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captured both local and spatial processes under low 
residual variance, which may make it a promising 
functional trait for metacommunity studies. Our find-
ings demonstrated that the drivers of phytoplank-
ton metacommunity may be differently captured 
by taxonomic and functional measures, so that the 
approaches can eventually give more or less weight 
to the environmental and/or spatial signals. We thus 
recommend the use of taxonomic and functional 
approaches in metacommunity studies in a comple-
mentary way.
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Introduction

Dispersal is a fundamental process in ecology and 
evolution, influencing demographic rates, coloniza-
tion success, speciation, extinction, and, in some 
cases, even in the geographical distribution of spe-
cies (Sharma et  al., 2007). In microbial ecology, 
dispersal processes were overlooked until recently 
(Guo et al., 2019), because it was generally assumed 
that passive dispersal was so high that microorgan-
isms (smaller than 1  mm) had no geographical bar-
rier (Finlay, 2002) and that environmental control 
was the only factor controlling communities. To 
date, however, it is recognized that microorganisms 
also exhibit biogeographic patterns (Horner-Devine 
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et al., 2007; Naselli-Flores & Padisák, 2016; Ribeiro 
et al., 2018a) and that microbial communities can be 
structured not only by environmental factors but also 
by other processes such as historical contingencies, 
ecological drift, and dispersal (Martiny et  al., 2006; 
Vellend et al., 2014; Zhou & Ning, 2017). Therefore, 
the metacommunity framework, in which dispersal 
between local communities is considered a key fac-
tor to understand and explain regional biodiversity 
patterns (Leibold et  al., 2004; Cottenie 2005; Vilmi 
et  al., 2017), can be applied in microbial studies 
(Wojciechowski et  al., 2017; Ribeiro et  al., 2018b; 
Bortolini et al., 2019).

Since dispersal is distant dependent (Kristian-
sen, 1996; Ng et  al., 2009), it can be expected a 
larger influence of dispersal limitation over a broad 
spatial scale. At smaller scales, the high dispersal 
rates homogenize communities determining a spa-
tial influence which may be related to mass effects 
(Heino et  al., 2015). At adequate dispersal rates, 
species are susceptible to the environmental filter-
ing, being sorted to the favorable habitats (species 
sorting) (Leibold et  al., 2004; Heino et  al., 2015). 
However, dismantling the influence of dispersal is 
often not straightforward, as spatial significance high-
light both limited and high dispersal rates (Ng et al., 
2009). Addressing this problem, some authors have 
succeeded in extracting the influence of limited and 
high dispersal in metacommunities using analysis at 
different spatial scales (Ng et al., 2009), while others 
managed to direct address the dispersal mechanism 
through ecological hypothesis based on functional 
traits and their relation with dispersal processes (De 
Bie et al., 2012; Padial et al., 2014; Guo et al., 2019). 
However, for microorganisms that are assumed to 
have high dispersal rates, the question arises as to the 
appropriate functional trait to capture the impact of 
dispersal on the arrangement of these communities.

A functional trait is any morphological, physi-
ological, or phenological feature measurable at the 
individual level, which impacts fitness (Violle et al., 
2007). Using traits to group distinct organisms in a 
functional classification facilitates the understand-
ing of patterns and processes along environmental, 
spatial, and temporal gradients (Litchman & Klaus-
meier, 2008; Soininen et  al., 2016; Leruste et  al., 
2018). Then, there are different types of traits. For 
instance, at individual level, response traits vary in 
response to the environmental variability; meanwhile, 

