transforming growth factor beta, RORY¢ retinoic acid-related orphan receptor, Foxp3 forkhead box p3, GAPDH glyceraldehyde 3-

phosphate dehydrogenase
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Fig. 1. Cognitive impairment induced by hepatectomy surgery in old mice. The Morris water maze was used to train mice for their memory formation for
5 days before experiments and to assess their memory formation changes after treatments for 7 days. Escape latency obtained from the Morris water maze test
throughout the experiments (a, b). Swimming speed obtained from the Morris water maze test throughout the experiments (¢, d). Swimming distance obt-
ained from the Morris water maze test throughout the experiments (e, f). The probe trial test (g). C control group, S surgery group, SD surgery plus vitamin D
group. Data are represented as means=SEM; n=12. Means with *p<0.05; **p<0.01 vs. control group at the corresponding time point. #p<0.05; ##p<0.01

vs. surgery plus vitamin D (50 ng) group at the corresponding time point.

different among groups at any corresponding time
points (Fig. lc, d, p>0.05), and the pattern of change in
distance swam was the same as that of the latency
(Fig. 1e, f, p<0.05). Our probe tests revealed that the time
spent in the quadrant with the previously located hidden
platform was significantly less in the hepatectomized mice
(29 %) when compared with the control mice (61 %) on

day 3 after surgery (Fig. 1g, p<0.05). 1,25(OH),D3-treated
mice undergoing probe trials showed significant difference
to those in the surgery group (Fig. 1g, p>0.05). The above
results indicate that the hepatectomy induced a significant
cognitive impairment and that vitamin D treatment before
and after surgery attenuated the surgically induced cogni-
tive impairment.
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Partial Hepatectomy-Induced Hippocampus
Pathological Injury Could Be Rescued by Vitamin D

To further study the effect of vitamin D on the patho-
genesis of hippocampus inflammation, we examined the
effect of vitamin D on POCD in vivo. Mice from surgery
group and 1,25(OH),D5 group were sacrificed on day 3 after
surgery. Hippocampus sections from mice were stained with
H&E to assess tissue inflammation. As shown in Fig. 2, the
surgery mice showed prominent inflammatory cell infiltration
in the hippocampus (Fig. 2a). Conversely 1,25(0OH),Ds-treat-
ed mice developed mild inflammatory infiltration (Fig. 2b).
To evaluate the ultrastructure of the hippocampus with the
treatment of 1,25(0OH),Ds, hippocampal tissues were exam-
ined by TEM at day 3 after surgery. Compared with
1,25(0OH),Ds-treated mice, severe chromosome aberrations,
dilatate, and widened synaptic clefts as well as disappeared
mitochondriales crista were observed in the hippocampus of
surgery mice. Representative slides exemplifying hippocam-
pus lesions are presented in Fig. 2c, d.

Vitamin D Inhibits IL-17 mRNA and Protein
Expressions in Hepatectomized Mice

IL-17 is associated with the development of inflam-
matory diseases. To investigate the effect of hepatectomy

Tian, Ma, Cao, Zhang, Wang, and Wu

and/or vitamin D administration on the production of IL-
17, we measured hippocampal and splenic levels of IL-17.
Injury caused by hepatectomy increased the production of
IL-17 mRNA and protein both in the hippocampus and
spleen at 3 days after surgery (Fig. 3c, p<0.05). In
1,25(0OH),D5-treated animals, the expressions of IL-17
mRNA and protein were significantly decreased in
the hippocampus and spleen at 3 days after surgery
in the hepatectomized mice compared to hepatecto-
mized animals without the treatment of 1,25(0OH),D;
(Fig. 3a—c, p<0.05).

Vitamin D Suppresses the Cytokines Associated
with T} 17 Differentiation in Hepatectomized Mice

Tw17 cells produce proinflammatory molecule IL-17.
The differentiation of Ty,17 cell has been associated with
various inflammatory cytokines and transcription factors,
including IL-6, TGF-3, and RORyt. To determine the
mechanisms involved in vitamin D suppression of
Tu17 responses in POCD, the mRNA and protein
levels of IL-6, TGF-3, and RORyt have been iden-
tified and quantified in the hippocampus and spleen.
As data have shown, expressions of IL-6 (Fig. 4a—c),
TGF-3 (Fig. 4d-f), and RORvyt (Fig. 4g) were

4]

