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Abstract The magnetite/maghemite content within iron oxide nanoparticles can be deter-
mined using the mean isomer shift (δ). However, accurate characterisation of the compo-
sition is limited by the uncertainty associated with δ. We have identified four independent
sources of uncertainty and developed a quantitative expression for the uncertainty budget.
Sources of uncertainty are categorised as follows: that from the fitting of the Mössbauer
spectrum (σfit), that of the calibration of the α-Fe reference spectrum (σcal), thermal
corrections to the spectrum due to second order Doppler shift (SODS) (σ�δ) and other exper-
imental errors (σerr). Each contribution is discussed in detail using 57Fe Mössbauer spectra
obtained from an iron oxide nanoparticle system at temperatures between 16 K and 295 K
on different spectrometers in two different laboratories.
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1 Introduction

57Fe Mössbauer spectroscopy is one of the few methods able to distinguish between mag-
netite (Fe3O4) and maghemite (γ -Fe2O3), where both the chemical shift and the presence
or absence of characteristic lines identify the respective type of iron oxide. However, some-
times the spectral parts of the two phases are not easily distinguishable, e.g., in case of
non-stoichiometric magnetite or superparamagnetic relaxation. It has been proposed that the
magnetite/maghemite content can be determined by the analysis of the mean isomer shift
[1–3].

The accuracy of the magnetite/maghemite content determination depends on the uncer-
tainty of the determined mean isomer shift. All of the above mentioned works assume
a constant uncertainty, of 0.005, 0.01 and 0.01 mm/s, respectively. However, the uncer-
tainty on the determination on the isomer shift depends strongly on the complexity of the
Mössbauer spectrum, the sharpness of the lines in the spectrum, and a number of other
parameters that have to be taken into account. Therefore, the assumption of a constant
uncertainty is inadequate and may lead to erroneous conclusions.

Different methods for determining the mean isomer shift exist, but not all are suitable.
Calculating the mean isomer shift δ as the numerical calculated mean of the Mössbauer
absorption spectrum (the first moment) is not a feasible route, because the first moment of a
Lorentzian is not well defined [4]. In addition, a slight slope in the background of the spec-
trum will introduce large errors in a numerical calculation. Instead, the mean isomer shift
can be found by fitting the spectra with sextets and doublets and subsequently calculating
the area weighted mean of the isomer shifts from all N components [1]:

δ =
∑N

i Aiδi

A
(1)

δi is the isomer shift of the i-th component with area Ai , and A = ∑N
i Ai is the total area.

In the following we will develop the uncertainty budget for the mean isomer shift
determination and illustrate the different contributions to the uncertainty with examples.

2 Experimental details
57Fe Mössbauer spectroscopy was carried out at both the Technical University of Denmark
(DTU) and University College London (UCL).

57Fe Mössbauer spectroscopy at DTU was performed using conventional constant accel-
eration spectrometers with sources of 57Co in rhodium. Calibration was carried out using
a 12.5 μm foil of α-Fe at room temperature (RT). Spectra obtained at temperatures down
to 16 K were recorded in a close cycle helium refrigerator from APD Cryogenics. The
nanoparticle system was measured as a frozen dispersion (T ≤ 250 K).

57Fe Mössbauer spectroscopy at UCL was performed at RT using a SeeCo W302
spectrometer. Spectra were recorded using a 57Co in rhodium matrix driven at constant
acceleration using a triangluar waveform, and recorded in a SeeCo W202 multi-channel
analyser (1024 channels). All spectra were folded relative to an α-Fe foil also at RT. An
example of the calibration measured at UCL is shown in Fig. 3. The nanoparticle system
was air dried over the course of a week and mixed with sucrose in a pestle and mortar to
form a paste.
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The nanoparticle used in this work was the SP02 nanoparticle system described pre-
viously in [5]. The sample consists of polystyrene spheres decorated with iron oxide
nanocrystals with a nominal size 8 nm. DC-magnetometry measurements at 300 K show
this system to be in the superparamagnetic state [5].