the effect traits reflect the effects of the individuals 
on the environmental conditions, communities, or in 
the ecosystems’ properties (Violle et  al., 2007). The 
trait-based approach may detect patterns that are not 
explicit when using classic species identification 
(Huszar et  al., 2015; Vilmi et  al., 2017). For phyto-
plankton, the most considered functional traits are the 
morphological (e.g., size, form of life, mucilage), the 
physiological (e.g., mixotrophy, resting stages, nitro-
gen fixation), and the behavioral traits (e.g., flagella, 
aerotopes) (Litchman & Klausmeier, 2008). Based 
on that, several measures and grouping systems have 
been proposed so far and, depending on the selected 
traits, some measures may differently capture com-
munity assembly drivers (Guo et al., 2019; Weithoff 
& Beisner, 2019). The Morphology-Based Func-
tional Group system (MBFG) proposed by Kruk et al. 
(2010) and enhanced by Reynolds et al. (2014), which 
included a new group to the original proposal, groups 
phytoplankton species into eight groups based on 
morphological (cell volume, surface area, maximum 
linear dimension, presence of mucilage, and siliceous 
exoskeletal structure), physiological (presence of het-
erocytes), and behavioral traits (presence of flagella 
and aerotopes), and have presented strong relation to 
environmental variation (Huszar et al., 2015; Salmaso 
et al., 2015; Xiao et al., 2018). Another grouping sys-
tem, much less used nowadays, that may also track 
environmental variation, is the life strategy system 
(CSR—competitive, stress-tolerant, and ruderal strat-
egies) proposed by Reynolds (1988), based on the 
concepts introduced by Grime (1977) for terrestrial 
vegetation. Here, phytoplankton species are sorted 
into categories based on relations between morpho-
logical traits (surface area, volume, and maximum 
linear dimension) which refer to nutrient uptake, 
light harvesting, growth rates, loss rates (sinking and 
grazing) in an environmental spectrum of habitat 
productivity (nutrient availability), and habitat dura-
tion (water column mixing depth and euphotic zone). 
Then, in this perspective, functional approaches may 
be useful if correctly applied in the research con-
text, and the misuse of functional classifications, i.e., 
ignoring the applicability of the functional approach 
used and the ecological role of the traits, can lead to 
serious mistakes in interpreting ecological processes 
underlying community organization (Padisák et  al. 
2009; Salmaso et  al., 2015; Weithoff & Beisner, 
2019).
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As most phytoplankton researchers keep working 
with different functional approaches to uncover com-
munity variation (Soininen et al., 2016; Vilmi et al., 
2016, 2017; Xiao et al., 2018; Bortolini et al., 2019) 
or comparing functional and taxonomic approaches 
(Huszar et  al., 2015; Wojciechowski et  al., 2017; 
Leruste et al., 2018), few have tried to access commu-
nity variation using the functional traits themselves 
to test their hypothesis. By doing so, it may be pos-
sible to track a direct role of the functional trait in the 
community structuring over environmental and spa-
tial gradients (e.g., Crossetti & Bicudo 2008; Cros-
setti et al., 2018; Wu et al., 2018; Guo et al., 2019). 
In these sense, some master traits were highlighted 
for further ecological tests (Litchman & Klausmeier, 
2008; Iatskiu et al., 2018; Weithoff & Beisner, 2019), 
such as the body size, because of its direct relation 
to nutrient acquisition, growth rates, reproduction, 
sedimentation rates, grazing susceptibility (Reyn-
olds, 2006; Litchman & Klausmeier, 2008; Litchman 
et al., 2010; Iatskiu et al., 2018), grazer pressure (for 
a review on the topic see Pančić & Kiørboe, 2018), 
and dispersal capability (Jenkins et  al., 2007; De 
Bie et  al., 2012). From this perspective, size, esti-
mated, for example, through species’ maximum lin-
ear dimension (MLD) or cell volume, could be con-
sidered response traits, as they can be associated with 
the species performance and to the responses to envi-
ronmental factors such as resources and disturbances. 
The same may be expected from the functional CRS 
and MBFG groupings.

On the phytoplankton metacommunity perspec-
tive, recent findings demonstrated that species identi-
fication (taxonomic approach) explained a higher var-
iance in community data at the large spatial scale than 
the functional grouping systems (Xiao et  al., 2018) 
and that species composition and its functional groups 
are mostly shaped by environmental variation (Huszar 
et al, 2015). Despite comparisons between taxonomic 
approaches and functional groupings, recent studies 
have shown that the influence of spatial and environ-
mental variation in phytoplankton metacommuni-
ties may be trait dependent (Guo et al., 2019). Then, 
given the lack of studies integrating taxonomic, mul-
tiple, and unique functional trait grouping responses 
to environmental and spatial variations, in the present 
study, our goal was to highlight and compare differ-
ences in the influence of spatial (assuming dispersal) 
and local environmental variation in a phytoplankton 

