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Abstract—Morning stiffness and increased symptoms of inflammatory arthritis are among the most
common manifestations of rheumatoid arthritis (RA). Tumor necrosis alpha (TNF-α), an important
mediator of inflammation in RA, regulates the circadian expression of clock proteins, and adenosine
A2A receptors (A2AR) mediate many of the anti-inflammatory and antirheumatic actions of meth-
otrexate, the cornerstone drug in the treatment of RA. We found that A2AR activation and TNF-α
activated the clock core loop of the human monocytic THP-1 cell line. We further observed that
interleukin (IL)-10, but not IL-12, mRNA expression fluctuates in a circadian fashion and that TNF-
α and A2AR stimulation combined increased IL-10 expression. Interestingly, TNF-α, but not
CGS21680, dramatically inhibited IL-12 mRNA expression. The demonstration that A2AR and
TNF-α regulate the intrinsic circadian clock in immune cells provides an explanation for both the
pathologic changes in circadian rhythms in RA and for the adverse circadian effects of
methotrexate, such as fatigue.
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INTRODUCTION

The daily rhythm of life follows from both the
revolution of the earth on its axis and from the inherent
circadian rhythms set by an internal clock apparatus. The
internal clock in mammals and lower animals is
organized by transcriptional machinery, namely the core
clock genes Clock, Bmal1, Period, and Cryptochrome
[1]. The master pacemaker apparatus resides in the
hypothalamic suprachiasmatic nucleus, but virtually all
cells in the body express genes related to periodicity [2–
4]. In the immune system, many functions depend on the
time of day, including variation in susceptibility to
infection [5] and the course of such diseases as
rheumatoid arthritis (RA [6]) or asthma [7]. In particular,

recent observations indicate that periodicity genes alter
inflammation in animal models of arthritis, and inflam-
mation leads to changes in expression of the pacemaker
apparatus [8].

One of the most striking characteristics of RA, a
chronic polyarthritis of unknown etiology, is the circa-
dian fluctuation in symptoms [9–12]. In fact, morning
stiffness, included in the diagnostic criteria of RA, is one
of the most common complaints of afflicted patients [13,
14] and methotrexate (MTX) administration, the corner-
stone in the treatment of RA, also manifests in
perturbations of the circadian rhythm, primarily in the
form of severe fatigue on the day that the weekly dose is
taken [15, 16]. Moreover, the expression of proinflam-
matory cytokines [interleukin (IL)-1β, IL-6, and tumor
necrosis alpha (TNF-α)] and the classic disease specific
marker rheumatoid factor exhibit characteristic rhythmic
patterns [17–20].

The demonstration that low-dose, intermittent MTX
is a potent and effective therapy for RA [21] was
followed by investigations indicating that many of the
therapeutic effects of MTX are mediated by adenosine
[22, 23]. Adenosine potently diminishes the proinflam-
matory actions of inflammatory and immune cells via
interaction with specific cell surface receptors [A1R,
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A2AR, A2BR, and A3R, reviewed in [24]]. In human and
murine monocytes/macrophages, the activation of aden-
osine receptors, particularly A2AR, modulates the pro-
duction of inflammatory cytokines including TNF-α, IL-
10, and IL-12 [25–29]. We therefore analyzed the impact
of A2AR activation by the specific agonist CGS26180, as
well as with the pro-inflammatory mediator TNF-α, on
the molecular clock machinery of the human monocytic
THP-1 cell line. The effects described here are, to our
knowledge, the first description of the role of adenosine
and its receptors in the regulation of circadian pace-
makers in the immune system and provide further
insight into the effects of inflammation on circadian
pacemakers.

MATERIALS AND METHODS

Cell Culture and Stimulation

THP-1 (TIB-202) cells were purchased from Amer-
ican Type Culture Collection (ATCC) and maintained in
RPMI 1640 medium (30-2001; ATCC) supplemented with
10 % FBS (Gibco). For the stimulation, cells were thawed
and split in every experiment as follows: a new vial from
ATCC was thawed into 20 ml of RPMI 1640 medium with
10 % FBS; after 2 days of culture, cells had achieved a
concentration of 2.5−4×05/ml and were then split into
120 ml of medium (passage 1); after 3 days, the cell
concentration reached 1−2×105/ml, and the cells were then
spun down and resupended into 120 ml of medium
(passage 2). After 3 days, the confluence was 6−8×105/
ml, and they were then split into 600 ml of medium
(passage 3). Three days after (day of the stimulus), the
concentration was 2.5−5×105/ml. Cells were discarded if
the concentration was outside the specified range at any of
the passages described above.

