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Abstract The joint probability distribution function (JPDF) of electric field gradient (EFG)
tensor components in cubic materials is dominated by coordinated pairings of defects in
shells near probe nuclei. The contributions from these inner shell combinations and their
surrounding structures contain the essential physics that determine the PAC-relevant quan-
tities derived from them. The JPDF can be used to predict the nature of inhomogeneous
broadening (IHB) in perturbed angular correlation (PAC) experiments by modeling the G2
spectrum and finding expectation values for Vzz and η. The ease with which this can be
done depends upon the representation of the JPDF. Expanding on an earlier work by Czjzek
et al. (Hyperfine Interact. 14, 189–194, 1983), Evenson et al. (Hyperfine Interact. 237, 119,
2016) provide a set of coordinates constructed from the EFG tensor invariants they named
W1 and W2. Using this parameterization, the JPDF in cubic structures was constructed using
a point charge model in which a single trapped defect (TD) is the nearest neighbor to a
probe nucleus. Individual defects on nearby lattice sites pair with the TD to provide a locus
of points in the W1 − W2 plane around which an amorphous-like distribution of probability
density grows. Interestingly, however, marginal, separable PDFs appear adequate to model
IHB relevant cases. We present cases from simulations in cubic materials illustrating the
importance of these near-shell coordinations.
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1 Introduction

Since there no net electric field gradient (EFG) at sites of cubic symmetry, the hyperfine
splitting of the nuclear spin state of a probe nucleus in such cases is caused by defects in
the lattice. The EFG experienced by a probe nucleus is most strongly influenced by a single
trapped defect (TD), arbitrarily chosen to be positively charged, in the first shell. When the
influence of these nearest neighbor defects is the only contribution to the background EFG,
the splitting is proportional to the EFG component Vzz. The EFG tensor is then axisymmet-
ric and the components in arbitrary units are Vzz = 2, and Vxx = Vyy = −1 yielding an

asymmetry parameter η = 2Vxx+Vzz

Vzz
= 0. This limiting case corresponds to a material with

a very low concentration of defects. The resulting PAC G2 spectrum contains three sharp
peaks at frequencies, ω1 = 1

2ω2 = 1
3ω3 = 6ωQ, where ωQ is the fundamental nuclear

quadrupole frequency. With increasing defect concentrations, the EFG tensor contains ever
more contributions from defects beyond the TD and the spectral peaks, ω1, ω2 and ω3 are
broadened and shifted. This phenomenon is called inhomogeneous broading (IHB). IHB
also results in the time decay of G2.

For polycrystalline materials considered here, the components of the diagonalized EFG
tensor are fully characterized by two independent parameters or variables. For the most man-
ageable representation, these should be statistically independent. In general, these cannot be
Vzz and η as these show correlated behavior. However, were the joint probability distribution
function (JPDF) of two suitable EFG coordinates known, then IHB and other PAC-relevant
phenomena could be readily characterized by integration against the JPDF. For example if
the two EFG coordinates were labeled W1 and W2, giving P(W1,W2) as the JPDF, then the
time-dependent PAC spectrum would be G2(t) = ∫

G2(W1, W2, t)P (W1,W2)dW1dW2,
while the characteristic asymmetry parameter for the situation would simply be < η >=∫

η(W1, W2)P (W1,W2)dW1dW2, etc. The JPDF can be found in principle from distri-
butions of defects within a given lattice and the subsequent examination of EFG tensor
components.

It is useful to contrast the possible JPDFs that may arise in cubic structures with the
limiting case of materials that are isotropic, on average, containing a random distribution
of defects. Czjzek et al. [3] determined the approximate limiting form for the JPDF for this
situation in terms of Vzz and η by essentially summing over the Euler angles of the EFG
components. The resulting analytic expression is a smoothly continuous bimodally-peaked
function in Vzz and η. It is dependent on the EFG tensor invarients, S = V 2

zz(1 + η2/3),
which aside from a constant multiplier is the sum of the squares of the individual EFG
components and D = V 3

zz(1 − η2) which is simply four times the EFG tensor determinant.
They found that non-zero values of D skewed the distribution making the density of positive
and negative values of Vzz asymmetric about the origin. They attributed this distortion to
the occupancy of the inner coordination shells and verified this with numerical simulations.
The simulations showed that even a small number of defects in the inner coordination shells
produced strong asymmetries. Whether the preponderance of Vzz probability density was
positive or negative depended on whether these charged defects were tightly clustered near
a single spot in the shell (or in two spots along an axis) or whether the charge distribution
was more ring-like. The former case gave rise to more positive density, the latter to more
negative. The two cases reflect whether the EFG distribution is respectively more prolate or
oblate along a particular axis.