3 Uncertainty budget

The uncertainty associated with the mean isomer shift, σδ , can be divided up into four
contributions:

1. fitting of the Mössbauer spectrum, σfit
2. calibration of the α-Fe reference spectrum, σcal
3. post treatment of the data (e.g., taking account of second order Doppler shift, SODS),

σ�δ

4. experimental errors such as large derivations from a flat background or non-linear
velocity-channel calibration; σerr

These four contributions are uncorrelated and consequently, they can be treated indepen-
dently:

σ 2
δ

= σ 2
fit + σ 2

cal + σ 2
�δ + σ 2

err. (2)

Each contribution is described here in detail. Section 3.1 describes the procedure to
obtain the uncertainties and correlations of the fitted parameters (e.g., the areas and isomer
shifts of the spectral components). In addition, it describes how these uncertainties propa-
gate into the uncertainty in the isomer shift σfit. Section 3.2 describes how the uncertainties
in the calibration parameters are obtained, and how they propagate to σcal. Section 3.3
describes how to correct for second order Doppler shift (SODS), and how the associated
uncertainty propagates into σ�δ . Finally, other experimental errors σerr are qualitatively
discussed in Section 4.

3.1 Fitting of Mössbauer spectra

To find the mean isomer shift of a sample it is not necessary to fit with the correct physical
model. However, it is important that the samples are thin and texture-free and that areas of
the lines in the sextets are kept in ratios 3 :2 :1. If the area ratios are 3 :x :y, the mean isomer
shift of the components in the sextets will have a component proportional to Eq(3− x − y),
where Eq is the quadrupole interaction. Thus, a nonzero quadrupole interaction is only
allowed if x + y = 3. This can be satisfied by enforcing an area ratio of 3 : 2 : 1 for the three
pairs of lines in a sextet. Qualitatively, this can be explained by the fact that the quadrupole
interaction shifts the innermost four lines in the opposite direction of the two outermost
lines (see Fig. 1), and therefore the area of the innermost four lines should be equal to that
of the two outermost lines to preserve the mean isomer shift.

To calculate the mean isomer shift, the areas and isomer shifts of the N spectral compo-
nents are required as shown in (1). The parameters ( �p = A1, . . . , AN, δ1, . . . , δN ) describe,
among others, the model f (vi, �p) which is fitted to the data. It is not necessary that f (vi, �p)

describes the different Fe sites in the crystal correctly. However, f (vi, �p) should produce a
good fit to the data.

The optimal values of the parameters �p∗ are obtained by minimization of χ2 =∑
i (fi ( �p))2, where the fitting function fi ( �p) is

fi ( �p) = wi (si − f (vi, �p)) . (3)
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Fig. 1 Schematic of the
movement of the peaks in a
sextets when the quadrupole
interaction increases from 0 mm/s
(solid line) to 0.8 mm/s (dotted
line). The arrows indicates the
direction of the shift of the peaks
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Here, i is the channel number, si is the count in the i-th channel of the folded spectrum,
and wi is the weighting of the i-th data point. If the spectrum is folded around an integer or
half integer channel number the count numbers in the folded spectrum (si) are uncorrelated.
wi can in this case be calculated as wi = 1/σsi where σsi is the standard deviation. For
the nuclear events of emission and absorption of gamma rays, the uncertainty of the count
number is governed by Poisson statistics - thus the standard deviation is simply σsi = √

si .
If the spectrum is not folded over an integer or half integer channel number, the value of si
become correlated. For the correlated case the weighting is described by a matrix multipli-
cation and (3) becomes fi ( �p) = ∑

j Wij

(
sj − f

(
vj , �p))

[6]. W can be calculated as the

Cholesky decomposition of the inverse folded channel covariance matrix: WT W = C−1

(see SI).
When the fitting function is correctly scaled as described above, the covariance matrix

for the fitted parameters is found by � �p =
(
J( �p∗)T J ( �p∗)

)−1
[7]. The Jacobian matrix J is:

J( �p) =

⎡

⎢
⎢
⎣

∂f1( �p)
∂A1

. . .
∂f1( �p)
∂δN

...
. . .