On the day of study, passage 4 of THP-1 cells was
diluted into the appropriate volume of RPMI 1640medium
with 10 % serum to get 120×106 cells at 0.8×106/ml,
which were then split into 25-cm2

flasks with 5 ml on each
at 12PM. Stimulation with CGS21680 (TOCRIS) 100 nM
(final) and/or TNF-α (rhTNF-α, R&D Systems) 100 U/ml
(final) was begun at 12AM, and samples were harvested
every 4 h. For harvesting, the THP-1 cells were spun down,
washedwith PBS, and the resulting pellet was immediately
frozen at −80 °C. The changes in gene expression were
studied in four separate independent experiments, and all
results reported represent the mean (±SEM) changes
observed in these experiments.

RNA Extraction and Real-Time Reverse
Transcription PCR

After stimulating the THP-1 cells with CGS21680,
100 nM, and/or TNF-α 100 U/ml at the indicated time
points, the RNA was extracted and purified using the
RNeasy Mini Kit columns (Qiagen) according to the
manufacturer’s protocol, including sample homogeniza-
tion with QIAshredder columns (Qiagen) and DNA
digestion with RNAse-free DNAase set (Qiagen).
Following this step, the RNA was reverse transcribed
with MuLV Reverse transcriptase (Applied Biosystems)
at 2.5 U/μl, including in the same reaction the following
reagents: RNAase Inhibitor 1 U/μl (Applied Biosys-
tems,), Random Hexamers 2.5 U/μl (Applied Biosys-
tems), MgCl2 5 mM (Applied Biosystems), PCR buffer
II 1× (Applied Biosystems), and dNTPs 1 mM (Applied
Biosystems,).

For Clock, Bmal1, Cry1, IL-10, IL-12, and actin,
relative quantification of gene expression was performed
using real-time RT-PCR on Mx3005P Real-Time PCR
System (Stratagene) with SYBR Green (Agilent Tech-
nologies, 600548) according to the manufacturer’s
protocol. For Per1, Cry2, hrevErbA1, Per2, and
GAPDH, Multiplex relative quantification of gene
expression was performed using real-time RT-PCR on
Mx3005P Real-Time PCR System (Stratagene) with
Brilliant Multiplex QPCR Master Mix (Agilent Tech-
nologies). Fluorescence was measured during the
annealing step of each cycle. In the initial tests, the
PCR products were separated by electrophoresis on
agarose gels to verify the size of the amplified product
and to check for the presence of primer dimers or
nonspecific bands. Single-plex real-time PCR assays
were performed as described above with only one set of
primers and probe in the amplification reaction. To rule
out the possibility of discrepancies between SYBR
Green and TaqMan Multiplex technologies, we analyzed
one of the genes, Per1, with both technologies and found
similar fold changes throughout the 24-h time course in
control non-stimulated THP-1 cells, as well as cells
stimulated with CGS21680 100 nM or TNF-α 100 U/ml
(Supplemental Figure).

Primers and TaqMan Probes’ Design and Validation

Multiplex primers and probes were designed using
the online software RealTimeDesignTM (Biosearch
Technologies) with TaqMan technology. Next,
specificity of the primers and probes was assessed by
MFEprimer online software [30]. Primers and probe
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dimerization was next analyzed by PriDimerCheck
online software, and melting temperatures (Tm) were
calculated with the Applied BiosystemsTM online
calculator. For SYBR Green primer design and
validation, the same online tools were used, but the
initial design was addressed by Primer3 (v.0.4.0). Target
genes, primers’ and probes’ sequences, Tm, and
amplicon sizes are shown in Table 1.

Statistical Analysis

Statistical differences were determined using re-
peated measures ANOVA carried out using GraphPad
software on a PC. The alpha nominal level was set at
0.05 in all cases. A P value of <0.05 was considered
significant.