Fig. 2. Vitamin D inhibited the inflammatory cell infiltration and ultrastructure damage in the hippocampus of the hepatectomized mice. Mice from surgery
group and surgery plus vitamin D-treated (50 ng) group were sacrificed on day 3 after hepatectomy surgery. H&E staining demonstrated areas of
inflammation, and hippocampal ultrastructure was examined by TEM in surgery (a, ¢) and surgery plus vitamin D (50 ng) group (b, d). Original

magnification H&E %200 and TEM x8,000; n=4.
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Fig. 3. Effect of vitamin D on expressions of IL-17 mRNA and protein in hepatectomized mice. Expression of IL-17 mRNA was detected by real-time PCR;
its protein from the hippocampus was measured by Western blotting, and its protein from splenocyte was assayed by ELISA. The measurements were made at
3 days in control mice (C3), at 3 and 7 days after hepatectomy surgery (53, S7), or at 3 and 7 days after hepatectomy surgery plus vitamin D (50 ng) i.p. (SD3,
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Fig. 4. Vitamin D suppressed IL-17 differentiation-related cytokines and transcription factor expressions in hepatectomized mice. Mice from control group,
surgery group, and vitamin D-treated (50 ng) group were sacrificed on days 3 and 7 after hepatectomy surgery. The mRNA levels of cytokines in the
hippocampus and spleen were quantified by real-time PCR; their protein levels from the hippocampus were measured by Western blotting, and their protein
levels from splenocyte were assayed by ELISA. The expression levels of IL-6 (a—¢), TGF- (d—f), and RORYt (g) were significantly reduced in vitamin D-
treated mice compared with the surgery mice on day 3 both in the hippocampus and spleen. Data are represented as means£SEM; n=12. Means with
*p<0.05; **p<0.01 vs. control group at the corresponding time point. #p<0.05; ##p<0.01 vs. surgery plus vitamin D group at the corresponding time point.
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significantly reduced in the hippocampus and spleen
in 1,25(OH),Ds-treated mice compared with the sur-
gery mice at 3 days after surgery (p<0.05). These
results suggested that vitamin D can suppress the
expressions of inflammatory cytokines and signal
transducers associated with differentiation and pro-
duction of T,17 cells.

Vitamin D Induces T,., Cell Expansion
in Hepatectomized Mice

Foxp3 is a transcription factor involved in the devel-
opment and function of T, cells [32]. The effect of vita-
min D on the expression of Foxp3 and IL-10 in both the
periphery and the inflamed hippocampus from hepatecto-
mized mice was examined. IL-10 is an anti-inflammatory
cytokine and mainly secreted from T, cells, and the
increased IL-10 mRNA and protein expression were
observed in both the hippocampus and spleen in
1,25(0OH),D;-treated mice compared with the surgery
mice at 3 and 7 days after surgery (Fig. 5a—c,
p<0.05). We also observed a significant reduction
of Foxp3 mRNA expression in the hippocampus
and spleen in the surgery mice at 3 days after surgery and
up to postoperative day 7 (Fig. 5d, p<0.05). 1,25(0OH),D;
treatment induced a significant expansion of Ty, cell with-
in the hippocampus and spleen compared with the surgery
mice (Fig. 5d, p<0.05).
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DISCUSSION

Several recent rodent models have demonstrated
surgery-induced neuroinflammation and POCD. Mice un-
dergoing fear-conditioning tests in a model of tibial surgery
had hippocampal memory impairment with central IL-1(3
and TNF-«x [33, 34]. A rat model of splenectomy using the
Y maze memory test showed brain IL-13 mRNA levels
associated with temporary memory impairment [8]. Fol-
lowing minor abdominal surgery, aged mice showed an
exaggerated neuroinflammatory response associated with
brain IL-13 mRNA level and had reduced cognitive flex-
ibility in the MWM [2]. After partial hepatectomy, aged
rats showed memory impairment in the MWM, and brain
cytokine increases [7]. Although many cytokines increased
in the brain of POCD mice, little is known about CD4 T
subset-related cytokines, especially inflammatory IL-17
involvement in POCD.