...
∂fn( �p)
∂A1

. . .
∂fn( �p)
∂δN

⎤

⎥
⎥
⎦ (4)

To calculate the propagation of the uncertainties to δ, we construct the Jacobian of (1) as:

Jδ =
[

∂δ

∂A1
. . .

∂δ

∂AN

∂δ

∂δ1
. . .

∂δ

∂δN

]

=
[

δi − δ

A
. . .

δN−δ

A

A1

A
. . .

AN

A

]

(5)

The uncertainty of the mean isomer shift is then calculated by first-order error propaga-
tion [8] as:

σ 2
fit = Jδ� �pJT

δ
. (6)

3.1.1 Fitting of Mössbauer spectra - example

Figure 2a shows a Mössbauer spectrum obtained at 16 K with an asymmetric sextet with
narrow lines. The spectrum has been fitted using four sextets with Voigt line-shapes. The
widths of the Gaussians lines were scaled to represent a distribution of magnetic hyperfine
fields [9], where the hyperfine field distributions are approximated with up to two Gaus-
sian components. Fitting parameters are provided in Table S1. Although the uncertainty of
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Fig. 2 Mössbauer spectra of a SP02 nanoparticle dispersion measured at (a) T = 16 K, (b) T = 120 K, (c)
T = 250 K. (d) Mössbauer spectrum of a sample of dried SP02 particles measured at T = 295 K. The (a)-(c)
spectra have similar count numbers

(� 1 · 107), and (d) has a count number of � 7 · 107

the individual components are all larger than 0.006 mm/s, the uncertainty on the mean iso-
mer shift is only 0.002 mm/s. This is due to correlations between the fitting parameters.
For example, if the spectral area of one sub-component increases, then the area of another
sub-component must decrease to keep the total area constant. The uncertainty without corre-
lations is 0.006 mm/s, deduced by setting off-diagonal elements in the covariance matrices
to zero.

For the broader spectrum obtained at 120 K (Fig. 2b), the uncertainties on the mean
isomer shift obtained with and without correlation are 0.012 mm/s and 0.022 mm/s, respec-
tively. The positions of the individual lines have high uncertainties (Table S2), which result
in a high uncertainty if correlations are not included. When correlations between the fitting
parameters are included, the uncertainty decreases by a factor of 2.

In some cases (e.g., for some temperatures), the obtained spectrum has very broad lines
(Fig. 2c). Consequently, the determination of δ has a much higher uncertainty. The large
correlation between the spectrum and the baseline, which is reflected in a normalized corre-
lation coefficient close to 0.5 (Table S3), can partly be responsible for the large uncertainty
of the mean isomer shift. This could potentially be improved by choosing a broader veloc-
ity range or by choosing a measurement temperature where the spectrum has narrow lines.
For this case, as δ depends only weakly on the magnetite/maghemite content [2], the uncer-
tainty on the magnetite/maghemite ratio is also very high. In practise, the uncertainty on
this ratio becomes so large that the spectrum at this temperature does not provide any useful
information.



23 Page 6 of 11 Hyperfine Interact (2016) 237: 23

Table 1 The contributions to the uncertainty from the fitting σfit, calibration σcal and the SODS correction
σ�δ to 295 K, as well as the total uncertainty of the mean isomer determination σδ for spectra of SP02
nanoparticles obtained at 16 K (Fig. 2a), 120 K (Fig. 2b), 250 K (Fig. 2c) and 295 K (Fig. 2d). The magnetite
fraction, w, was calculated as in [2]

T [K] σfit [mm/s] σcal [mm/s] σ�δ [mm/s] σδ [mm/s] w [%]

16 0.0017 0.0015 0.0059 0.0063 4 ± 1

120 0.0122 0.0015 0.0046 0.0131 5 ± 6

250 0.0704 0.0015 0.0016 0.0704 41 ± 33

295 0.0122 0.0016 0.0000 0.0123 9 ± 6

Table 1 (Table S5) summarise the obtained uncertainties for all four spectra including
(excluding) correlations.