Similar results should be expected in cubic lattices with the following distinctions. The
JPDF cannot be a smooth function. Each discrete configuration of charged defects maps to
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a distinct point in the plane of EFG coordinates. The finite number of combinations in the
inner shells which have the most influence do not fill the coordinate plane. This means that
the JPDF will be “spiky” in the sense that if there are just a few restricted configurations of
charges in the inner coordination shells, then these will produce discrete loci around which
probability density will accumulate as these few configurations combine with the effects
of more distant and more variable charge configurations. This produces a distribution of
myriad peaks that never combine into a wholly smooth distribution. This is an effect of the
EFG’s inverse cube dependence on distance from the probe. It insures that the loci of points
established by the coordinated pairs of inner shell defects never develop enough probability
density about them to smoothly blend into other peaks.

For example, consider again the case at the beginning of this section. In any given cubic
structure there is a TD near each of many probe nuclei but if the defect concentration is
otherwise low enough, then the likelihood of finding a defect in another nearby coordination
shell is negligible. The resulting JPDF should consist of a single sharp peak broadened only
slightly by the contribution of remote defects [4]. The defects in distant shells are very nearly
amorphous and the probability density they produce around the sharp peak would essentially
follow that of Czjzek’s analysis. The location of the peak essentially represents a shift in
the origin of coordinates in the description of the JPDF due to an otherwise amorphous
distribution of defects.

For a second example consider a cubic structure with one TD in shell 1 about a probe
nucleus having a defect concentration high enough to also have a defect in shell 2. For the
cubic lattices the combined EFG of the TD and the defect in shell 2 give rise to two pos-
sible points in any given EFG coordinate plane. The JPDF would then have two additional
peaks corresponding to each of these sets. These peaks would be surrounded by numerous
points corresponding to the many possible configurations of distant defects coupling with
these two inner shell configurations. This immediately leads to a skewing of the JPDF and
corresponds to the prolate or oblate skewing of the amorphous distributions discussed by
Czjzek [3].

Evenson et al. [2, 5] examined which coordinate representation might best represent
the JPDF of EFG components. Their study sought to find a separable JPDF that could be
expressed as the product of two independent PDFs, one for each independent coordinate.
Their investigations led them to conformally map the restricted 60◦ parameter space of
Czjzek’s [1, 3] coordinates to a half plane. In so doing they found that Czjzek’s coordinates
naturally map to the tensor invariants, S and D and they defined the coordinates as follows:

W1 = 8

3
√
3
η(9 − η2)|Vzz|3 =

√
S3 − D2 and W2 = 8(1 − η2)V 3

zz = 8D (1)

These EFG coordinates have the advantage of smoothly using the half plane to cover the
range of 0 ≤ η ≤ 1 and all possible values of Vzz. Using the same arbitrary units as above,
the limiting case of low defect concentration with one TD near each probe is W1 = 0 and
W2 = 64. In this same limit W1 is a proxy for η and W2 for V 3

zz.
Using Evenson’s parameterization, concentration-dependent JPDFs can be found from

simulations. A random distribution of defects in a simulated crystal structure is mapped to
a particular point in the W1-W2 plane. Repeating the procedure an arbitrarily large number
of times allows the accumulation of the JPDF, P(W1,W2, c), now a function of the defect
concentration c. As discussed above, the JDPFs are unavoidably spiky and asymmetric.
Nevertheless, with the ultimate aim of characterizing PAC features, approximately separable
PDFs, P(W1, W2, c) = P1(W1, c)P2(W2, c) are constructed with the implicit assumption
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that W1 and W2 may be used as independent variables. This is done by using marginal
distributions. That is

P1(W1, c) =
∫

P(W1, W2, c)dW2 and P2(W2, c) =
∫

P(W1,W2, c)dW1. (2)

In an earlier work [5], we found that the approximately separable JPDFs constructed in
this manner can be well represented by common analytic distribution functions for cubic
lattices over a wide range of defect concentrations. We expand upon that work here, explor-
ing the application of our methods and concentrating on the physical causes of IHB due
to coordinated pairings of defects in the inner shells. The P2(W2, c) distributions are well
characterized by the four-parameter alpha-stable distributions [6] and the P1(W1, c) dis-
tributions are readily fitted with two-parameter gamma distributions. The concentration
dependent fit parameters will be discussed in examples to follow. The approximately sepa-
rable JPDFs constructed by this method are able to reproduce simulated PAC features very
well. In principle the use of this method allows for the direct determination of the splitting
parameter Vzz, the asymmetry parameter η and the defect concentration c in PAC experi-
ments with significant concentrations of static defects. However, we also seek to understand
IHB through the process of parsing the JPDF by contributions from specific shells. That is,
we wish to know how heavily a particular configuration of defects influences the IHB seen
in a G2 spectrum.

