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which exhibit naturally warm and oligotrophic 
conditions. Local gradients of temperature and 
nitrate concentration allowed to test the hypothesis 
that microbial litter decomposition is stimulated by 
nitrate and temperature. To the contrary, we expected 
the warmer downstream sites to exhibit lower aquatic 
hyphomycete diversity due to high temperature. 
Contrary to our expectations, diversity increased 
along both nitrate and temperature gradients, while 
decomposition process was stimulated by nitrate but 
not by temperature. One implication of these findings 
is that warm water in the tropics is not necessarily 
associated with low aquatic hyphomycete diversity. 
Future studies should investigate the effect of 
temperature using broad and independent gradients of 
temperature (latitude, altitude and season).

Keywords  Fungi · Sporulation · Foam · 
Biodiversity · Carribean

Introduction

Aquatic hyphomycetes are a polyphyletic group of 
fungi that share several ecological and morphological 
features (Belliveau & Bärlocher, 2005). They 
often occur on dead leaves and produce hyaline, 
branched, tetraradiate or sigmoid conidia that are 
spread by stream flow and handle dispersal and 
asexual reproduction (Bärlocher, 2009). They 
are able to decompose lignin and cellulose, and 
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are thereby considered to be the main microbial 
decomposers of plant litter in stream ecosystems, at 
least under temperate latitudes (Gessner & Chauvet, 
1994). However, their diversity, ecological role 
and functional importance in streams located in the 
tropics remain unclear (Graça et al., 2016).

Several environmental parameters are known 
to influence aquatic hyphomycete activity and 
diversity. Among them, temperature and nitrogen 
(N) availability received considerable attention, 
since their current increases are major threats to 
freshwater ecosystem quality and biodiversity 
(Millenium Ecosystem Assessment, 2005). The 
influence of nitrate availability on microbial litter 
decomposition was extensively studied (see Ferreira 
et al., 2015 for a meta-analysis). It generally follows 
a Michaelis–Menten fit (Ferreira et  al., 2006; Jabiol 
et al., 2019), which means that litter decomposition is 
stimulated by nitrate at low (limiting) concentration. 
At higher nitrate concentration, microbial 
decomposers become limited by the availability of 
other nutrients or by carbon (C) quality (Jabiol et al., 
2019), and adding more nitrate does not further 
increase decomposition rates. However, the vast 
majority of the studies published so far focused on 
temperate regions, and it is not clear if the patterns 
described above hold true in tropical streams (Ferreira 
et al., 2015; Camelo et al., 2022). Positive effects of 
nitrate availability on aquatic hyphomycete species 
richness were also described in microcosm (Jabiol 
et al., 2018), stream enrichment (Gulis & Suberkropp, 
2004) and correlative studies (Pérez et  al., 2013). 
However, the reasons for this pattern remain unclear. 
It could reflect a better detection of rare species 
(Gulis & Suberkropp, 2004) or a faster succession of 
species on leaf litter (Jabiol et al., 2018) rather than 
an enlargement of the species pool.

Temperature also influences processes and com-
munities. It stimulates the metabolism of poïkilo-
therm organisms (Brown et al., 2004) and accelerates 
aquatic hyphomycete activity (e.g., microbial litter 
decomposition, respiration and conidia production) 
accordingly. Indeed, positive effects of temperature 
on microbial litter decomposition were shown from 
microcosm studies (e.g., Geraldes et  al., 2012; Mar-
tinez et al., 2014; Jabiol et al., 2020), field warming 
experiments (e.g., Ferreira & Canhoto, 2015) or cor-
relative studies along altitudinal (e.g., Taylor & Chau-
vet, 2014) or latitudinal gradients (Irons et al., 1994; 

Boyero et  al., 2011) (see Amani et  al., 2019 for a 
meta-analysis).