metacommunity, using a taxonomic approach (Sp), 
functional grouping systems (MBFG and CSR), and 
the unique functional traits volume and maximum 
linear dimension as size measures, in a fourteen sub-
tropical shallow lakes’ system (58 km long), in south 
Brazil. These functional measures were chosen since 
they are easily found in studies being related to envi-
ronmental conditions, but little is known about their 
relationship with spatial processes. Furthermore, we 
selected two functional groupings that used differ-
ent classification criteria, as MBFG system which 
has mainly morphometrical and structural criteria for 
classification, while the CSR system is mainly based 
on functional (growth), morphological, and mor-
phometric criteria (Salmaso et  al., 2015). By doing 
so, we hope to contribute to the discussion upon 
using different approaches (single traits or functional 
grouping systems) to access biodiversity patterns in 
microorganisms, as well as to encourage the interpre-
tation of the ecological role of traits in phytoplankton 
functional classifications. We expected that both local 
environmental and spatial influence would be better 
accessed by functional classifications than the taxo-
nomic approach. In addition, given the importance 
of the body size to the species’ performance and its 
direct relation to several ecological functions, we 
expected that this trait would better summarize the 
spatial influence and environmental filters than the 
other functional measures on the variance of the stud-
ied phytoplankton metacommunity.

Material and methods

Study area and sampling

The study was conducted in 14 coastal lakes located 
within the Tramandaí River Basin at the northern and 
medium coast of Rio Grande do Sul state  -  south-
ern Brazil (Fig.  1). These lakes are shallow fresh-
water water bodies with different types of intercon-
nections and a single link to the ocean (Guimarães 
et  al., 2014). They vary widely in shape and size 
and were formed between Pleistocene and Holocene 
(Schwarzbold & Schäfer, 1984; Schäfer et al., 2017). 
Also, these lakes are highly influenced by northeast 
and southwest winds (Bohnenberger et  al., 2018), 
in a humid subtropical climate with hot summers 
(Cfa; Alvares et  al., 2013). Furthermore, many of 
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these coastal lakes have been suffering the effects of 
increasing regional urbanization, promoting a trophic 
increase that can be related to waste water pollution 
(Pedrozo & Rocha, 2007).

In this study, 14 coastal lakes with distinct trophic 
status and with maximum linear distance of 58  km 
between lakes were sampled in February of 2018, 
during austral summer period. In each lake, we col-
lected samples for biotic and abiotic analyses at the 
subsurface of the water column at three sampling sta-
tions, comprising equidistance of 10 m in the pelagic 
zone, resulting in 42 samples. We also obtained the 
geographical coordinates at each sampling station 
using a Garmin Etrex 10 GPS (Online Appendix A).

The abiotic sampling encompasses 23 environ-
mental variables measured both in situ and in labo-
ratory. The temperature of the water (T), electrical 
conductivity (Cond), dissolved oxygen (DO), and 
pH were measured in  situ by means of a multipa-
rameter probe (Manta 2 Water-Quality; Eureka, 

Austin, TX, USA). In addition, in field we also 
measured depth (Depth) and water transparency 
(SD) (using a Secchi disk). Water was sampled 
for analysis in laboratory of total suspended, fixed 
and volatile solids (TSS, FSS, and VSS, respec-
tively), soluble reactive silicon (Sil), total nitrogen 
(TN), total dissolved nitrogen (TDN), total ammo-
nia nitrogen (N-NH3

+, N-NH4
+), nitrate (N-NO3

–), 
nitrite (N-NO2

–), total phosphorus (TP), and solu-
ble reactive phosphorus (SRP), following APHA 
(2012). We also obtained the dissolved inorganic 
nitrogen (DIN) by summing N-NH3

+, N-NH4
+, 

N-NO3
–, and N-NO2

–. Total carbon (TOC), dis-
solved organic carbon (DOC), dissolved inorganic 
carbon (DIC), and particulate organic carbon (POC) 
were evaluated using TOC V equipment (Shimadzu 
VCPH). Finally, color (i.e., absorbance at 450 nm) 
was measured with Digimed DM-COR colorimeter 
(Digimed Instrumentação Analítica, São Paulo, SP, 
Brazil).

Fig. 1  Study region, located at the coastal plain of southern Brazil, highlighted in the 14 studied lakes. Datum: SIRGAS 2000, 22S
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Phytoplankton quantification followed the Uter-
möhl method (1958) and Lund et  al. (1958) for set-
tling time and quantification accuracy (95%). The 
biovolume  (mm3   l–1) was considered the abundance 
measure of phytoplankton species found in the 42 
samples, based on the product of the density (indi-
viduals   l−1) and the average volume of each species 
(µm3) obtained from the measurements of at least 20 
individuals (whenever possible) in each sample, using 
approximate geometric shapes closest to the cellular 
form (Hillebrand et  al., 1999; Fonseca et  al., 2014; 
Calvacante et  al., 2018). All phytoplankton species 
were identified at the lowest taxonomic classification 
possible, following the available literature (Komárek 
and Fott, 1983; Castro et  al., 1991; Xavier, 1994; 
Azevedo et  al., 1996; Bicudo et  al., 2003; Bicudo, 
2004; Araújo & Bicudo 2006; Fernandes & Bicudo, 
2009; Hentcheke & Torgan, 2010; Silva et al., 2010; 
Silva et al., 2013; Bicudo & Menezes, 2017).

