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Dexmedetomidine Inhibits Tumor Necrosis Factor-Alpha
and Interleukin 6 in Lipopolysaccharide-Stimulated Astrocytes
by Suppression of c-Jun N-Terminal Kinases

Xiaobao Zhang,l Jun Wang,1 Wenyi Qian,' Jingjing Zhao,' Li Sun,’ Yanning Qian,>’

and Hang Xiao'”

Abstract—Astrocytes play an important role in immune regulation in the central nervous system (CNS).
Dexmedetomidine (DEX) has been reported to exert anti-inflammatory effects on astrocytes stimulated
by lipopolysaccharide (LPS) both in vitro and in vivo studies. However, the underlying molecular me-
chanisms remain poorly understood. This study was designed to evaluate the effects of DEX on tumor
necrosis factor-alpha (TNF-x) and interleukin 6 (IL-6) gene expressions in LPS-challenged astrocytes.
Moreover, c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK) path-
ways in LPS-challenged astrocytes were also investigated. In the present study, astrocytes were stimu-
lated with LPS in the absence and presence of various concentrations of DEX. With real-time PCR assay,
we found that LPS significantly increased expressions of TNF-o and IL-6 in mRNA level; however,
these effects could be attenuated by DEX. Furthermore, JNK pathway might be involved in LPS-ind-
uced astrocyte activation because JNK phosphorylation was significantly increased, and the inhibition of
this pathway mediated by DEX as well as SP600125 (JNK inhibitor) decreased TNF- and IL-6 exp-
ressions. Moreover, p38 MAPK was also activated by LPS; however, this pathway seemed to have not
participated in DEX-mediated LPS-induced inflammation. These results, taken together, suggest that
JNK rather than p38 MAPK signal pathway, provides the potential target for the therapeutic effects of

DEX for neuronal inflammatory reactions.
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INTRODUCTION

Astrocytes are the most abundant cells in the mamma-
lian central nervous system (CNS). Under normal condi-
tions, astrocytes maintain homeostasis in the CNS to support
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the survival and function of neurons. However, once acti-
vated, astrocytes react promptly to the injury, leading to
activation of astroglia or astrogliosis [ 1] and release a diverse
set of proinflammatory factors, such as TNF-«, IL-6, and
IL-1f3 [2-4]. Sustained glial inflammatory responses might
contribute to the pathophysiology of not only Parkinson’s
disease but also other neuronal diseases [5].
Lipopolysaccharide (LPS), a component of gram-
negative bacterial cell walls, is one of the most potent
activators for regulating gene expression of inflammatory
cytokines in experimental animals and humans [6—8]. Pre-
vious studies have reported that LPS could stimulate astro-
cytes and macrophages, inducing excessive production of
NO, TNF-a, COX-2, and IL-1f3 [9, 10].
Dexmedetomidine (DEX), a highly selective and po-
tent o,-adrenoreceptor agonist, provides excellent sedation
and analgesia with minimal cardiovascular effects [11]. Nu-
merous studies have shown that DEX is an effective baseline
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sedative with less opioid requirement and respiratory de-
pression [12, 13]. Available data also suggest that DEX
exerts anti-inflammatory effects in animal models of ische-
mia-reperfusion and ventilator-induced lung injury [14-17].

Besides sedative and analgesic effects, low concentra-
tions of DEX have consistently been found to exert neuro-
protective effects in experimental cerebral ischemia and
excitotoxic neuronal injury [18, 19]. The target cells in the
CNS displaying postjunctional o,-adrenoceptors include
astrocytes [20], which mainly express the o, 4/p-adrenocep-
tor subtype [21]. A growing body of evidence demonstrates
that astrocyte cells play a critical role in neuronal protection
during ischemic injury, ammonia toxicity, and stroke [22—
26]. Additionally, DEX significantly increased astrocytes’
release of glial cell line-derived neurotrophic factor
(GDNF), inducing subsequent neuroprotective effects in
vitro and in vivo [27, 28]. However, the detailed mechanisms
for the neuroprotective effects of DEX in astrocytes have not
been elucidated. Thus, the primary aim of the current study
was to assess the effects of DEX on LPS-induced astrocyte
activation and elucidate its possible mechanisms linked to its
neuroprotective properties.