Finally, temperature drives aquatic hyphomycete 
community structure and composition as well. Several 
experiments concluded that the diversity of aquatic 
hyphomycetes could be lower at high temperature 
(Bärlocher et  al., 2008; Geraldes et  al., 2012). This 
result matches the decrease in conidia production 
above 15–25 °C (depending on the species) observed 
in several temperate strains (Chauvet & Suberkropp, 
1998; Dang et al., 2009), as well as the abrupt decline 
of the number of sporulating species above 25  °C 
reported in an experiment carried out on fungi from 
Indian streams (Rajashekhar & Kaveriappa, 2000). 
Accordingly, several cross-latitudes comparisons 
concluded that aquatic hyphomycete diversity 
decreases from intermediate (i.e., temperate) to low 
(i.e., tropical) latitude (e.g., Ferreira et  al., 2012; 
Jabiol et al., 2013; Seena et al., 2019; Barreto et al., 
2023). Again, data on tropical streams are still too 
patchy, and drawing general patterns remains a matter 
of conjecture (Duarte et al., 2016; Graça et al., 2016).

In this study, we tested the effect of temperature 
and nitrate availability on aquatic hyphomycete 
communities and activity in tropical streams of 
Guadeloupe. Twelve study sites were selected based 
on temperature and nitrate availability gradients 
provided by altitude and anthropogenic disturbance, 
respectively. According to existing knowledge (see 
above), we expected that both temperature and nitrate 
availability would influence aquatic hyphomycete 
community composition and stimulate aquatic 
hyphomycete activity. To the contrary, a decline of 
aquatic hyphomycete species richness was expected 
at high temperature.

Methods

Study sites

Litter decomposition and fungal communities were 
described in three streams distributed along a gradi-
ent of anthropogenic disturbance (Table  1) in Gua-
deloupe island (French West Indies). All streams are 
located in the Basse-Terre Island (Fig. 1), where most 
of the streams of Guadeloupe are located. Basse-
Terre is a ca. 850  km2 volcanic island that culmi-
nates at 1468 masl (La Soufrière volcano). Streams in 
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Basse-Terre take their source in forested areas belong-
ing to the Core zone of the Guadeloupe National 
Park. Because of the topography, they are relatively 
short (39.5  km for the longest), torrential and well-
oxygenated even in their lower parts, where they are 

impacted by agriculture and urbanization to various 
extents before flowing into the sea (Fig.  1). Three 
streams were selected to encompass different anthro-
pogenic contexts and be representative of Basse-Terre 
streams (Fig.  1 and Table  1). On each stream, four 

Table 1   Description of the three catchments. Land-use rela-
tive cover was determined using the Open Data governmen-
tal sources Karucover (https://​carto.​karug​eo.​fr/1/​KaruC​over_​

produ​it.​map) and BD Carthage® (Base de Données de Cartog-
raphie Thématique des Agences de l’Eau, http://​profe​ssion​nels.​
ign.​fr/​bdcar​thage)

WWTP Wastewater Treatment Plant and PE Population Equivalent

Grande Rivière de Vieux-Habitants Petite Rivière à Goyave Grande Rivière à Goyaves

Total stream length (km) 18.9 14.9 38.7
Catchment surface (km2) 29.6 32.5 158.3
% Forested 96.0 80.0 73.8
% Agriculture 1.1 13.9 18.7
% Urbanized 2.9 6.1 7.5
Downstream effluent WWTP, 1800 PE, compliant with legal 

standards
WWTP, 8560 PE, not 

compliant with legal 
standards

Industrial (distillery)

Fig. 1   A Location of Guadeloupe, B map of Guadeloupe indicating the boundaries of the three studied catchments and C land use in 
the three studied catchments

https://carto.karugeo.fr/1/KaruCover_produit.map
https://carto.karugeo.fr/1/KaruCover_produit.map
http://professionnels.ign.fr/bdcarthage
http://professionnels.ign.fr/bdcarthage
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sites (numbered from 1 to 4) were selected along the 
altitudinal gradient. Site 1 was located in a preserved 
(Core zone of the national park) forested upstream 
part (altitude > 200 m), while the three others belong 
to the buffer zone of the National Park. Site 2 was 
located at an intermediate altitude (ca. 50–100  m), 
and sites 3 and 4 were located in lowlands (altitude 
< 20 m) right upstream (site 3) and downstream (site 
4) of domestic (wastewater treatment plant) or indus-
trial (industrial distillery) effluents. In each site, pH, 
conductivity and oxygen saturation were analyzed 
in situ using a HQ40d probe (HACH, Loveland, CO, 
USA). Moreover, 50-mL samples of water were fro-
zen at − 20 °C before analyzing for ion concentration 
using ion chromatography. Chemical analyses and 
in situ measurements were performed on three occa-
sions for each site. Finally, water temperature was 
continuously monitored (each 1/2 h) with HOBO data 
loggers (HOBO UA-001–64, Bourne, MA, USA).