Biotic datasets

We used traditional taxonomic composition and 
four functional measures based on biovolume data 
from the 42 sample units. The taxonomic composi-
tion (Sp) included the estimated biovolume of 169 
phytoplankton species registered in all the sampling 
stations. The functional measures were divided in 
multiple trait grouping classifications and unique 
trait categories. For the multiple trait grouping sys-
tem, we used MBFG groups according to Kruk et al. 
(2010) and Reynolds et al. (2014), where the species 
were sorted into eight groups: I—small organism 
with high S/V; II—small flagellated organisms with 
siliceous exoskeletal structures; III—large filaments 
with aerotopes; IV—organisms of medium size lack-
ing specialized traits; V—unicellular flagellates of 
medium to large size; VI—non-flagellated organ-
isms with siliceous exoskeletons; VII—large muci-
laginous colonies; and VIII—nitrogen-fixing cyano-
bacteria. We also classified phytoplankton species in 
CSR multiple trait grouping system (Reynolds, 1988, 
2006), as C—invasive opportunists/competitors; R—
disturbance-tolerant/ruderals; S—Acquisitive/stress-
tolerant; and SS—chronic stress-tolerant. As unique 
trait categories, we used volume (Vol), estimated by 
the mean volume obtained for each species, and the 
maximum linear dimension (MLD), estimated by the 

mean greatest linear dimension of the individual for 
each species. Then, phytoplankton species were clas-
sified in four volume categories, following Crossetti 
et al. (2018), and in four maximum linear dimension 
categories, as described by Sieburth et  al. (1978), 
where I—volume < 10 µm3; II—volume between 
11 and 1000 µm3; III—volume between 1001 and 
10,000 µm3; IV—volume > 10,000 µm3; picophyto-
plankton—MLD = 0.2 to 2 µm; nanophytoplankton—
MLD = 2 to 20 µm; microphytoplankton—MLD = 20 
to 200  µm; and mesophytoplankton—MLD = 200 to 
2000 µm.

After classification of species based on MBFG, 
CSR, Vol, and MLD (Online Appendix B), we then 
summed the species biovolume at each functional 
group/category to construct four functional biotic 
response datasets. Before analyses, all biotic datasets 
were Hellinger transformed (Legendre & Legendre, 
2012), in order to reduce the influence of common 
species and to avoid biased data, thus allowing the 
use of linear multivariate methods (Peres-Neto et al., 
2006).

Environmental and spatial variables

All 23 environmental variables were used to construct 
an environmental explanatory matrix (E) (Online 
Appendix A), which was standardized to compare the 
variables with distinct scales (Legendre & Legendre, 
2012). We also tested the collinearity of these vari-
ables, maintaining only variables with variance infla-
tion factor (VIF) less than 20 (ter Braak & Smilaurer, 
2012). Hence, after selection, 12 environmental varia-
bles were retained: Depth, SD, T, pH, DO, Cond, Sil, 
TSS, TP, SRP, DIC, and DIN (Table 1), which were 
used in the following analysis.

We did not assume directionality in the spatial pro-
cesses in the metacommunity of the studied lakes. 
Although the lakes are connected, previous study 
on phytoplankton beta diversity in this system dem-
onstrated that the influence of connectivity is negli-
gible (Costa et  al., 2020). In addition, even though 
there are predominant wind directions recognized 
for the studied region, their behavior and influence 
within these lakes can be quite unpredictable in 
short temporal scales, and can vary in intensity and 
direction within a single day (Cardoso & Motta-
Marques, 2003). Then, for the spatial matrix, we used 
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distance-based Moran’s Eigenvector Maps (dbMEMs, 
Dray et  al., 2012; Legendre & Legendre, 2012), to 
generate spatial variables representing geographi-
cal positions at different spatial scales. dbMEMs 
were calculated from the geographical coordinates 
of the 42 sampling stations, assuming geographi-
cal distances based on soil and not on hydrological 
connections. This assumption was made consider-
ing that in our small study area highly influenced by 
wind, phytoplankton distribution will not be limited 
by aquatic connectivity, since species can disperse 
through air (Kristiansen, 1996; Finlay, 2002; Sharma 
et al., 2007; Incagnone et al., 2015). This procedure 
generated 41 spatial variables, 6 with positive spa-
tial autocorrelation (Moran’s I), and 35 with negative 
spatial autocorrelation. Since species spatial patterns 
may be described as aggregated (individuals tend to 
be close together) for positive spatial autocorrelation 
or regularity (individuals tend to avoid each other) for 
negative spatial autocorrelation (Dray et  al., 2012), 
and that dispersal may be an underlying mechanism 
in these spatial variables, we test the significance of 
both positive and negative spatial variables using 
ANOVA with 999 permutations, after a redundancy 
analysis (RDA) with all 5 biotic datasets as response. 
Since the negative spatial variables did not signifi-
cantly explain community variability, we used only 
positive spatial autocorrelation as explanatory vari-
ables (S) for further analysis.