MATERIALS AND METHODS

Culture of Primary Astrocyte Cells

Primary rat astrocyte cultures were prepared as previ-
ously described [9] with a slight modification from post-
natal day 1 to day 2 using Sprague—Dawley (SD) rats.
Briefly, the fetal rats were decapitated and hippocampal
tissues were collected. The tissues were harvested and
digested using 0.25 % trypsin in Hank’s balanced salt
solution (HBSS) at 37 °C for 30 min. Trypsin was neutral-
ized with 10 % fetal bovine serum (FBS), and the cell
suspension was washed three times in HBSS, decanted,
and sequentially passed through a 100 and 40-pm meth
and resuspended in Dulbecco’s modified Eagle’s medium
(DMEM). The medium was changed every 4 to 5 days
with the incubation medium supplemented with 10 % FBS.
After 10 days of incubation, flasks were gently shaken for
2 h to loosen weakly attached cells. The supernatant was
discarded, and the remaining astrocyte adherent monolayer
was detached with 0.25 % trypsin and seeded at 5x
10° cells/well in six-well plates with incubation medium.
Cells were further cultured for 3 days before the
experiment. The purity of astrocyte cells was confirmed
to be >95 % using immunostaining for glial fibrillary acidic
protein (GFAP) antibody. Before experimentation, the
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medium was replaced with serum-free DMEM containing
either PBS or experimental agents. For PCR and Western
blot analysis experiments, cells were plated in six-well
plates at 5x10° cells/well.

Cell Viability Assay

Astrocytes were seeded in a 96-well plate at 2x
10* cells/well and then kept in a 5 % CO, incubator at
37 °C overnight. The next day, serial dilutions of DEX
and LPS (dissolved in DMEM) were added to the cells to
obtain the required final concentration and then incubated
for 24 h. The cells were then washed once with PBS and a
solution (5 mg/ml) of MTT was added to each well. After 4-
h incubation, the MTT solution was discarded carefully and
100-pl dimethyl sulfoxide (DMSO) was added to each well
to dissolve the formazan crystals. The amount of formazan
of each well was determined spectrophotometrically by
measuring the absorbance at 570 nm in a plate reader, and
each concentration was tested in triplicate. The percentage
of cell viability was calculated as the absorbance of treated
cells/controls x 100 %.

Real-Time Polymerase Chain Reaction

Total RNA was extracted from primary astrocyte cells
by using RNAiso Plus (TaKaRa Bio, Tokyo, Japan) and
converted to cDNA by PrimeScript RT reagent kit with
gDNA FEraser (TaKaRa Bio). A 2-ug RNA was reverse
transcribed and was PCR-amplified using the Access RT-
PCR system (Promega, USA) according to the manufac-
turer’s instructions. Real-time PCR using Takara (Takara,
Japan) was carried out on the 7300 System (ABI) for the
detection of PCR products.

PCR primers were as follows: TNF-«, forward 5'-
CCAGACCCTCACACTCAGATCA-3" and reverse 5'-
GGAGGCTGACTTTCTCCTGGTA-3"; IL-6, forward 5'-
CCACCTCACAAGTCGGAGGCTTA-3" and reverse 5'-
GTGCATCATCGCTGTTCATACAATC-3"; and [(3-actin,
forward 5'-TTGTAACCAACTGGGACGATATGG-3’
and reverse 5'-GATCTTGATCTTCATGGTGCTAG-3'.
PCR reaction was applied: denaturation at 95 °C for 30 s,
40 cycles of denaturation at 95 °C for 5 s and extension at
60 °C for 31 s, then denaturation at 95 °C for 15 s and
extension at 60 °C for 60 s, and denaturation at 95 °C for
15 s. 3-Actin was used as a housekeeping gene. TNF-«
and IL-6 mRNA expressions were normalized to
corresponding (3-actin amplicon and quantified using the
comparative CT (““CT) method.
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Western Blot Analysis