2 Characteristics of the lattice JPDF in point charge simulations

In the point charge defect model a TD in coordination shell 1 defines the z-axis for all
cubic lattices. When considered alone, this point maps to the EFG W1-W2 plane at the
position (0, 64). The main peak of the JPDF forms about this point. Other contributions
to the JPDF come from the accumulation of discrete charge configurations coupling to the
TD. Figure 1 shows the discrete EFG points that arise from a single defect in shells 2
through 6 and shell 25 pairing with the TD, each in turn. It is readily apparent that the
more distant the coupling shell, the closer the resulting EFG point is to the TD main peak.
Each shell produces a finite number of such points which generally increases with shell
number. Thus the main peak is reinforced from the myriad sea of distant shells. In the limit
of low defect concentration the JPDF would consist of just this main peak populated by
such contributions. The solid lines in Fig. 1 show the continuous distribution of points that
would arise from an amorphous spherical shell of defects at a given shell distance. These
lines truncate in the EFG plane at positions corresponding to the lattice midplane relative
to the TD z-axis, or θ = 90◦. This natural truncation results in an intrinsically asymmetric
distribution. The part of the EFG plane below these truncated lines is only accessible by
pairings that arise from chance alignments of defects along particular directions in multiple
inner shells. This occurs for distributions with high defect concentrations but the distribution
nevertheless remains skewed. The background of the figure shows a contour map of the
JPDF for the sc lattice with a defect concentration of c = 3 %. It can be readily seen that
the contours of the JPDF main peak align with, or are bounded by, the lines derived from
the amorphous distribution. However there are numerous irregularities and smaller peaks
associated with other inner shell pairings.

The limits on the shape of the JPDF in the EFG plane due to coordinated inner shell
defect pairings to the TD are defined exclusively by defects in shell 2. This is apparent in
Fig. 1 by noticing the limiting bound imposed by the shell 2 line. Insight is gained into
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Fig. 1 (Color online) The
W1-W2 EFG coordinate plane
showing the map of discrete
lattice pairings between the TD
in shell one and lattice sites in
shells 2 through 6, and shell 25.
Probability density grows about
these points when coupled to
other charge configurations. The
solid lines passing through these
points represent the result of
considering an amorphous
distribution of charges in
spherical shells, thus highlighting
the discrete and spiky nature of
the distributions expected from
discrete lattices. The background
image (red) shows the JPDF
contour map for the sc lattice and
a defect concentration of c = 3 %

the development of the JPDF from such discrete points by examining the mapping of a
combination of lattice charge defects to the EFG W1-W2 plane. Consider the EFG arising
solely from the TD, a defect in shell 2 and a defect in one additional shell. We denote this
coupling as (TD + shell 2 + 1). This process illustrates the ultimate limiting width and
shape of the JPDF. Consider Fig. 2 in which the loci of points generated by this prescription
are displayed for the sc lattice. There are two points in the EFG plane from the (TD + shell
2) pairing alone. The points are at the centers of the largest set of circles in the left panel of
Fig. 2. The uppermost point can be thought of as coming from a more prolate arrangement,
and the lower from a more oblate one. The effect of building a peak of probability density
is illustrated by then finding the EFG points corresponding to the combinations of (TD +
shell 2 + 1) for many additional shells. The figure displays the results from shells 3 through
11 and shell 25. The points are at the centers of circles whose radii decrease with increasing
shell number so that the contributions from shell 2 are the largest circles and those from
shell 25 are very small circles. These are nearly indistinguishable in the figure and entirely
circumscribed by the circles marking shell 2. The resulting distributions represent peaks of
probability density aligned with the shell 2 defects. All other inner shell defects also couple
strongly with the TD to form such peaks. The right panel in Fig. 2 shows two examples of
this. The peak denoted with squares comes from the (TD + shell 3 + 1) coupling while
the triangles denote the case generated when shell 2 has two defects in it, denoted in the
figure as (TD + shell 2 × 2 + 1). Note that the width of any peak generated by pairing to
the TD is determined by the neighboring shell. For instance, Fig. 2 shows that the points
from shell 3 are the most distant from the center of the shell 2 peaks, and conversely, the
contributions frommore distant shells are progressively closer. More complex pairings, such
as that illustrated by the doubly occupied shell 2 example in the right panel of Fig. 2 are
those which develop probability density in the extreme regions of the EFG plane, and go
well beyond the limits shown for singly occupied shells indicated in Fig. 1. The presence
of such peaks in the JPDF are then clearly a function of defect concentration. This process
which defines the growth of peaks within the JDPF is identical to the way the main peak
itself is constructed. Thus every such minor peak in the JPDF is broadened in the identical
fashion to the main peak. We note that the width of the JPDF is not necessarily determined
by the width of the main peak alone. The (TD + shell 2 + other) pairings give rise to the
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Fig. 2 (Color online) Left Panel: a TD in shell 1 is coupled to a point charge in shell 2 (in all possible
orientations) for the sc lattice. A third charge couples to these by successively visiting all the lattice sites in
shells 3 through 11 and shell 25. Each combination produces a discrete point in the W1-W2 plane. The points
from each shell are indicated by the size of the circle. The largest circles (red) are from the (TD + shell 2)
pairing alone. The (TD + shell 2 + shell 3) points are the next largest circles and so on. The closer the inner
shell pairings, the further the spread of the points in the EFG plane. The accumulation of such points builds a
peak of probability density in the JDPF. The spread or width of the JPDF is then determined by such pairings.
Right Panel: A peak resulting from the (TD + shell 3 + 1) pairing to a defect in shells 2 to 10 (boxes) and a
peak from the double occupancy of shell 2 (TD + shell 2×2+1) with a defect from shells 3 to 10 (triangles)