RESULTS

A2AR Stimulation Activates the Clock Core Loop of
THP-1 Cells

As noted above, the primary anti-inflammatory
effects of adenosine are mediated via stimulation of
adenosine A2A receptors, and we have previously
demonstrated that adenosine A2A receptor stimulation
of THP-1 cells suppresses TNF-α and stimulates IL-10
expression [31]. To determine whether stimulation of
this receptor also regulates circadian fluctuations in
clock proteins, we determined the effects of CGS21680
treatment on circadian gene expression over 24 h. As
shown in Fig. 1a, b, A2AR activation promoted a
significant increase of both Clock and Bmal, the main
activators of the clock core loop, during the 24-h period
studied. While maximal induction of these genes
occurred after 8 h (Clock 1.6±0.1-fold increase and
Bmal 1.6±0.4-fold increase of control), we found that
even after A2AR activation, there were circadian fluctua-
tions for these two genes throughout the entire 24-
h period studied.

We next investigated the impact of A2AR activation
on expression of the principal clock core loop repressor
genes: Cry1, Cry2, Per1, and Per2 (Fig. 1c–f). We found
that CGS21680 did not significantly alter either the
fluctuations or the expression levels of Cry1, Cry2, or
Per1, but A2AR activation did flatten the fluctuations and
reduced the expression levels of Per2 throughout the
period studied.
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TNF-α Increases Bmal and Decreases Cry1
Expression in THP-1 Cells

Previous studies have demonstrated that splenic
macrophages secrete TNF-α in a rhythmic fashion
governed by a circadian clock within the cell [32] and,
conversely, it has also been demonstrated that TNF-α
suppresses the expression of clock genes [33]. We
therefore sought to analyze the impact of TNF-α on the
expression of the clock core activators and inhibitors in the
THP-1 cell line. As shown in Fig. 2a, b, TNF-α incubation
did not promote significant modification of most clock
gene fluctuations, but stimulated a strong and significant
increase of Bmal expression with reduced fluctuation
during the 24-h period studied. TNF-α incubation dramat-
ically altered Cry1 fluctuations with inversions at 8 and
20 h. For Cry2, which has dampened periodicity when
compared to the other clock genes, TNF-α promoted an

increase on expression only after 20 h. TNF-α promoted a
slight increase in Per1 expression from 16 to 24 h when
compared to control cells and flattened the fluctuations of
Per2, although these differences were not significant.

TNF-α+CGS21680 Impact on the Clock Core Loop
of THP-1 Is Similar to the TNF-α Alone

Since our research group has previously established
that TNF-α treatment potentiates the effect of CGS21680 in
THP-1 cells [31], we therefore stimulated the THP-1 cells
with both TNF-α and CGS21680 and analyzed the
fluctuations of the different components of the clock
machinery. As shown in Fig. 3a, TNF-α+CGS21680
induced a similar circadian pattern for clockwhen compared
to the non-stimulated control, and only after 20 hwas there a
slight increase in expression. On the other hand, TNF-α+
CGS21680 stimulated a significant increase of Bmal over
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Fig. 1. A2AR stimulation with CGS21680 activates the core loop machinery. THP-1 cells split at 12 pm were analyzed every 4 h starting at 12 am
with quantitative real-time RT-PCR. Cells were kept in 10 % serum medium with CGS21680 100 nM, or without the agonist (control), under strict cell
growth monitoring. Results show the x-fold variations from time 0 (t=0) for the mRNA of a clock, b Bmal, c Cry1, d Cry2, e Per1, and f Per2. Data
represent mean±SEM of four independent experiments. Statistics was performed by ANOVA followed by Newman–Keuls posttest, control vs
CGS21680 ***p<0.001, **p<0.01.
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the 24-h period studied and, similar to the impact of TNF-α
alone, the expression of Bmal was not only higher but also
exhibited less fluctuations (Fig. 3b).

When we examined the effect of TNF-α+CGS21680
on the clock core loop repressors (Fig. 3c–f), we observed
that Cry1 expression was decreased only after 8 h, and that
Cry2 was only increased after 12 h. For Per1 and Per2, we
observed similar changes to those following TNF-α
treatment alone with a slight increase in Per1 mRNA from
16 to 24 h, and Per2 expression was not only decreased but
also it presented less fluctuations.