Cellular proteins were extracted from the primary
astrocyte cells using RIPA buffer (Sigma). The protein
concentration in the supernatant fluid of the lysate was
measured by BCA protein assay (Pierce, Rockfold, IL).
Equal amounts of protein in each well were loaded for
electrophoresis in 12 % sodium dodecyl sulfate-polyacryl-
amide gels, and then the gels were transferred to polyviny-
lidene fluoride (PVDF) microporous membranes (Milli-
pore, Bedford, MA). Membranes containing the trans-
ferred proteins were blocked with 5 % skim milk in TBS
containing 0.1 % Tween-20 (TBST) for 2 h at room tem-
perature and then incubated overnight with rabbit anti-
phospho-c-Jun N-terminal kinase (JNK) antibody (1:500;
Cell Signaling, Beverly, MA), anti-JNK antibody (1:500;
Cell Signaling), anti-phospho-p38 antibody (1:500; Cell
Signaling), anti-p38 antibody (1:500; Cell Signaling), and
anti-3-actin antibody (1:2,000; Sigma). Immunoreactivity
was detected using horseradish peroxidase conjugated
secondary antibodies (1:10,000; Jackson ImmunoRe-
search, West Grove, PA), visualized by enhanced
chemiluminescence detection film. Band density was
determined using image analysis system (Image-Pro
Plus version 6.0, Media Cybernetics, Silver Spring,
MD, USA).

Statistical Analysis

All the experiments were performed at least three
times independently. Results were represented as mean+
SEM and performed in triplicate. The data were analyzed
using ANOVA with Graphpad Prism 5 software, and New-
man—Keuls multiple comparison test was used for post hoc
analysis. A value of P<0.05 was considered statistically
significant.

RESULTS

Effects of DEX and LPS on Cell Viability in Astrocytes

MTT assay was used to evaluate the toxic effects of
DEX and/or LPS on astrocytes. Astrocytes were incubated
with DEX (0.01, 0.1, 1, and 10 uM) and/or LPS (1 pg/ml)
for 24 h, and then cell viability was detected by MTT assay.
Our results indicated that DEX and 1-pg/ml LPS exert no
obvious toxic effects on astrocytes (Fig. 1).
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DEX Regulates the Expressions of TNF-o and IL-6
in LPS-Stimulated Astrocytes

According to our preliminary test, activation of astro-
cytes by LPS at 1 pg/ml induced a significant and marked
increase in TNF-o and IL-6 expressions (data not shown).
Therefore, this dose was employed in the present experi-
ment. TNF-« and IL-6 were subjected to real-time PCR.
As depicted in Fig. 2a, b, the expressions of TNF-oc and IL-
6 in primary astrocytes were markedly increased when
compared with the control group. The cells were prein-
cubated with various concentrations of DEX for
30 min, followed by the addition of LPS. Our results
showed that DEX significantly inhibited TNF-o and
IL-6 expressions in a dose-dependent manner, and
DEX below 0.1 uM did not show inhibitory effects
(Fig. 2c, d).

DEX Regulates LPS-Induced Inflammatory Responses
by the Inhibition of JNK Activation

As JNK and p38 mitogen-activated protein kinase
(MAPK) pathways were closely associated with inflam-
mation, we speculated whether DEX exerts its effects on
these signals. Our results suggested that LPS significantly
increased JNK and p38 phosphorylation (Fig. 3), and the
phospho-JNK and phospho-p38 levels were higher after
1 h and then gradually returned to normal (Fig. 3c, d). The
total level of INK and p38 MAPK expressions showed no
marked alteration (Fig. 3a, b). Therefore, the time point of
1 h was selected to observe the effect of DEX on phospho-
JNK and phospho-p38.

Astrocytes were pretreated with DEX for 30 min,
followed by the addition of LPS. It indicated that DEX
substantially inhibited JNK activation induced by LPS
(Fig. 4a, c¢). However, DEX increased p38 MAPK phos-
phorylation (Fig. 4b, d).

To assess the relationships between JNK and inflam-
mation, SP600125, the JNK antagonist, was used. As
astrocytes treated both with LPS and DEX expressed less
TNF-o than LPS only, we explored whether DEX exerted
its function on JNK signal pathway and subsequently
resulted in inhibition of inflammatory factor secretion.
Our laboratory has confirmed that astrocytes treated with
LPS and SP600125 accumulated significantly less TNF-o
and IL-6 in a dose-dependent manner when compared to
cultures treated with LPS alone (data not shown). Cells
stimulated with 10-uM SP600125 accumulated 34 % less
TNF-« than cells treated with LPS alone; cells stimulated
with 0.1-uM DEX alone accumulated 26 % less TNF-o
than cells treated with LPS alone. Cells treated with 10-uM
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Fig. 1. The effects of DEX and LPS on cell viability in cultured primary astrocytes. Astrocyte cells were exposed to different concentrations of DEX (0.01,
0.1, 1, and 10 uM) and/or LPS (1 pg/ml) for 24 h. Cell viability was determined using a colorimetric method. Each data point represents mean+SEM of at
least three separate experiments in which treatments were performed in quadruplicates.