greatest spread in peak locations and these, when populated, determine the width of the
JPDF.

The final form of the JPDF derives from the near countless possible couplings of charge
distributions, but the central point of the simulations here is to illustrate that only a few inner
shell pairings are important in determining the ultimate physics that derives from the JPDF.
The two main features of the distribution are location of the peak and its overall width.
Figure 3 illustrates the piecewise construction of the JPDF for the sc lattice for a defect
concentration of c = 5 %. The defect concentration of 5 % is chosen to insure sufficient
probability of finding shell 2 occupied. In the left panel of Fig. 3 only the defects found
in shells 2 through 5 are used to accumulate the JPDF. The distribution is best described
as “spiky”. It is discontinuous and composed of many discrete peaks. The highest peak is
the one derived from the pairing of the TD with all remote configurations. The next highest
peaks come from the pairing of the (TD + shell 2 + 1) defects or the (TD + shell 3 + 1)
defect configurations. Smaller peaks involve the TD and a single defect in some other inner
shell pairing and so on. The right panel in Fig. 3 includes contributions from shells 2 through
72. There are now countless minor peaks, but the morphology of the whole is established
by the core set of peaks from the inner shells. Notice in particular that there is a substantial
minor peak to the right of the main block of probability density that comes from shell 2.
Of interest here is how well the G2 spectrum can be represented by the limited amount
of information in shells 2 to 5. This is illustrated here by producing the associated G2
spectrum from each distribution and comparing them. The middle panel of Fig. 3 compares
the simulated G2 spectrum from each case. The dotted line is for the JDPF from shells 2 to
5 and the solid line is the result from the full distribution. The differences in the two spectra
are minor. It can be observed that the information from just shells 2 through 5 would be
sufficient to capture the hyperfine frequencies, and it accounts for nearly all of the width
or IHB of the spectrum. Apparently the average width of the distribution and average mean
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Fig. 3 (Color online) The JPDF for the sc lattice for a defect concentration of c = 5 % as constructed
from defects confined to shells 2 through 5 (Left Panel) and as composed from defects present through shell
72 (Right Panel). The middle panel compares the G2 spectrum derived from each simulation. Although the
first simulation carries information from just the first five shells and has an extremely spiky JPDF, the G2
spectrum it produces (red dashes) is virtually the same as that formed from the full JPDF (black). Apparently
the basic determining factor for the spectrum is the width and peak location of the distribution, and the
simulation containing contributions from just shells 2 through 5, though discrete and discontinuous, has the
same average peak location and width as the more developed JPDF

as may be defined for the spiky, discrete JPDF is sufficient to convey enough physics to
determine the G2 spectrum. As with other examples shown here, results from the other
cubic lattices show the same behavior.

The representation of cubic lattice JPDFs is now complicated by the discrete features
described above. The main goal of achieving a set of two approximately independent PDFs
with which to characterize the PAC-observables can only be considered by some appropriate
means of smoothing and averaging the spiky JPDF. We have chosen to use marginal PDFs
as described below to model the JPDF. In this process, some of the details of the overall
skewing of the JPDF due to the bounding limits of the lattice mapping, and of the skewing
due to discrete isolated peaks from inner shell pairings may be lost. Examples illustrating
such limitations are given below.

3 Modeling the JPDF with marginal distributions

The marginal distribution P1(W1, c) represented in terms of the gamma distribution with
mean μ and variance σ is

P1(W1) = W
(μ2/σ−1)
1

�(μ2/σ)(σ/μ)μ
2/σ

exp(−μW1/σ). (3)

The alpha-stable distribution used to represent P2(W2, c) is found from the integration of

P2(W2) = 1

2π

∫ ∞

−∞
exp(i(δ − W2)t − |γ t |α(1 − iβsgn(t) tan(πα/2)))dt. (4)