3.2 Calibration of the α-Fe reference spectrum

In addition to the uncertainty in the determination of the isomer shift from the fitting of
the spectra described above, the translation from channel number to energy through the
calibration adds an additional source of uncertainty. The energy/velocity of the i-th channel
of the data is vi = (i−c0) · k, where c0 and k are the zero channel and calibration constant
obtained from a reference spectrum (e.g. α-Fe foil). The calibration of the spectra introduces
an uncertainty on velocity through the calibration values c0 and k. A covariance matrix�c0,k

with non-zero off-diagonal elements describes the correlations and uncertainties of c0 and
k as

�c0,k =
[

σ 2
c0

σc0,k

σc0,k σ 2
k

]

(7)

Here, σ 2
c0
and σ 2

k are the variances of the zero channel and calibration constant respectively,
and σc0,k is their covariance.

To obtain the calibration values, Lorentzian functions are fitted to all twelve peaks in the
unfolded reference spectrum. The fitted position of the twelve Lorentzians cn can be related
to the folding channel cf , zero channel and calibration constant by:

cl = El

k
+ c0 for 1 ≤ l ≤ 6 (8a)

cl = −E13−l

k
+ c0 + cf

2
for 7 ≤ l ≤ 12, (8b)

where El is the energy of the l-th line in the reference spectrum. The parameters c0, k, cf

and their covariance matrix can be found from these equations using linear regression. Note
that this method gives a non-integer folding channel.

As a consequence of the non-integer folding channel, folding of the spectrum requires
interpolation of the data points. Splitting the folding channel into the integer part cf and the
fractional part a, the folded spectrum is expressed as:

si = ni + (1 − a) ncf −i + ancf +1−i for 1 ≤ i ≤ cf

2
, (9)

where ni is the count number of i-th channel in the unfolded spectrum.
To find the uncertainty propagated to δ from the calibration uncertainties (1) has to be

expressed using the calibration constants. Therefore, δl = (cl−c0)·k is inserted in (1), where
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Fig. 3 a The unfolded spectrum of α-Fe foil with fitted Lorentzian functions to all peaks. b The folded α-Fe
foil spectrum

cl is the channel number of the isomer shift of component l. This enables us to calculate the
Jacobian:

Jδ =
[

∂δ

∂c0
,
∂δ

∂k

]

=
[

−k,
δ

k

]

(10)

The contribution from the calibration to the uncertainty is then calculated by first-order
error propagation as

σ 2
cal = δ

2

k2
· σ 2

k + k2 · σ 2
c0

− 2kδ σ k,c0 . (11)

3.2.1 Calibration - example

Figure 3a shows the unfolded spectrum of an α-Fe foil calibration sample. Using (3.2), the
calibration constants were calculated to be k = 0.04860 mm/s, c0 = 254.37, and cf =
1025.14 and the covariance matrix had the following values: σ 2

k = 2.8 ·10−10mm2/s2,
σ 2

c0
= 1.3 · 10−3, σc0,k = 2.7 · 10−23mm/s. Using the values of the obtained covariance

matrix, the contribution to the uncertainty from the calibration was obtained as described
above. Assuming zero isomer shift, as is expected for α-Fe, the uncertainty on the isomer
shift was 0.0017 mm/s.

The α-Fe spectrum was folded using the obtained calibration values (Fig. 3b). Fitting the
folded calibration spectrum with a sextet with the quadrupole interaction fixed to zero, we
obtained an isomer shift of 0.0005 ± 0.0017 mm/s.