A2AR Activation with CGS21680, but Not TNF-α
Incubation, Increases Rev-Erbα in THP-1 Cells

Increasing evidence has established the exis-
tence of a stabilizing secondary loop, which is not

required for circadian rhythm generation, but rein-
forces the primary loop by regulating core compo-
nents [1]. The nuclear orphan receptor Rev-Erbα, a
key component of the secondary loop, has been
repeatedly shown to repress Bmal1 transcription
through direct binding to the Bmal1 promoter
[34]. Because our results suggested that the only
core component affected by both CGS21680 and
TNF-α was Bmal1, we determined whether Rev-
Erbα is regulated by A2AR activation with
CGS21680 or TNF-α treatment alone, or in combi-
nation. As shown in Fig. 4a–c, CGS21680 stimu-
lated a modest but significant increase of Rev-Erbα
expression. On the other hand, TNF-α only de-
creased Rev-Erbα after 4 h and, similarly,
CGS21680+TNF-α reduced the expression levels
of Rev-Erbα after 4 h.
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Fig. 2. TNF-α activates the core loop machinery. THP-1 cells split at 12 pm were analyzed every 4 h starting at 12 am with quantitative real-time RT-
PCR. Cells were kept in 10 % serum medium with TNF-α 100 U/ml, or without the cytokine (control), under strict cell growth monitoring. Results
show the x-fold variations from time 0 (t=0) for the mRNA of a clock, b Bmal, c Cry1, d Cry2, e Per1, and f Per2. Data represent mean±SEM of four
independent experiments. Statistics was performed by ANOVA followed by Newman–Keuls posttest, control vs TNF-α ***p<0.001, *p<0.05.
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Impact of TNF-α and CGS26180 Stimulation on IL-
10 and IL-12 Expression in THP-1 Cells

We have previously reported that stimulation of the
A2AR with CGS21680 selectively inhibits IL-12 release
and promotes IL-10 secretion [31], and prior work with
murine splenic macrophages indicates that there is cyclic
expression of cytokines [32]. Here, we observed that in
non-preactivated THP-1 cells, IL-10 but not IL-12
expression fluctuated spontaneously (Fig. 5a). TNF-α
treatment stimulated a slight but nonsignificant increase
in IL-10 expression from 4 to 8 h (3.2±0.9-fold increase
over control) while inducing a dramatic decrease of
IL-12 at the same time points (0.33±0.02 of control;
Fig. 5b, c). Stimulation of the A2AR with CGS21680
did not change IL-10 or IL-12 mRNA expression,
but coestimulation with CGS21680 and TNF-α
potentiated the effect of TNF-α eliciting a dramatic

increase in IL-10 expression (5.9±2.0-fold increase
over control). The effect of CGS21680+TNF-α
coestimulation on IL-12 expression was identical to
that of TNF-α alone.

DISCUSSION

The molecular mechanisms by which clock genes
maintain circadian rhythm are becoming increasingly
clear. In the immune system, many functions and
parameters vary based on the time of day including
variation in susceptibility to infection [5] and course of
immunologically mediated diseases like RA or asthma
[6, 7] highlighting the importance of the circadian clock
for health and disease [35]. Consistent with these
observations, fully operational autonomous circadian
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clockworks function in immunological tissues like spleen,
lymph nodes, and resident peritoneal macrophages [32]. In
fact, the strength of proinflammatory cytokine production
by macrophages in response to bacterial endotoxin is
determined by the circadian phase of the macrophage clock
rather than by systemic circadian modulators such as
rhythmic cortisol levels [36].

There are clear circadian manifestations of RA, a
chronic polyarthritis of unknown etiology affecting ∼1 %

of the population worldwide, such as morning stiffness, a
symptom which is included in the diagnostic criteria for
RA [13]. Such circadian characteristics are also seen in the
proinflammatory cytokines and disease-specific markers
important in RA: IL-1β and IL-6 are elevated in sera of RA
patients reaching peak levels in the early morning [6, 17,
19, 20]. In fact, TNF-α, a major cytokine implicated in RA
[37], exhibits a delayed secretion rhythm in patients, with
the highest levels measured at 6 am and remaining
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upregulated until 10 am [38] coinciding with morn-
ing stiffness in RA [9, 39, 40]. In our studies, we
found that TNF-α or costimulation with CGS+TNF-
α promotes dramatic changes in IL-10 and IL-12
from 4 am to 8 am, suggesting that signs and
symptoms of RA can be modulated by the circadian
clock and that, conversely, circadian rhythms modu-

late arthritis [8]. Thus, TNF-α interferes with the
expression of clock genes, suggesting that the “TNF-
α inflammatory clock gene response” may induce
fatigue, a manifestation of CNS circadian dysregula-
tion, diminishing the quality of life in autoimmune
diseases [33] and that inhibition of TNF-α improves
disabling fatigue in RA [41].
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Methotrexate (MTX), the cornerstone drug in the
treatment of RA and other rheumatic diseases, promotes
the release of adenosine from cells and tissues, and
adenosine mediates many of the anti-inflammatory effects
of MTX [23]. Moreover, the beneficial effects of MTX
have been reported to be reduced in RA patients who drink
coffee (caffeine is a well-known adenosine receptor
antagonist) [42]. When stimulated, the adenosine A2A