The parameters γ and δ represent respectively the width and the peak location for P2(W2).
The parameter β is the “skewness” parameter. The parameter α is called the “stability
parameter” and essentially describes the type of envelope the distribution has. The case
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Fig. 4 (Color online) The concentration dependence of the parameters of P1(W1, c) and P2(W2, c) for
cubic lattices. Circles are bcc, triangles sc, and squares fcc. Top Panel: P1(W1, c) is modeled with a gamma
distribution with mean μ (black) and variance σ (red). The bcc lattice is clearly distinguishable from sc and
fcc in μ and σ for moderate defect concentrations. Bottom Panels: P2(W2, c) is modeled with an alpha-
stable distribution, using parameters α (stability, in black), β (skewness, in red), γ (peak width, in black)
and δ (peak location, in red). The γ parameter is most sensitive to c, and δ generally increases with c. The
parameters α and β show complex behavior at low c, but otherwise tend to saturate at higher concentrations

α = 1 corresponds to a Lorentzian distribution while for α = 2 (β = 0), the distribution is
Gaussian. The fitting parameters for each distribution are strongly concentration dependent.

Figure 4 shows the fit parameters for the marginal distributions P1(W1, c) and P2(W2, c)

for the three cubic lattices. The mean μ and the variance σ for the P1(W1, c) gamma dis-
tribution fits are shown in the top panel. They increase smoothly with c. The differing
symmetry of the bcc lattice is most clearly reflected in σ and μ for which the bcc values of
each increase faster with concentration than in sc or fcc. This can be accounted for by com-
paring the relative lattice distances between shell 2, the TD in shell 1 and the probe. For the
sc and fcc lattices the ratio of the distance from shell 2 to the TD to the probe is

√
2:1:1,

while for bcc it is 2√
3
:1:1. The relative effects on the EFG tensor of pairings between inner

shell defects and shell 2 depend on the inverse cube of this ratio and are therefore stronger
in the bcc lattice. The spreading of the JPDF in the W1-W2 plane at larger concentrations
is dominated by instances of multiple occupancy of defects in shell 2 pairing with other
nearby charge configurations. In fact, pairings from multiply occupied shells tend to move
the distribution mean outward along the W1 axis more strongly than along the W2 axis,
shifting the mean of the P1 distribution more than occurs for the P2 distribution. That the
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Fig. 5 (Color online) The marginal PDFs P1(W1, c) (top panels) and P2(W2, c) (bottom panels) for the sc
lattice in the point charge model. Solid lines are from PAC simulations, dashed lines are fits to the PDF.
Defect concentrations are shown on the right for c = 0.1 % (black) and 0.3 % (red) and for 1 % (black) and
3 % (red) in the left panels. Top Left: Gamma distribution fits to P1(W1, c). For c = 1 % shell 2 is populated
enough to produce a strong bump in the distribution. By c = 3 % the bump is less noticeable. The effect
of the bump on the fit is to pull the fit to the right, increasing the mean and width of the fit. Top Right: At
low concentrations shell 2 is rarely occupied and the PDF is very narrow. P1 is determined by the TD and
the effects from distant diffuse charges. Bottom Right: Low concentration, c = 0.1 % and 0.3 % alpha stable
fits to P2. With little contribution from shell 2, the PDFs are very narrow, nearly Lorentzian and centered at
W2 = 64. Bottom Left Panel:P2 and its fit at moderate concentrations c = 1 % and 3 %. Shell 2 produces
strong bumps near W2 = 20 and W2 = 90. The rightmost peak in the c = 3 % case is less pronounced
because other peaks grew and spread. However the peak on the left is more pronounced. The peak atW2 = 20
is farther from the (W2 = 64, W1 = 0) TD origin and thus its inner shell pairings remain distinct at higher
concentrations. This region of EFG space is populated by contributions from inner shell combinations in the
mid-plane of the lattice. At higher concentrations both bumps blend smoothly in the the JPDF

bcc lattice has an intrinsically larger coupling factor accounts for the observed pattern. The
P1 parameters otherwise vary smoothly with concentration reflecting the steady increase of
inner shell pairings.

The lower panels in Fig. 4 show the fit parameters for P2(W2, c) using the alpha-stable
distribution. The complex behavior seen in the parameters for P2(W2, c) strongly reflects
the changes in the JPDF where inner shell pairings are most pronounced. Considering each
parameter in turn, γ , which reflects the width of P2 shows virtually the same concentration
dependence for each lattice. It increases smoothly from zero but appears to saturate with
concentration. The peak location δ is a generally increasing function of concentration with
the exception of the low concentration dependence in the sc lattice. A similar irregularity
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Fig. 6 (Color online) The PAC spectra G2(t, c) for the sc lattice for point charge defect concentrations
c = 1 % (black), 3 % (red), in the left panel and 0.1 %, (black) and 0.3 % (red) in the right panel. The solid
lines are from PAC simulations and the dashed lines are reconstructions using the marginal PDFs. Despite
the spiky nature of the actual JDPFs the marginal PDFs produce spectra that would be precise enough for
experimental discrimination of defect concentration. The distortions to the marginal PDFs from shell 2 are
most pronounced for c = 1 % and to a lesser extent in the case for 3 %. Both cases are still fitted reasonably
well