3.3 Second order Doppler shift correction

If the measured mean isomer shift is compared to a reference measurement performed
at another temperature, a correction to the mean isomer shift is needed. In this case the
temperature dependence of the reference compound must be known.

For the simplest case, the temperature dependence is only governed by the second order
Doppler shift (SODS). In this case the correction can be expressed using the Debye model
with a single parameter, the Debye temperature TD of the compound:

SODS(T) = −9kBT

2mc

[(
T

TD

)3 ∫ TD/T

0

x3

ex − 1
dx

]

. (12)
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Fig. 4 a Change in the isomer shift �δ due to the SODS correction of the isomer shift from Tm to 295
K. The dotted lines are �δ ± σ�δ . b Uncertainty in the SODS correction σ�δ . A Debye temperature of
TD = 416 K ± 17 K is used in the calculation

Here, m is the mass of the iron nucleus, c is the speed of light and kB is the Boltzmann
constant.

To correct the isomer shift for the difference between the measured temperature Tm to
the reference temperature Tr, we calculate the change in the isomer shift:

�δ = −9kB
2mc

[

Tr

(
Tr

TD

)3 ∫ TD/Tr

0

x3

ex − 1
dx − Tm

(
Tm

TD

)3 ∫ TD/Tm

0

x3

ex − 1
dx

]

(13)

The Debye temperature has an uncertainty, which propagates through (13) to an uncerta-

inty in�δ. This propagation is given as: σ�δ =
∣
∣
∣ �δ
∂TD

∣
∣
∣ σTD . The derivative of�δ with respect

to the Debye temperature is calculated using the Leibniz integral rule and the product rule:

∂�δ

∂TD
= −9kB

2mc

[

− 3

(
Tr

TD

)4 ∫ TD/Tr

0

x3

ex − 1
dx + 3

(
Tm

TD

)4 ∫ TD/Tm

0

x3

ex − 1
dx (14)

+ 1

eTD/Tr − 1
− 1

eTD/Tm − 1

]

= −3
�δ

TD
− 9kB

2mc

(
1

eTD/Tr − 1
− 1

eTD/Tm − 1

)

(15)

3.3.1 Second order Doppler shift correction - example

The calculated mean isomer shift often has to be compared to the mean isomer shifts of
some reference compounds. However, there could be differences in the experimental details
between the reference compounds and the sample. If the reference compounds consist of
large crystallites, spectra with narrow lines can be obtained at RT. When measuring mag-
netic nanoparticles showing superparamagnetic behaviour at RT, it might be necessary to
cool the sample to obtain a spectrum with a low uncertainty of the mean isomer shift (cf.
Section 3.1.1).

Figure 4a shows the correction needed when comparing a sample measured at Tm
with reference compounds measured at RT for a SODS with a Debye temperature of
TD = 416 K ± 17 K (typical for magnetite, uncertainty determined from data not shown).
Thus, the mean isomer value for the sample has to be corrected by up to −0.12 mm/s to
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allow for comparison with a reference sample measured at 295 K. The correction introduces
an additional uncertainty of up to 0.006 mm/s (Fig. 4b).

At high temperatures (T � 150 K), the mean isomer correction depends approximately
linearly on the temperature, �δ = (6.6 · 10−4 mm/(sK)) �T . Thus, an uncertainty on
the temperature σT will propagate into an uncertainty on the mean isomer shift: σ�δ =
(6.6·10−4 mm/sK) σT . A seasonal change in temperature of more than 5 K is not unusual in
non-air conditioned laboratories. The uncertainty due to a variation in the definition of RT
can result in uncertainties of more than 0.003 mm/s. Also night-to-day temperature variation
can result in broadening of the spectrum and/or in an uncertainty of the mean isomer shift
determination.