SP600125 and 0.1-uM DEX alongside LPS stimulation
accumulated 49 % less TNF-« than cells treated with LPS
alone and significantly less than cells treated with either
drug alone. Similar results were observed in IL-6 gene
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expression (Fig. 5b). Therefore, RT-PCR results indicated
that a combinational treatment of SP600125 and DEX can
additively suppress LPS-induced TNF-« and IL-6 expres-
sions (Fig. 5).
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Fig. 2. DEX attenuates TNF-« and IL-6 gene expressions in LPS-activated primary astrocytes. a, b Primary astrocytes were treated with LPS (1 pg/ml) for
1,2, 6, 12, and 24 h, then TNF- and IL-6 mRNA expressions were detected by real-time PCR. The expression levels of TNF-« and IL-6 in astrocytes
reached the peak at approximately 6 h after LPS stimulation. ¢, d Primary astrocytes were treated with DEX (0.01, 0.1, 1, and 10 uM) or PBS for 30 min,
followed by LPS (1 pg/ml) for 6 h. DEX attenuated LPS-induced TNF-« and IL-6 mRNA expressions at a dose of 0.1 uM or higher, while 0.01-uM DEX
showed no inhibitory effect. TNF-oc and IL-6 mRNA expressions were normalized to corresponding (3-actin amplicon and quantified using the AACT
method. Data represent mean+SEM of the mean of three independent experiments (**P<0.01 compared with the corresponding control group; “P<0.05;

#P<0.01 compared with the LPS group; n=3).
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Fig. 3. LPS increases JNK and p38 expressions in astrocytes. Primary astrocytes were treated with 1-pg/ml LPS from 30 min to 24 h. Cell lysates were
analyzed by Western blotting with antibodies to phospho-JNK, total INK, phospho-p38 MAPK, total p38 MAPK, and (3-actin. Astrocytes treated with LPS
showed a marked increase in both phospho-JNK and phospho-p38 MAPK levels. Levels of total JNK and total p38 MAPK remained unchanged. Western
blot data were quantified and analyzed as bands of phospho-JNK and phospho-p38 MAPK comparing LPS treatment. LPS significantly increased phospho-
JNK and phospho-p38 MAPK, peaked at 1 h, and returned slowly (**P<0.01 compared with control group, each data represents mean+SEM at least three
separate experiments).

DISCUSSION inflammatory properties because high concentrations of DEX
(0.1, 1, and 10 uM) attenuated LPS-induced inflammatory
Our current study demonstrates that DEX exerts anti- responses by modulating JNK activation in primary astrocytes.
inflammatory effects in primary astrocytes and JNK signaling However, a low concentration of DEX (0.01 uM) caused no
pathway might be involved in DEX-regulated anti- significant changes in TNF-o and IL-6 expressions.
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Fig. 4. DEX attenuates LPS induced inflammatory responses. Primary astrocytes were treated with various concentrations of DEX (0.01, 0.1, 1, and 10 uM)
for 30 min followed by stimulation of LPS for 1 h. Cells treated with DEX (0.1, 1, and 10 M) and LPS showed reduced phospho-JNK activation compared
with LPS alone. Total levels of JNK, p38, and phospho-p38 MAPK protein were unchanged. Western blot data were quantified and analyzed as bands of
phospho-JNK and phospho-p38 (mean+SEM; **P<0.01 compared with the corresponding control group; “*P<0.01 compared with LPS group; n=3).
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Fig. 5. JNK modulates inflammatory responses in primary astrocyte cells. Primary astrocytes were treated with 0.1-uM DEX and/or SP600125 (JNK in-
hibitor). Each alone showed attenuation of LPS-induced TNF-« and IL-6 gene expressions; in combination, they showed significant additive effects. Ex-
pressions of TNF-« and IL-6 were measured by real-time PCR. Combined DEX with SP600125 reduced LPS-induced TNF-« and IL-6 expressions (**P<
0.01 compared with the corresponding control group; *P<0.05; #P<0.01 compared with the indicated group; n=3).