Furthermore, we divided our positive dbMEMs 
into submodels corresponding to different spatial 
scales (Dray et  al., 2012; Legendre & Legendre, 
2012). By concentrating most of the spatial varia-
tion, the first eigenvector usually describes broad 
spatial scales, while the last eigenvectors (with lower 
eigenvalues) describe fine spatial structures. Since we 

obtained 6 positive MEMs, we classified MEM 1–3 
into broad spatial scale (Sb) and MEM 4–6 into fine 
spatial scales (Sf).

Lastly, we implemented a forward selection proce-
dure with double stopping criteria (Legendre & Leg-
endre, 2012) to only select spatial variables (MEMs) 
that significantly explained the variance in each biotic 
dataset. Therefore, for each response matrix (biotic 
dataset) distinct MEMs were selected for representing 
broad and fine spatial scales, as spatial explanatory 
matrices (S) (Table 1).

Data analysis

The relative importance of local environmental and 
spatial variables in the structuring of our biotic data-
sets was assessed by partial redundancy analyses 
(pRDA) in association with variation-partitioning 
procedures (Borcard et  al., 1992; Legendre & Leg-
endre, 2012). This analysis decomposes the total vari-
ance into fractions that indicate the relative impor-
tance of the pure environmental (E|S) and pure spatial 
(S|E) components, as well the influence of unique 
broad and fine spatial scales, shared fractions, and the 
unexplained variation (Residuals). The analysis was 
performed separately for each of the five response 
matrices, using the environmental variables (E) and 
the selected MEM (S), decomposed into broad  (Sb) 
and fine  (Sf) spatial scales. The explained variation at 
each fraction was estimated using adjusted R2 values 
(Peres-Neto et  al., 2006) and the significance of the 
pure fractions was tested through an ANOVA, with 
999 permutations (Legendre & Legendre, 2012).

All analyses were performed in the R environ-
ment (R Core Team, 2019) using the following 
packages: adespatial (Dray et  al., 2019) to construct 

Table 1  Local environmental and spatial variables used as 
explanatory matrices (E and S, respectively) in the variation-
partitioning analysis, after selection procedures. Where MEM 

describes the positive spatial autocorrelation eigenvectors, Sb 
refers to broad spatial variables, and Sf to fine spatial variables

Approach E S

Sb Sf

Sp Depth, SD, T, pH, DO, Cond, Sil, TSS, TP, SRP, DIC and DIN MEM 1 & 2 MEM 4 & 6
MBFG Depth, SD, T, pH, DO, Cond, Sil, TSS, TP, SRP, DIC and DIN MEM 1 & 2 MEM 6
CRS Depth, SD, T, pH, DO, Cond, Sil, TSS, TP, SRP, DIC and DIN MEM 1 MEM 4 & 6
Vol Depth, SD, T, pH, DO, Cond, Sil, TSS, TP, SRP, DIC and DIN MEM 1 MEM 6
MLD Depth, SD, T, pH, DO, Cond, Sil, TSS, TP, SRP, DIC and DIN MEM 1 & 2 MEM 6
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spatial variables (dbMEMs) and to perform the for-
ward selection procedures; vegan (Oksanen et  al., 
2019) for the multivariate analyses and VIF selection; 
and ggplot2 (Wickham et al., 2019) to plot the data.