A comparison of the two measurements shown in Fig. 2a,b demonstrates the need
to correct for the SODS. The mean isomer shift of the 120 K spectrum can be cor-
rected to 16 K using (13): The corrected mean isomer shift is 0.453 ± 0.013 mm/s,
well within the measured value of 0.466 ± 0.002 mm/s obtained from the spectrum in
Fig. 2a. In this case the uncertainty of the SODS correction is small compared to the
other contributions and only slightly increases the total uncertainty. However, correcting
the 16 K spectrum (Fig. 2a) to 295 K, the uncertainty triples to a significant value of
0.006 mm/s.

4 Discussion and conclusion

We have shown how the uncertainties from the fitting, the calibration and the tempera-
ture calibration propagate to the total uncertainty of the mean isomer shift. The uncertainty
originating from experimental errors σerr is difficult to quantify in a generic way and such
approaches may result in erroneous conclusions. Thus, it is important when comparing the
mean isomer shifts to ensure that the Mössbauer spectrum has a flat non-sloping background
in addition to obtaining sufficient counting statistics (see an example in supplementary
information).

Contamination of the sample with other iron containing compounds may introduce a
systematic change of δ, and if pure magnetite and maghemite phases are assumed, a contam-
ination will introduce a systematic error on the ratio between these two phases determined
from the mean isomer shift.

Table 1 compares the different contributions to the uncertainty on the mean isomer deter-
mination for three spectra of a SP02 nanoparticle dispersion obtained at 16 K, 120 K and
250 K and one spectrum of a SP02 nanoparticle powder obtained at 295 K. The SODS have
been corrected to 295 K for all spectra. It is seen that for the spectrum obtained at 16 K, the
SODS correction dominates, whereas for the higher temperatures the uncertainty in the fit-
ting of the spectrum is largest. Thus, a minimum in the mean isomer uncertainty must exist
at a temperature between 16 K and 120 K.

For all cases, the uncertainty introduced by the calibration is small and has only a minor
impact on the total uncertainty of δ.

The total absorption decreases with increasing temperature due to the temperature depen-
dence on the recoil-free fraction of absorbed gamma rays. Together with the broadening of
the lines for the nanoparticle dispersion (Fig. 2a-c) this results in an increasing mean iso-
mer shift uncertainty. The decrease in the total absorption for the 295 K sample, due to the
recoil-free fraction, is compensated by the fact that the spectrum is almost completely col-
lapsed into a doublet (Table S4). This, and possibly also a higher Fe concentration in the
powder sample, results in a larger maximal absorption. The low uncertainty observed for
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the 295 K sample can be explained by the larger absorption as well as the narrow line of the
doublet.

Table 1 also shows the magnetite content calculated using the expression provided in
[2], which also includes the uncertainty as deduced from the mean isomer shift. The uncer-
tainty in the mean isomer shift for the broad-line 250 K spectrum results in a magnetite
content uncertainty of ± 33 %. Therefore, in practice the magnetite/maghemite content
is close to being undetermined based on this spectrum. The lower uncertainties in the
mean isomer spectra obtained at 16 K, 120 K and 295 K make these spectra suitable for
magnetite/maghemite determination. The magnetite fraction values determined from these
spectra agree within their respective uncertainties.

This agreement indicates, since the samples were measured in two different laboratories
and using different sample preparation (freeze dried powder and frozen dispersion), that
sources of experimental error are insignificant. For example, we do not observe oxidation
upon air drying of the liquid sample. Finally, we note that the definition of room temperature
is relevant. A variation of 5 K in the definition of RT causes a variation of the mean isomer
shift corresponding to a 1.5 % variation in the magnetite content.

In contrast to other studies using a constant uncertainty for the isomer shift, we have
explored the different origins for the uncertainty. Furthermore, we have summarised the
mathematical background in order to assess the different contributions quantitatively.
The mathematical models have been applied to Mössbauer studies performed on mag-
netite/maghemite nanoparticles with the aim to derive the total uncertainty of the isomer
shift in these systems.
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