for the sc parameters α and β are evident. For this case, the more open structure of the sc
lattice may contribute heavily to this irregularity. At low concentrations there is little chance
of finding a defect in shell 2. The skewing of the JDPF is then determined by some other
inner shell with the highest probability of being occupied. It is not immediately obvious
how this affects the complex determination of the α-stable fit parameters. We note only that
when the concentration of defects is high enough to insure occupancy of shell 2, that the
sc parameters then fall much more in line with the behavior of the other two lattices. The
increase in δ with concentration also reflects the addition of many more coordinated sets
of aligned defects and multiply occupied shells that can spread the JPDF away from the
TD-induced main peak. Interestingly the β parameter saturates quickly with concentration.
At low defect concentrations, the symmetry of the JPDF is dominated by the TD-induced
main peak and while it is not wholly symmetric it integrates into a marginal distribution
for P2 that is nearly Lorentzian. Thus β is nearly zero for low concentrations. As the inner
shells become more populated the lattice-imposed limits on the EFG plane favor distribu-
tions that are skewed to higher values of W2, and β thus increases. At sufficiently high
concentrations, where shell 2 is clearly occupied, the skewing saturates. In a similar fashion
the stability parameter α starts at low concentration with a value near 1, giving a Lorentz-
like shape of the distribution envelope and tail. At high concentrations the blended peaks
in the JPDF become thicker near the mean relative to the tail, and α increases. The limit-
ing value appears to be near 1.5. We note that the Gaussian distribution is characterized by
α = 2.

For purposes of illustration the fitted marginal distributions P1(W1) and P2(W2) for the
sc lattice are shown in Fig. 5 for defect concentrations c = 0.1 %, 0.3 %, 1 %, and 3 %.
Fits for the fcc and bcc lattices are similar. For defect concentrations c = 0.1 % and 0.3 %,
seen in the rightmost panels of the figure, occupancy of shells 2 and 3 is negligible, and the
PDFs are determined by the TD couplings to remote defects. The resulting peaks are nar-
row with P2 being nearly symmetric about W2 = 64. For c = 1 % the occupancy in shell 2
has increased. This is immediately apparent in the PDFs. The leftmost panels in Fig. 5 now
show a distinct bump in P1(W1) to the right of its main peak and two bumps in P2(W2), one
to the left and one to the right of its main peak. These correspond exactly to the descrip-
tion of the peaks built in Fig. 2. The smooth alpha-stable fits for P2 do not render these
bumps well, so that any resulting PAC quantity calculated from such fits will necessarily
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Fig. 7 (Color online) The marginal PDFs P1(W1) and P2(W2) (black) and their fits (red dashes) are shown
for the sc lattice with c = 10 % defect concentration. The simulated experimental PAC spectrum G2(t, c)

(black) and its reconstructed fit (red) are shown in the right panel. The high quality of the fits makes it
difficult to resolve their lines in the figures. At this concentration, the bumps due to shell 2 defects are no
longer distinct. The PDFs are fitted well, and the resulting reconstructed fit to the G2 spectrum is excellent

lose some information from shell 2 contributions. At larger concentrations (c ≈ 10 %—
see Fig. 7) the contributions from shell 2 become more nearly blended into the whole, but
at c = 3 % only the rightmost peak has blended. The peak near W2 = 20 comes from
charge configurations occurring in the lattice midplane, and the configurations that eventu-
ally blend with this peak do not occur until the defect concentrations are high. It is more
probable for prolate configurations of charges to arise, reflecting the axial bias of the TD.
The bump from shell 2 in P1 seen in the top left panel for the c = 1 % case has an interest-
ing effect on the fitting of the PDF. The fit is pulled to the right, increasing the width and
mean of the peak and thus for low concentrations the contribution to the calculation of PAC
quantities from shell 2 comes from the stretching of the fit. At larger concentrations, this
bump in P1 blends into the PDF as can be seen for the c = 3 % case. The bump is there, but
less pronounced.