receptor increases intracellular cAMP, and cAMP signaling
oscillates in a circadian manner, which in turn sustains core
oscillation machinery of the circadian clock [43], suggest-
ing a potential link between adverse circadian effects of
MTX, such as fatigue, and A2A receptor activation in the
CNS after MTX-induced adenosine release [44].

The validation of TNF-α as a therapeutic target in
RA encouraged the investigation of signaling pathways
regulating its production [45]. The cAMP signaling
pathway downregulates TNF-α production and upregu-
lates production of the anti-inflammatory cytokine IL-10
[46, 47]. In the present work we found that, as
previously described [26, 48–52], TNF-α stimulation
promotes an increase of IL-10 and a marked decrease in
IL-12, and these effects are potentiated by coincubation
with the A2AR agonist CGS26180 consistent with prior
observations [25, 28, 31, 52].

We analyzed the impact of TNF-α and A2AR
activation on the clock genes of the human monocytic
cell line THP-1. Although circadian genes’ expression
has not been extensively studied in cultured macro-
phages or monocytes, it has been previously suggested
that altering the fetal bovine serum content from 10 % to
either 50 [53] or 0 % [33, 54] serum synchronizes
circadian gene expression in cultured mammalian cells
[53]. In our preliminary studies, we found that there was
no impact of varying the serum content of medium to 0
or 50 % serum changed the periodicity of expression of
clock gene in THP-1 cells (not shown) and did not,
therefore, shock cells for the experiments described here.

Circadian alterations in symptoms of patients with
RA and other inflammatory arthritides correlate with
aberrant circadian alterations in levels of TNF-α; levels
of this inflammatory cytokine are upregulated from 6 am to
10 am [38] coinciding with the sign ofmorning stiffness [9,
39, 40]. It was therefore interesting to note that TNF-α
increases Bmal1, but reduces Cry1 and Per2 expression in
THP-1 cells, and the greatest effects of cytokine treatment
were noted over a short period of time. Activation of A2AR
also regulates expression of circadian clock genes with
increases in the clock core loop (clock and Bmal1) and
downregulation of Per2, the core loop repressor. Prior

Fig. 6. Diagram depicting the A2AR and TNF-α roles on the intrinsic molecular clockwork of THP-1 cells.
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experiments have shown that TNF-α potentiates the A2AR
impact on IL-10 and IL-12 [31], and similar potentiation
was observed for circadian clock genes as well.

The nuclear orphan receptor Rev-Erbα, a key
component of the secondary loop, is the major regulator
of cyclic Bmal1 transcription and constitutes a molecular
link through which components of the negative limb drive
antiphasic expression of the positive limb [55]. Stimulation
of A2AR slightly, but significantly, increased its expression.
Since the secondary loop stabilizes, but is not required for
circadian rhythm generation [1], our findings suggest that
adenosine activation of the A2AR confers additional
robustness to the core loop via Rev-Erbα upregulation.
On the other hand, neither TNF-α nor CGS21680+TNF-α
significantly affected Rev-Erbα levels.

Our results demonstrate, for the first time to our
knowledge, that A2AR stimulation activates the intrinsic
clockwork machinery of the human monocytic THP-1 cell
line by increasing the expression of the core loop activators,
clock and Bmal1, while decreasing the expression of the
core loop repressor Per2 and confers greater robustness to
the circadian phase by increasing the secondary loop
repressor Rev-Erbα (summarized in Fig. 6). TNF-α also
activates the core loop by increasing Bmal1 expression and
decreasing Cry1. On the other hand, A2AR activation does
not alter the impact of TNF-α neither on the core nor on the
secondary loops here studied. The demonstration that A2AR
activation and TNF-α concomitantly regulate the intrinsic
circadian clock in immune cells provides an attractive
explanation for the observation that methotrexate, which
promotes adenosine release, is associated with such adverse
circadian affects as fatigue and may therefore shed further
light on the anti-inflammatory actions of MTX therapy and
may provide new insights to improve the quality of life for
RA patients undergoing therapy.
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