Litter decomposition

Leaf litter decomposition rates were determined using 
litter bags made of 0.5-mm mesh (ca. 15 × 20 cm) to 
quantify microbial decomposition rates (Bärlocher, 
2020). Each litter bag contained 3  g of naturally 
abscised bamboo litter (Bambusa vulgaris Schrad.) 
that was collected close to the Grande Rivière à 
Goyaves (close to sites 3 and 4) and air-dried before 
the experiment. Four 3-g batches of dried litter were 
grinded and analyzed for elemental composition. 
C and N concentrations were determined using a 
CHN analyzer (Flash 2000 Thermo Scientific) and 
phosphorus (P) by spectrometry after oxidation 
by persulfate in acidic conditions. A fiber analysis 
following Goering & Van Soest (1970) protocols 
was also performed on three batches of litter. Litter 
composition was expressed as % dry mass.

From April 5 to 7, 2022, four litter bags were 
deployed in each of the 12 study sites and fastened 
on iron bars to anchor them on the streambed. A 
total of eight out of 48 litter bags were lost during 
the experiment, either due to a moderate flood 
that occurred on April 19 or to vandalism. On two 
sites (site 2 of the Grande Rivière à Goyaves and 
site 3 of the Petite Rivière à Goyave), only two out 
of four replicates remained. Either three or four 
replicates could be retrieved on the 10 other sites. 
After ca. 3 weeks (± 1 d) in the streams, litter bags 

were transported to the laboratory. Litter was rinsed 
using demineralized water, and 10 leaf disks were 
cut from each litter bag using a cork borer (diameter 
10  mm) for fungal sporulation analysis. Litter was 
then dried at 60  °C for 48  h and weighed to the 
nearest 0.01  g. Litter decomposition rates (dry 
mass) were calculated using the inverse exponential 
relationship described in Bärlocher (2020) and 
expressed in day−1.

Fungal communities

Aquatic hyphomycete communities were studied 
following two protocols: sporulation from the 
bamboo leaf litter (leaf baits) and foam collection 
(Descals, 2020). Sporulation was induced using the 
10 disks cut from the litter. They were immersed in 
glass Petri dishes containing 20 mL of demineralized 
water and put under constant agitation (ca. 100 rpm) 
in a room with air conditioning set at 25 °C. After 
48  h, conidia suspension was fixed with formalin 
(2% final concentration) in Falcon tubes, and leaf 
disks were dried at 60  °C for 48  h and weighed 
to the nearest 0.01  mg. A 5-mL aliquot of each 
conidia suspension was filtered over a membrane 
filter (5-µm porosity), stained with Trypan blue 
(5% Trypan blue in 60% lactic acid) and set on a 
microscopic slide. Additionally, two foam samples 
were collected in each site when possible (i.e., in 
all sites but the site 4 on Grande Rivière de Vieux-
Habitants). Foam was collected using a piece of 
0.5-mm mesh net, transferred in a Petri dish and 
fixed with a few drops of FAA (formalin, ethanol 
and acetic acid). The resulting suspension was then 
poured in 2-mL tubes. Foam samples were filtered 
following the same procedure than above with 1-mL 
aliquots to get a semi-quantitative data. The two 
samples were pooled together to reach a sufficient 
amount of conidia in each sample. Conidia were 
counted and identified under the microscope at 
× 200 using identification keys from temperate and 
tropical areas (Santos-Flores & Betancourt López, 
1997; Chan et  al., 2000; Fuiza et  al., 2017; Gulis 
et al., 2020). Sporulation rate was expressed as the 
number of conidia per mg of litter (dry mass) per 
day.
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Data analysis

As a first step, we compared microbial litter 
decomposition rates, fungal diversity and species 
evenness in foam samples as well as sporulation 
rates between sites using ANOVAs with site location 
nested in stream identity. For this comparison, we 
used rarefied species richness for 90 identified conidia 
to account for a different number of conidia from one 
site to another. The 90 conidia threshold allowed us 
to calculate a rarefied species richness in all the study 
sites but 1, where only 35 conidia were found and that 
were excluded from the analyses. Finally, the Pielou’s 
index was calculated as a measure of evenness. Conidia 
densities in sporulation samples were extremely low 
(half of the samples contained less than 10 conidia and 
no more than 2 species), which makes the calculation 
of rarefied richness and ecological distances irrelevant. 
For this reason, the analyses of community structure 
and composition were performed on foam samples 
only.