Results

A total of 169 phytoplankton species were identified. 
Dolichospermum sp. 2 (mean  biovolumen=42 = 51.0 
 mm3   l−1), Melosira varians C. Agardh (46.3 
mm3   l−1), Ceratium furcoides (Levander) Langhans 
(9.4 mm3   l−1), Desmodesmus armatus var. bicau-
datus (Guglielmetti) E. H. Hegewald (9.0 mm3   l−1), 
and Microcystis aeruginosa (Kützing) Kützing (6.8 
mm3   l−1) were abundant throughout the sampling. 
Only Plagioselmis lacustris (Pascher & Ruttner) 
Javornicky, Synechococcus spp., and Synechocystis 
spp. occurred in all sampling stations. Overall, larger 
species of nitrogen-fixing cyanobacteria (Group 
VIII—MBFG), disturbance-tolerant species (Group 
R—CSR), species with greater length (Mesophyto-
plankton—MLD = 200 to 2000 µm) and with higher 
volume (Category IV—Vol > 10,000 µm3) attained a 
higher biomass, over other multiple trait groups and 
unique trait categories (Fig. 2, Online Appendix C).

The variance partitioning revealed that the phy-
toplankton metacommunity was influenced by both 
pure environmental (E) and spatial (S) components, 
varying according to the biotic dataset used (Table 2, 
Fig.  3). The fine spatial scale (Sf) showed a higher 

contribution to the S component than the broad spa-
tial scale (Sb), for most of the measures used (Fig. 4). 
We also found that the joint effect of environmental 
and spatial components called spatially structured 
environment (E + S) had a higher explanatory power 
for most of the analysis and between functional 
groups/categories.

The taxonomic composition matrix (Sp) was sig-
nificantly explained by all explanatory variables, 
showing a higher influence of the pure environmen-
tal component (adjusted R2 = 0.2241, P < 0.001). This 
approach had also the highest value of unexplained 
variation comparing all other functional approaches 
(residuals = 0.6652).

The MBFG system revealed a higher influence 
of the pure environmental component (adjusted 
R2 = 0.2615, P < 0.001) compared to the other func-
tional measures. However, the spatial component also 
significantly predicted community data, regarding 
broad spatial scales (adjusted R2 = 0.0667, P < 0.005). 
Comparing other approaches, MBFG was the only 
in which broad spatial scale (Sb) was the main con-
tributor of the spatial component (Fig. 4). When ana-
lyzing between groups, most of the MBFG groups 
was significantly explained by both environmental 
and spatial (as broad and fine scales) components 
(Table  2; Fig.  3), with exception of the Group III 
(large filaments with aerotopes) which was almost 
unexplained by our variables (residuals = 0.9202). 
While some groups were significantly explained only 
by the environmental variables measured at the local 

Fig. 2  Mean biovolume 
 (mm3/l) and frequency of 
occurrence of functional 
and unique trait groups in 
the 42 sampled stations
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scale (Groups IV, V, and VII), others were highly 
influenced by spatial components at different scales 
(Groups I and VI). Group II (small flagellated organ-
isms with siliceous exoskeletal structures) was sig-
nificantly explained by local environmental variables 
and fine spatial scale; meanwhile, the local environ-
ment was also significant for Group VIII variability 
(nitrogen-fixing cyanobacteria) and by broad spatial 
scale component.

Differently from MBFG and Sp approach, group-
ing species in CSR displayed a stronger influence of 
spatial component at fine scale, which was the only 
component that was significantly explained (adjusted 
R2 = 0.2275, P < 0.001). When analyzed between 
groups (Fig. 3), fine spatial scale continued to explain 
data variation in Group C (Invasive opportunists/

competitors) and R (Disturbance-tolerant/ruderals) 
(P < 0.005, for both). Yet, environmental compo-
nent also became influential for Group C (adjusted 
R2 = 0.1833, P < 0.05). Group S (Acquisitive/stress-
tolerant) was unexplained by any variable, showing a 
higher residual value = 0.7356. Species belonging to 
Group SS (Chronic stress-tolerant) were not found in 
the sampling stations and, therefore, were not consid-
ered in the analysis.

MLD categorization displayed similar results 
as the CSR grouping system, revealing the influ-
ence of spatial component, as fine scale (adjusted 
R2 = 0.0653, P < 0.05) in the metacommunity. Envi-
ronmental component was not influential, and fine-
scale spatial significance was found only for the 
smaller length categories, such as Picophytoplankton 

Table 2  Adjusted R2 values 
obtained after variation 
partitioning, representing 
the relative influence of 
local environmental (E) 
and spatial (S) variables 
on the phytoplankton 
community variance, based 
on different functional 
approaches. Where E|S 
pure environment, S|E 
pure spatial, Sb broad 
pure spatial variables, Sf 
fine pure spatial variables, 
E + S spatially structured 
environment, Sb|Sf shared 
fraction of spatial matrices, 
Intercept shared fraction of 
all explanatory matrices, 
and Residuals community 
variation unexplained by 
explanatory variables