4 Modeling PAC observables

With the parameters for the marginal distributions determined, (3) and (4) can be used to
reproduce the PAC G2(t, c) spectrum and other observables. The four sets of PDFs illus-
trated for c = 0.1 %, 0.3 %, 1 %, and 3 % in the sc lattice in Fig. 5 have been used
to reconstruct G2(t, c) for these concentrations and are displayed in Fig. 6. The case for
c = 10 % in the sc lattice is added in Fig. 7 to illustrate the effect of higher defect concen-
trations. The solid lines for G2 in both figures are the simulated PAC experiments and the
dotted lines show the reconstructions from (3) and (4). We note that the fits in all cases are
good enough to allow for experimental determination of spectra with IHB on the basis of
defect concentration. The fits at both the low and high concentrations are quite good. The
fits for the 1 % and 3 % cases show the most deviation from the simulated experiment. This
is in line with expectations that the PDFs have the most distortion due to discrete bumps
from shell 2 and the subsequent loss of information about the contributions of shell 2 in the
fitted PDFs. In all cases, however, the central peaks (and hyperfine frequencies) are well
resolved. In Fig. 7 the marginal PDFs for P1 and P2 and their fitted distributions are shown
for the defect concentration of 10 % along with G2. In this case the bump evident from
shell 2 has been completely lost in the manifold combinations of charge configurations now
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Fig. 8 (Color online) The concentration dependence of the splitting parameter Vzz (red) and the asymmetry
parameter η (black) are shown as functions of defect concentration c for the cubic lattices. The sc lattice
is marked with triangles, the fcc lattice with squares and the bcc lattice with circles. The parameters are
calculated as expectation values from the JPDFs derived from point charge models. Values of Vzz in our units
vary around 2, with the bcc lattice exhibiting significantly different behavior for high concentrations than
that of the fcc and sc cases. A trend line fitted to a hyperbolic tangent has been added to the η-graph

contributing to the JPDF. The reconstructed G2 is a particularly good fit to the simulated
experiment. Cases for the fcc and bcc lattices are similarly well fitted.

With the PDFs determined, other PAC parameters can also be explored. The most rel-
evant experimental parameters are η and Vzz. We note that experimental investigations
including IHB have traditionally lacked a means to systematically estimate η, and the fit to
Vzz has often been determined empirically by assuming a Lorentzian or Gaussian distribu-
tion [7]. For situations dominated by static point charge distributions, such as investigated
here, the determination of η can be directly found from knowledge of the JPDF. Figure 8
shows the determination of the defect concentration dependence of η(c) and Vzz(c) for our
simulation model in all three cubic lattices. It is clear from the figure that η is the more
robust parameter for evaluating the effects of defect concentration. For the concentration
range explored here, η varies smoothly with concentration varying almost as the square root
of c. An approximate fit to the concentration dependence using the hyperbolic tangent func-
tion has been added to the figure as an illustration of the simplicity of the η dependence on
c. The behavior of Vzz is more complex, but it is interesting to note the distinctly different
behavior of the bcc lattice in which the average Vzz value is higher than for the sc and fcc
cases. We again attribute this behavior to the relatively stronger contribution to the JPDF
from bcc shell 2 lattice spacing.

5 Discussion

When considered by themselves, the small numbers of lattice sites in the inner coordination
shells of cubic materials lead immediately to the skewing of possible JPDFs of EFG com-
ponents that can be used to characterize PAC phenomena. Defects situated in these inner
shells pair up primarily with a TD in shell 1 to produce a limited number of fixed points in
any given EFG coordinate plane. Probability density then develops around these points as
the limited inner configurations couple to the nearly amorphous contributions from remote
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defects. In considering its relation to the main JPDF peak in the EFG coordinate plane, the
closer a given defect is to the TD, the more separated its EFG coordinates will be from the
main peak. This is the same as saying that the charged defect will contribute more strongly
to the combined determination of Vzz and η because of the inverse cube dependence of the
EFG on distance. For low concentrations from 1 % to 3 % this leads to marginal distribu-
tions that have multiple discrete peaks. For larger concentrations these distinct peaks blend
well enough to produce approximate single-peaked marginal distributions. Conversely, the
further the charge is from the TD, the closer to the central peak its EFG contribution will
be.

Interestingly the physics necessary to capture the essential PAC behavior of cubic lattice
systems in the point charge model depends almost entirely on the ragged and spiky con-
tributions to the JPDF from the (TD + inner shell) pairings This was shown in Fig. 3 in
which the G2 spectrum found by using only the innermost 5 shells is nearly the same as
that found using 72 shells for the particular case illustrated. This result comes from pre-
cisely how the JPDF is constructed. The main peak of the JPDF is composed as the limiting
sum of contributions of discrete charges in remote shells coupling to the TD. This is the
usual explanation of cause of IHB [8]. But the width of the JPDF itself is determined by the
distribution of secondary peaks from the coordinated couplings between the TD and inner
shell defects acting together which then couple with all remaining remote charge config-
urations. In effect, with one TD in shell 1, defects in shell 2 essentially define a limiting
width and peak location of the JPDF. For the JPDF to have density in regions of the W1-W2
plane beyond the bounds set by this (TD + shell 2) coupling requires the alignment of mul-
tiple defects in several inner shells. Whether shell two is occupied or not is a function of the
defect concentration. For sufficiently low concentrations this is not likely and the width of
the JPDF is determined by the diffuse, amorphous-like halo of remote lattice configurations.
The ensemble averaging of a PAC-observable against the JPDF is a process of integration
and as such the location of the peak and the width of the JPDF are the primary determining
factors. The exact nature of the JPDF need not be known with particularly high precision to
obtain reasonable physical results as was demonstrated in Fig. 3 for which in the first case
the JPDF appears as a ragged assortment of spikes while in the second the JPDF could be
characterized with smooth analytic marginal distributions.