As a second step, we assessed the variations of the 
same parameters along the gradients of temperature 
and nitrate concentrations using ANCOVAs with 
stream identity as factor. A two-level factor also 
accounted for the presence/absence of the wastewater 
effluents. Sporulation rates were ln-transformed for 
these analyses. Model simplification was performed 
by deleting non-significant variables and eventually 
grouping levels of factors, and the final model was 
selected using the AIC criteria.

Fungal community composition was analyzed from 
foam samples and compared between streams and 
sites using an analysis of similarity (ANOSIM) with 
either site or stream identity as factors. ANOSIMs 
were coupled with a Non-Metric Multidimensional 
Scaling (NMDS) for illustrative purpose. Moreover, 
similarities between communities were assessed 
using a hierarchical clustering analysis using Ward’s 
method. NMDS, ANOSIM and hierarchical clustering 
were performed using a Bray–Curtis distance after 
Hellinger’s transformation of the community matrix. 
All analyses were performed using R.4.0.3 (R core 
team, 2020) with packages vegan and MASS.

Results

Stream water and litter physical and chemical 
properties

Stream physical and chemical properties are 
summarized in Table  2. Overall, they were similar 
between streams, except for Ca2+ concentration 
which was higher in the Petite Rivière à Goyave. 
Nutrient concentrations were very low, with 
N-NO3

− concentration ranging from 1.1 to 45.3  µg 
L−1 but exhibited variations across streams and along 
the longitudinal gradient. They were the highest at the 
downstream sites, in particular in the site 4 impacted 
by wastewater. For instance, N-NH4

+ concentration in 
the Petite Rivière à Goyave was ca. 10 × higher below 
than above the wastewater treatment plant. Water was 
saturated with oxygen (Table  2) except downstream 
of the industrial effluents on the Grande Rivière à 
Goyaves. Temperature increased with decreasing 
altitude, with a 4.5–5  °C gradient from sites 1 to 4. 
Some data loggers were lost during the experiment, 
and temperature data are missing for sites 1 and 4 
on the Grande Rivière de Vieux-Habitants. Initial 
bamboo litter CNP composition (N = 4) was 38.76% 
C (± 3.30 SD), 1.21% N (± 0.10 SD) and 0.042% P 
(± 0.011 SD). It contained 18.52% of lignin (± 0.27 
SD) and 28.29% of cellulose (± 0.49 SD) based on 
fiber analysis (N = 3).

Aquatic hyphomycete community composition

A total of 44 species (or morphospecies) were 
found in foam samples (Online Resource 1; 
Table  3), with species richness ranging from 4 to 
25 depending on the site. In comparison, sporula-
tion samples were much less diverse, with a total 
of 17 species and species richness between 1 and 
11 depending on the site. According to ANOSIM, 
aquatic hyphomycete communities were not sig-
nificantly different between streams (R = − 0.014; 
P = 0.482), but varied between sites along the 
altitudinal (i.e., temperature) gradient (R = 0.362; 
P = 0.007). According to Fig.  2, communities in 
upstream sites (site 1 and eventually site 2) were 
similar among streams. They were dominated by 
a few species such as Triscelophorus acumina-
tus Nawawi, Triscelophorus monosporus Ingold 
and an unidentified Campylospora species, which 
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accounted together for 77–92% of total abun-
dances depending on the stream. In the down-
stream sites of the three streams, Tricladium angu-
latum Ingold was among the dominant species 
(35–72% of total abundance) while it was almost 

absent from upstream sites. One downstream site 
appeared dissimilar from others (site 4 in Petite 
Rivière à Goyave), but exhibited low conidia den-
sity (35 counted conidia) and species richness (four 
species).