*P-value ≤ 0.05; 
**P-value ≤ 0.005; 
***P-value ≤ 0.001

Approach E|S S|E E + S Sb|Sf Intercept Residuals

Sb Sf

Sp 0.2241*** 0.0352*** 0.0324** 0.0485 − 0.003 − 0.0023 0.6652
MBFG
Overall 0.2615*** 0.0667** 0.0223 0.1714 − 0.002 − 0.0069 0.4863
I 0.0457 0.0341 0.0608* 0.4297 0.005 − 0.0211 0.4457
II 0.3199** − 0.0186 0.2051*** 0.2129 − 0.009 − 0.0052 0.2944
III 0.0487 − 0.0367 0.0001 0.0685 0.0053 − 0.0062 0.9202
IV 0.4556*** 0.0462 0.0318 0.1738 − 0.011 0.0032 0.3006
V 0.1911* − 0.032 − 0.0055 0.3415 0.0024 − 0.0095 0.5119
VI 0.1512 0.1208* 0.0811* 0.1125 0.0059 − 0.0136 0.5419
VII 0.2612* 0.0179 − 0.0219 0.1542 0.0009 − 0.0076 0.5951
VIII 0.327** 0.1725** − 0.0131 0.0783 − 0.007 − 0.0023 0.4451
MLD
Overall − 0.0123 0.0093 0.0653* 0.3804 0.004 − 0.0175 0.5706
Picoplankton − 0.0448 0.0206 0.0806* 0.4332 0.0007 − 0.0175 0.527
Nanoplankton 0.0547 0.0017 0.137** 0.2974 0.0037 − 0.0195 0.5247
Microplankton − 0.039 0.024 0.0612 − 0.042 0.0101 − 0.0114 0.9974
Mesoplankton − 0.0306 0.0072 0.0362 0.5611 0.002 − 0.0187 0.44274
Vol
Overall 0.1772*** 0.0389* 0.0952*** 0.3579 0.0023 − 0.0143 0.3424
I 0.2409* 0.0352 0.0762* 0.1409 0.0052 − 0.0113 0.5126
II 0.1655* 0.0599* 0.0999* 0.23 0.0064 − 0.0159 0.454
III 0.4478** 0.0854* − 0.0126 0.0537 − 0.004 0.001 0.4286
IV 0.0936 0.016 0.1284*** 0.5094 0.0027 − 0.0187 0.2682
CSR
Overall 0.0481 0.0398 0.2275*** 0.0583 − 0.002 − 0.0079 0.6366
C 0.1833* 0.043 0.173** 0.1171 − 0.005 − 0.0062 0.495
S − 0.0645 0.0697 0.0955 0.1746 0.0177 − 0.0286 0.7356
R − 0.0246 0.0016 0.4559** − 0.159 − 0.021 0.0126 0.7341



793Hydrobiologia (2024) 851:785–800 

1 3
Vol.: (0123456789)

(MLD = 0.2 to 2 µm) (adjusted R2 = 0.0806, P < 0.05) 
and Nanophytoplankton (MLD = 2 to 20  µm) 
(adjusted R2 = 0.1370, P < 0.005). The data variation 
of the bigger length categories (Microphytoplankton 
and Mesophytoplankton) were not explained by our 
variables (Table  2). However, for Mesophytoplank-
ton (MLD = 200 to 2000 µm) the spatially structured 

environment (E + S) component could explain data 
variability, as it showed an adjusted R2 = 0.5611.

Lastly, Vol approach enabled to explain more 
variance in community data comparing to all other 
approaches (Table  2; Fig.  3), resulting in a lower 
residual value (residuals = 0.3424). Using Vol phyto-
plankton metacommunity variance was significantly 
explained by all components of data variation at both 
large and fine spatial scales, showing a higher influ-
ence of the pure environmental component (adjusted 
R2 = 0.1772, P < 0.001). Fine-scale spatial variance 
showed a higher influence in structuring the commu-
nity through volume than broad spatial scale (Fig. 4). 
All volume categories revealed significance with 
local environment and spatial (at different scales) 
components, with exception of the larger category 
(IV—Vol > 10,000 µm3), which was explained only 
by the fine-scale spatial component (Table 2; Fig. 3).