In our study, 1-pug/ml LPS was used to stimulate
primary astrocytes, and TNF-« as well as IL-6 expressions
peaked at 6 h after treatment. These findings are inconsis-
tent with a previous study demonstrating that LPS-induced
astrocyte inflammatory responses peaked at 12 h [29]. The
divergent results obtained may be related to the differential
dose of LPS application, 0.01-pg/ml LPS was employed in
their study, and a higher dose of LPS contributed to the
activation of astrocytes in a shorter time.

DEX is widely used in ICU sedation, and its pharma-
cokinetics appears to be highly variable during intensive
care [30]. DEX can cross the blood brain barrier and exert
many functions on the CNS [31, 32]. The clinically rele-
vant plasma concentration of DEX is 2-20 nM, and the use
of DEX at high concentration (0.1 M) may be clinically
practicable [17, 33, 34]. DEX can modulate inflammatory
responses and exhibit anti-apoptotic properties via a direct
effect on the o,-adrenergic receptors in vitro and in vivo
[27, 35, 36]. Several lines of studies have indicated that
DEX improves neuronal survival after transient global or
focal cerebral ischemia in rats [37, 38]. DEX effectively
decreased neuronal damage in a gerbil model of global
cerebral ischemia [39] and in a rabbit focal model of
ischemia [40]. In animal model of stoke, through oa-
adrenergic receptors, DEX may activate astrocytes and
promote GDNF release to protect neurons [26, 41]. More-
over, DEX suppressed spinal glial activation in a rat model
of monoarthritis through o, s-adrenergic receptors [42].

Our results showed that DEX (0.1 uM or higher)
exhibited potent activity in inhibiting both TNF-o« and
IL-6 in LPS-stimulated primary astrocytes, though low
concentration (0.01 pM) of DEX did not affect TNF-o¢
and IL-6 expressions. The observations suggest that DEX
attenuates the excessive inflammatory responses of LPS-
induced astrocytes, and these results are in accordance with

studies indicating that DEX is a potent suppressor of CNS
inflammation [17, 34].

MAPKSs are a family of evolutionarily conserved
proteins that play critical roles in transducing extracellular
stimuli into intracellular responses [28]. This family con-
sists of three major classes: the extracellular signal-regu-
lated kinases (ERKs), the JNKSs, and the p38 kinases. ERK
is involved in adhesion, proliferation, and cell progression
[43], INK and p38 are involved in apoptosis [44]. Several
studies have shown that JNK but not p38 or ERK1/2 was
required for the LPS-induced expression of TNF-oc mRNA
[45, 46]. It was also reported that JNK is involved in LPS-
induced NO production [8]. In the present work, it was
suggested that JNK but not p38 is involved in the anti-
inflammatory properties mediated by DEX. Additionally,
other studies have suggested that SP600125 at 5-20 uM
blocked part of IL-1f3, IL-6, and COX-2 protein expres-
sions [5, 6]. Thus, 10-uM SP600125 was chosen as the
administered dosage to evaluate the role of JNK signaling
pathway in DEX’s anti-inflammatory properties.

Our results demonstrate that LPS activated JNK and
p38 MAPK pathways, inducing inflammatory responses.
This process could be that LPS binded toll-like receptor
4(TLR-4) on the cell surface [47], activating phospho-
JNK, leading to TNF-a and IL-6 mRNA synthesis.
TLR4 was traditionally recognized as the primary receptor
for LPS; upon activation, it was involved in both TNF-«
and IL-6 releases induced by LPS in astrocytes [48].

DEX significantly inhibited JNK as well as LPS-
induced inflammatory responses in primary astrocytes.
As a highly selective o,-adrenoreceptor agonist, DEX
binds o,-adrenoreceptors on the cell surface and signals a
decrease in JNK activation. The decrease in JNK activation
of DEX suppresses TNF-« and IL-6 synthesis and exerts
anti-inflammatory effects. Our findings also indicate that
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DEX in combination with specific JNK inhibitor
(SP600125) enhanced attenuation of LPS-induced TNF-«
and IL-6 expressions in primary astrocytes, suggesting that
JNK signaling cascade is a crucial mediator for LPS-in-
duced TNF-« and IL-6 production.

In conclusion, our data show that the clinically rele-
vant concentration of DEX attenuates TNF-a and IL-6
gene expressions in LPS-activated astrocytes and JNK
pathway might play an important role in inflammatory or
anti-inflammatory effects mediated by LPS or DEX, pro-
viding the potential target for the therapeutic effects of
DEX for neuronal inflammatory reactions.
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