Table 3   Aquatic 
hyphomycete species list. 
The column “neotropics” 
provides indication if 
the species was reported 
before in the neotropics 
according to the following 
literature: Santos-Flores & 
Betancourt-López (1997), 
Fiuza et al. (2017), Smits 
et al. (2007), Bärlocher 
et al. (2010), Mathuriau 
& Chauvet (2002), 
Schoenlein-Crusius & 
Grandi (2003), Jabiol et al. 
(2013) and do Nascimiento 
et al. (2021). It also 
indicates the country or 
region where observations 
were made: (Br: Brazil, 
Co: Colombia, Cu: Cuba, 
Eq: Equator, FG: French 
Guyana, Ja: Jamaica, Me: 
Mexico, Pa: Panama, Pe: 
Peru, PR: Puerto Rico, DR: 
Dominican Republic and 
Ve: Venezuela). Gray cells 
indicate where species were 
found in foam samples. 
Dots indicate the species 
occurrence in sporulation 
samples. UN in the 
abbreviated species names 
accounts for “Unidentified”
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Nitrate and temperature effects on aquatic 
hyphomycetes

Average litter decomposition rates ranged from 
0.0097  d−1 (± 0.0007 SD) to 0.0271  d−1 (± 0.0027 
SD) (Fig. 3A). As shown in Fig. 4A and B, decom-
position rates were significantly stimulated by nitrate 
availability but only weakly by temperature. It was 
inhibited by the wastewater in two out of the three 
streams with a 33 and 51% decrease in Petite Rivière 
à Goyaves and Grande Rivière à Goyave, respectively.

Fungal sporulation rates were low and ranged 
from 0.05 conidia d−1  mg−1 litter dry mass (± 0.07 
SD) (site 1 of the Petite Rivière à Goyave) to 2.64 
conidia d−1  mg−1 litter dry mass (± 0.99 SD) (site 3 
of the Grande Rivière à Goyaves) (Fig. 3B). Contrary 
to decomposition rates, no effect of temperature or 
nitrate availability was found (Fig. 4C and D), which 
was probably due to the high variability of sporulation 
rates between replicates. Yet, a marginally significant 
effect of wastewater was found despite this variability 
and suggests that conidia production was inhibited by 
wastewater.

Finally, rarefied species richness and evenness 
based on foam samples were the lowest in the most 
upstream sites within each stream (Fig. 3C and 4D). 

Rarefied species richness but not evenness increased 
significantly along both nitrate availability and 
temperature gradients (Fig.  4E and F). The nitrate 
effect, though, was significant only when including 
a stream effect. This accounts to a significantly 
lower aquatic hyphomycete species richness in the 
Petite Rivière à Goyave irrespective of its nitrate 
concentration. We did not find any wastewater effect 
on species richness, but this result might be non-
representative since foam sample was excluded from 
rarefied richness data (less than 35 conidia) in one of 
the wastewater sites.

Discussion

A first finding of this study is that the effect of 
nitrate on microbial litter decomposition and aquatic 
hyphomycete communities was broadly consistent 
with the previous knowledge—mostly based on 
temperate experiments. The ca. 1.8 × increase in 
litter decomposition along our moderate nitrate 
concentration gradient is largely in accordance with 
the previous results, which predict a limitation of 
microbial leaf litter decomposition below ca. 100 µgN 
L−1 (Ferreira et  al., 2006; Jabiol et  al., 2019). This 

Fig. 2   Non-Metric Multidimensional Scaling A and hierar-
chical cluster analysis B based on aquatic hyphomycete com-
munities from foam samples. In A, arrows link together the 
sites along each stream, with the arrow indicating the down-
stream direction. It is dotted on the Grande Rivière de Vieux-
Habitants because site 3 is missing. Abbreviations of species 

names are provided in Table 3. In B, the dotted line indicates 
the threshold used to determine the clusters shown in A. Black: 
Grande Rivière à Goyaves, gray: Petite Rivière à Goyave and 
white: Grande Rivière de Vieux-Habitants. Dashed ellipses 
indicate the clusters identified by hierarchical clustering
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concentration is more than 2 × higher than the 
highest N-NO3