The strong coupling between the nearest inner shells creates a strong dependence on con-
centration for the JPDF. For instance when the occupancy of shell 2 is negligible, as it is for
low concentrations, P2(W2, c) is nearly Lorentzian. The IHB that arises in this case comes
only from the TD coupling to the halo of amorphous-like remote charge configurations. As
the occupancy of the inner shells increases, these pairings skew the JPDF and widen its
envelope relative to the distribution tail. As noted in the discussion of Fig. 4 this increases
α in the fits to P2(W2, c) from 1 to about 1.5. For a transitional range of c, the marginal
distributions cannot be readily fitted by a single distribution function, but even in these
cases, having an approximate peak location and distribution width allows for reasonable
determination of PAC parameters.

The predicted concentration-dependent values for η and Vzz in Fig. 8 are found as expec-
tation values by integration against a JPDF which intrinsically contains information about
the asymmetries of the EFG tensor. On the other hand, experimental values of η are typi-
cally derived from fits to an expression that is an integration against an assumed PDF of Vzz

values alone [7, 9–11],

G2(η, V o
zz, t) =

∫
dVzzG2(η, Vzz, t)P (Vzz − V o

zz) (5)



129 Page 14 of 15 Hyperfine Interact (2016) 237: 129

where V o
zz is the peak value of Vzz in P(Vzz − V o

zz) that is usually assumed to be either
Gaussian or Lorentzian or a mixture of the two. Fits to the resulting form

G2(η, V o
zz, t) = S20(η) +

∑

n

S2n(η) cos(ωn(η, V o
zz)t) exp

[

− 1

p
(δωn(η, V o

zz)t)
p

]

(6)

give η, V o
zz and δ. The latter parameter is simply related to the FWHM of the distribution.

The value p = 2 is for a Gaussian distribution and p = 1 for Lorentzian. Interestingly,
examination of distributions of Vzz in our simulations shows that these clearly evolve from
Lorentzian toward Gaussian with increasing defect concentration. This effect should be
discernible in experimental PAC spectra showing IHB. Experimenters have also used inter-
mediate values of p in their analyses. For instance Collins and Sinha [10] used p = 1.25
while Nieuwenhuis et al. [11] used p = 3/2. The connection between p and defect concen-
tration in experiments remains to be explored. We have verified that the expectation values
in Fig. 8 self-consistently match those obtained by fits to (6). For instance, arbitrarily exam-
ining the simulation for fcc, c = 5 %, with p = 2, the values obtained for η and Vzz from
(6) differ from those of Fig. 8 by less than 1 %, η(JPDF) = 0.3035 versus η (6) = 0.3025
and Vzz(JPDF) = 2.045 versus Vzz (6) = 2.065. The results presented in Fig. 8 apply only
to situations in which a point charge model in the specific cubic symmetries presented here
are applicable. Application to other symmetries and charge models requires determining the
appropriate JPDFs from suitable models.

6 Conclusions

We have used the W1-W2 parameterization of the EFG tensor to examine IHB in cubic sym-
metries and have described suitable JPDFs that accurately reproduce IHB in PAC spectra.
We have demonstrated the physical cause of IHB in PAC spectra as it arises from individual
contributions from coordinated pairings of defects near probe nuclei and its TD partner and
shown how this gives rise to a complex, spiky structure for the JPDF. We have determined
the defect concentration dependence of PAC spectra subject to IHB over a broad range of
concentrations. In all cases we examined, the skewed JPDF can be reduced to marginal dis-
tributions, P1(W1, c) and P2(W2, c) that reproduce PAC observables very well. We have
also demonstrated that the basic physics necessary to model PAC spectra comes from the
discrete and ragged assortment of peaks generated from inner shell pairings, which allows
us to conclude that precise knowledge of the JPDF is not necessary as long as the width and
peak location of the JPDF can be reasonably characterized. In particular, we have described
how the coupling between the TD and shell 2 accounts for the evolution of the JDPF with
defect concentration. We have shown that PAC-relevant parameters such as η and Vzz can
be calculated from the PDFs described here and that these calculated values are consistent
with those derived from empirical fits to G2 spectra.

While we have explicitly used a point charge model in our simulations, more sophisti-
cated methods such as density functional models could be applied but the basic conclusions
about IHB in cubic symmetries should remain. That is the effects of IHB are strongly
influenced by particular configurations of defects in the inner shells. It is not sufficient to
consider broadening only from average remote distributions of charges. The JPDF is fun-
damentally widened and distorted by these inner shell contributions, and results in more
pronounced broadening than from remote defects only. The methods we have used to char-
acterize the JPDF of cubic structures should find ready application to a variety of similar
hyperfine phenomena.
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