This study provides evidence for the first time that
short-term cognitive impairment is associated with en-
hanced production of Ty,17 cells and inhibition of Ty, cells
in the hippocampus after liver surgery in old mice. Our data
also indicate that IL-17 expression in the hippocampus
could be due to the increased levels of inflammatory cyto-
kines and transcription factors, including IL-6, TGF-f3, and
RORvyt induced by surgery. The surgery-induced cognitive
dysfunction, where T,17 cells increase and Ty, cells de-
crease, was abolished by the administration of vitamin D.
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Fig. 5. Vitamin D treatment induced T, cell expansion in hepatectomized mice. We detected the Ty, cell marker Foxp3 mRNA expression from the hi-
ppocampus and spleen on days 3 and 7 after hepatectomy surgery. We also examined the Ty, cell-related cytokine IL-10 mRNA by real-time PCR, its protein
level from the hippocampus by Western blot, and its protein level from splenocyte by ELISA assay on days 3 and 7 after hepatectomy surgery. Vitamin D
therapy (50 ng) induced a substantial increase in IL-10 (a hippocampal IL-10; b, ¢ splenic IL-10) and Foxp3 (d) expression on days 3 or 7 in the hippocampus
and spleen after surgery (a—c). Data are represented as means+=SEM; n=12. Means with *p<0.05; **p<0.01 vs. control group at the corresponding time
point. #p<0.05; ##p<0.01 vs. surgery plus vitamin D group at the corresponding time point.
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Previous studies have suggested a supporting role for
vitamin D in reducing the risk of MS [35-37]. In addition,
1,25(0OH),D5 is known to inhibit the development of exper-
imental autoimmune encephalomyelitis (EAE) [38, 39], and
recent studies have correlated a suppressive effect of
1,25(0H),D; on T,17 with the prevention of EAE [40].
1,25(0OH),D; has also been shown to inhibit IL-17A pro-
duction in T cells from MS patients [41] and from patients
with early rheumatoid arthritis [42]. The ability of
1,25(0OH),D; to prevent experimental autoimmune uveitis
and to reduce colitis in a mouse model has also been
correlated to a suppression of IL-17A induction [30, 43].
These results reveal that 1,25(0OH),D3; modulates T},17-me-
diated inflammation. Our findings are the first to correlate
the reversal of cognition in surgery mice by 1,25(OH),D;
with reduced IL-17. Vitamin D treatment not only abrogates
the expression of peripheral IL-17 but also inhibits I1L-17
production within the hippocampus in surgery mice. Our
data indicate that vitamin D ameliorates POCD by inhibiting
the IL-17 expression or the T},17 cell production. However,
it is still unknown by what mechanism vitamin D suppresses
expansion of the Ty, 17 cell subset in surgery animals. Since
proinflammatory cytokines determine CD4 T cell differen-
tiation and to further address the mechanisms involved in the
inhibition of Ty,17 cell by vitamin D, we examined the
crucial cytokines involved in the differentiation and pro-
duction of T}, 17 cells. Studies have shown that T;,17 cell
differentiation is independent of IL-23 and is induced by
TGF-f3 plus IL-6 [44, 45], but maintenance of proinflam-
matory Ty,17 cells requires the presence of 1L-23 [20, 46,
47]. Both in vitro and in vivo differentiation of Ty,17 cell
lineage is required in the activation of STAT3, which is
activated by IL-6, and then upregulation of RORyt [44, 48]
that is served as the master switch of the differentiation of
Ty17 cell [49-52]. Our data discover that vitamin D obvi-
ously inhibits IL-6, TGF-f3, and RORYyt production both in
the peripheral system and in the central nervous system
(CNS), suggesting that the inhibition of IL-6, TGF-[3, and
RORyt is a mechanism of the regulation of cognition in
surgery mice by vitamin D. Another mechanism may be
related to a direct modulation of inflammatory environ-
ment; a less severe inflammatory environment in peripher-
al lymphoid tissue as well as in the CNS after vitamin D
therapy may prevent significant Ty, 17 migration into the
CNS, thereby inducing less severe CNS pathology.

In this study, we also show that vitamin D upregulates
Foxp3 at the transcriptional level. Foxp3, a transcription
factor involved in the development and function of T,
cells, a subset of CD4 T cells that are important in
inhibiting inflammation and in suppressing autoimmune
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processes [32], has recently been reported to negatively
regulate both IL-17 and IL-2 transcription. 1,25(OH),D;
has been reported to result in an enhancement of T, cells
and an inhibition of Ty,17 cells [53]. To examine whether
induction of Foxp3 may be an additional mechanism in-
volved in the improvement of POCD by 1,25(0OH),D5, we
detected Foxp3 at the transcriptional level by real-time
PCR. Our results indicate that 1,25(OH),D; obviously
induces Foxp3 transcription not only in the peripheral
system but also in the CNS, suggesting that the induction
of Ty is @ mechanism of the regulation of cognition in
surgery mice by 1,25(OH),D;. Additionally, previous stud-
ies have indicated a role for IL-10 in the effect of
1,25(0H),D5; on EAE [54], and our in vivo data also
demonstrated that 1,25(OH),D; represses the expression
of IL-17 concomitant with the upregulation of IL-10, a Ty,
cell-associated and inhibiting inflammation cytokine,
keeping the balance of T,17/T,, cells, or their specific
cytokines IL-17/IL-10 balance.

Thus, multiple mechanisms are involved in the ame-
lioration of POCD by 1,25(OH),D;. The regulation of
POCD along the T,17 and T, axes and the key role of
vitamin D deficiency as a susceptibility factor for this
disease add to the relevance of this study. These studies
result in new concepts with regard to the mechanisms
involved in the interaction of the vitamin D endocrine
system and the immune system and provide a foundation
for trials involving 1,25(OH),Dj; or 1,25(OH),D; analogs
for targeting Ty, 17 immunity.
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