− concentration we reported across 
our study sites (i.e., 45.3 µg L−1). Nitrate availability 

also correlated positively with aquatic hyphomycete 
species richness. However, as pointed out in the 
previous studies, it is impossible to determine if the 

Fig. 3   Mean decomposition, sporulation rates and rarefied 
species richness and evenness from foam samples in the 12 
study sites. Error bars are standard errors. In A, stars indicate 
sites where decomposition is statistically different from the 

other sites within the same stream (Tukey test P < 0.05). A bar 
in C and D is lighter to indicate a conidia density lower than 
the 90 conidia threshold used to calculate rarefied species rich-
ness
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Fig. 4   Relationships 
between biological vari-
ables (litter decomposition, 
sporulation rates, fungal 
rarefied species richness 
and evenness) and stream 
nitrate concentration and 
temperature. A regression 
curve is provided when 
significant. The statistical 
results are provided for the 
variables included in the 
final model after model 
simplification. Black: 
Grande Rivière à Goyaves, 
gray: Petite Rivière à 
Goyave and white: Grande 
Rivière de Vieux-Habitants. 
Stars indicate the sites 
impacted by wastewater 
when its effect was signifi-
cant
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limiting nutrient availability actually narrowed the 
species pool, or if it inhibited the conidia production 
for some species that thus remained unnoticed (Gulis 
& Suberkropp, 2004). The previous studies suggested 
that low litter decomposition rates occur in—at 
least some—tropical streams due to low nutrient 
availability (Gonçalves et  al., 2007; Medeiros et  al., 
2015), which is a common feature of tropical streams 
due to intensive weathering (Boulton et  al., 2008). 
To the contrary, in a recent microcosm experiment 
(Camelo et  al., 2022), providing nutrients failed 
to stimulate microbial decomposition rates. The 
reason for this discrepancy between our results and 
this microcosm study is unclear. It is possible that 
decomposition in the study by Camelo et  al. (2022) 
was constrained by the availability of one or several 
other nutrients that were not limiting along our nitrate 
gradient.

Temperature effects were more surprising and 
contrary to our hypotheses. First, litter decomposition 
was not clearly stimulated along our 5 °C temperature 
gradient. Though, positive effects of temperature on 
litter decomposition are well-documented (Amani 
et  al., 2019), including along altitudinal gradients 
(e.g., Fabre & Chauvet, 1998). For instance, a positive 
effect of temperature (ca. 6  °C) along an altitudinal 
gradient was reported by Taylor & Chauvet (2014), 
but was removed when expressing decomposition 
rates per degree-days. Results by Follstad Shah 
et al. (2017) even suggest that temperature effect on 
decomposition rates could be stronger in tropical 
than in temperate streams, and predict a 10% increase 
in litter decomposition for each 1  °C rise. This was 
clearly not the case in our study, maybe because 
nutrient limitation lowered the apparent effect of 
temperature on the decomposition process (Cross 
et  al., 2015). This could occur, for instance, if 
aquatic hyphomycete lacks the necessary amounts of 
nutrients to increase the synthesis of litter degrading 
enzymes.

It is also possible that the variations of community 
composition masked the effect of temperature. 
Species found in upstream (i.e., colder) sections of 
the stream could be more efficient decomposers than 
the species found downstream, because leaf litter is 
a more significant resource for these headwater food 
webs. Species composition of communities actually 
varied along our altitudinal gradient, following 
common patterns between streams. However, 

several studies suggest that temperature could be 
largely involved in aquatic hyphomycete species 
distribution along latitudinal (Seena et  al., 2019) or 
seasonal (Suberkropp, 1984) gradients, and reflect 
species thermal preferences. This is supported by 
the presence in our upstream sites of several species 
that are also common in temperate streams, such as 
Alatospora acuminata Ingold, Anguillospora crassa 
Ingold or Tetracladium marchalianum de Wild. 
Together with species composition, community 
structure also varied along the longitudinal gradient. 
Foam samples contained higher amounts of conidia 
in the most upstream sites, which increased the 
probability of observing rare species. However, they 
were dominated by a few species, and both evenness 
and rarefied species richness were consequently low. 
At lower altitude, conidia densities were lower, but 
higher rarefied species richness suggests that the 
species pool could be wider than upstream.

This result is contrary to our expectations and to 
the hypothesis that high temperature limits aquatic 
hyphomycete diversity within the tropics (Barreto 
et al., 2023). In fact, the species richness we observed 
does not support the general expectation that aquatic 
hyphomycete communities are less diverse in tropical 
than in temperate streams. Rather, it is broadly 
comparable to temperate richness levels according 
to several surveys using similar methodologies 
(i.e., foam collection) and sampling effort (e.g., 
Wood-Eggenschwiler & Bärlocher, 1983; Chauvet, 
1990)—though a higher number of species were 
also reported in Portugal (Pascoal et  al., 2005). 
Most of the primary research that concluded on the 
lower aquatic hyphomycete richness at low latitude 
was based on leaf baits (i.e., conidia produced from 
leaf litter) (Ferreira et  al., 2012; Jabiol et  al., 2013; 
Barreto et  al., 2023). It is possible that relying on 
this methodology in tropical streams leads to an 
underestimation of aquatic hyphomycete species 
richness, since the species richness in our samples 
was 3 × higher in foam than in bamboo leaf baits. 
Similar discrepancies between methods were found 
by Maddodi et al. (2008) and Iqbal (1994) in tropical 
streams of India and Pakistan (respectively), while 
Wood-Eggenschwiler & Bärlocher (1983) reported 
more comparable levels of diversity between methods 
(similar to a 1.75 × higher richness in water and foam 
than in leaf baits).
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Graça et al. (2016) suggested that tropical aquatic 
hyphomycetes could invest less energy into spore pro-
duction compared with temperate species. Low spor-
ulation rates could result in low aquatic hyphomycete 
diversity when assessed at the leaf scale at a single 
time (leaf baits), even if the species pool at the stream 
scale (as assessed from foam) is high.

Huge spore production can provide a competitive 
advantage when resource availability is pulsed 
(litterfall) and short-lived, as in temperate streams. 
In tropical streams, litterfall is less seasonal, and 
litter usually decomposes more slowly because of 
high lignin and tannins concentrations (Boyero 
et  al., 2017). The selection pressure could be lower 
on dispersal and colonization efficiency (i.e., 
sporulation), but stronger on enzymatic capabilities 
and resistance to litter secondary metabolites.

Finally, though it was not the primary goal of our 
study, we could assess the effect of different effluents 
on leaf decomposition and aquatic hyphomycete 
diversity. Two effluents in particular strongly 
inhibited leaf decomposition (by 33 and 51%). They, 
respectively, originate from a food-processing factory 
(distillery) and a high capacity (8560 population 
equivalent) domestic wastewater treatment plant, 
which was qualified as non-compliant with legal 
standards by the French Ministry of Ecological 
Transition. By contrast, the 3rd wastewater effluent, 
that had no discernible impact on microbial litter 
decomposition, originated from a smaller domestic 
wastewater treatment plant (1800 population 
equivalent) that was compliant with legal standards. 
Together with the stimulation of litter decomposition 
by nitrate availability, these findings support that 
the use of litter decomposition for assessing stream 
ecological status (Ferreira et al., 2020; Frainer et al., 
2021; Brosed et al., 2022) is also useful under tropical 
climates (Pérez et al., 2013).

Conclusions

The main conclusions of our study are that the 
effects of nitrate availability on aquatic hyphomycete 
activity and communities in streams of Guadeloupe 
are largely consistent with existing knowledge based 
on temperate experiments. However, the positive 

effect of temperature on aquatic hyphomycete 
diversity is more surprising and contradictory with 
previous cross-latitudes comparisons. We suggest 
that the conclusions of broad-scale comparisons 
are strongly dependent on the methodology used to 
assess aquatic hyphomycete diversity (most often 
conidia production from leaf baits), and encourage 
upcoming surveys to use several complementary 
techniques simultaneously. Moreover, future studies 
should be dedicated to disentangling between the 
confounding influence of temperature and nutrient 
limitation (both high under the tropics) on global 
aquatic hyphomycete diversity patterns. This can be 
achieved using broad nutrient availability gradients 
as well as different sources of temperature variations 
(e.g., seasonal, altitudinal and geothermal).
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