By comparing approaches, the results demon-
strated that the influence of local environmental and 
spatial variables in structuring metacommunities 
were better ascertained by Vol, MBFG, and by Sp 
(Fig. 3). From these, volume categorization displayed 
a higher spatial signal, and MBFG functional group-
ings showed a higher influence of local environmen-
tal variables. Taxonomic composition (Sp) was less 
explained by our explanatory variables than func-
tional measures, such as Vol and MBFG. We high-
light that for Vol, MBFG, and Sp, the major meta-
community driver was the environmental component, 
with also a significant influence of spatial component 
at different scales.

When accessing differences between groups from 
distinct functional measures, the following groups 
and categories were better predicted by local envi-
ronmental and spatial variables than the others func-
tional measures: Groups II (Small flagellated organ-
isms with siliceous exoskeletal structures) and VIII 
(Nitrogen-fixing cyanobacteria) of MBFG; Catego-
ries I (volume < 10 µm3), II (volume between 11 and 
1000 µm3), and III (volume between 1001 and 10,000 
µm3) of volume categorization; and Group C (Inva-
sive opportunists/competitors) from CSR multiple 
functional trait grouping. From these, CSR Group C 
revealed a higher influence of spatial variables, and 
Category III of Vol displayed higher local environ-
mental influence than other categories/groups, despite 
MBFG having an overall higher environmental influ-
ence (Table 2).

Fig. 3  Relation between the purely spatial and environmen-
tal components of community variation between different 
approaches (A) and within functional measures (B). Pure spa-
tial and environmental components are described as adjusted 
R2 values (%). 
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Discussion

Phytoplankton metacommunity in the studied area 
was explained by both local environmental and spa-
tial components, i.e., local environmental variables 
are important for the variance of the phytoplankton, 
at the same time that spatial distances may also con-
tribute to the overall organization of the phytoplank-
ton of the studied lakes’ system. However, environ-
mental and spatial signs were differently evidenced 
regarding the functional measures used.

By comparing the classical taxonomic approach 
with multiple functional trait grouping (MBFG and 
CSR) and with unique functional trait categoriza-
tions (Vol and MLD), we expected that the latter 
would be, comparatively, more explained by the 
local environmental and spatial variables. As func-
tional approaches group species with similar ecologi-
cal characteristics (Padisák et  al., 2009), they would 
better summarize the environmental and spatial 
influence than species as individual entities (Huszar 
et al., 2015; Leruste et al., 2018). The present results 
showed that the overall MBFG measure displayed 
a higher influence of environmental variables than 
taxonomic approach (Sp) and fine spatial signal was 
better captured by the overall Vol and CRS variations 
than Sp. In turn, Sp was better predicted by local 
environmental variables than overall MLD, Vol, and 
CSR. Also, Sp and Vol were the only approaches to 
access significant influence of both broad and fine 
spatial variables.

Recently, Xiao et  al. (2018) demonstrated 
that, for phytoplankton metacommunity of three 

Chinese lakes regions (distance range between 
lakes of 1285–3232  km), species-based classifica-
tion revealed better spatial processes than functional 
approaches, including MBFG, pointing out that, 
despite common responses of species within func-
tional groups, species-specific approach comprises 
dispersal abilities, mechanisms, and strategies that 
cannot be neglected in phytoplankton patterns at spa-
tial scales. On the other hand, Huszar et  al. (2015) 
demonstrated that species composition and MBFG 
were influenced by local environment, but spatial 
influence on species were not seen in a large subtropi-
cal Brazilian river basin (1150 km). Interestingly, Sp 
approach had the higher residual value in the present 
study. The low explanatory power of Sp may reflect 
the large multiplicity of factors that affects phyto-
plankton species variation (Scheffer et  al., 2003; 
Wojciechowski et al., 2017). Despite the scale differ-
ences observed between our results and that of Huszar 
et  al. (2015), the taxonomic approach significantly 
captured the spatial signal and should not be ruled out 
in phytoplankton metacommunity studies. The lack of 
other comparative studies in this regard suggests the 
need for further research, especially comprising dif-
ferent spatial scales.

Among the functional measures here tested, the 
overall Vol variability was the only to be signifi-
cantly sensible to both local environmental and spa-
tial variables (fine and broad scales). This may be a 
result of the strong association of the trait volume, a 
direct measurement of size, with both environmen-
tal and dispersal factors (De Bie et al., 2012; Iatskiu 
et  al., 2018; Leruste et  al., 2018). Since volume is 

Fig. 4  Average variance 
(%) explained by the pure 
spatial component for each 
functional measure, at 
broad and fine scales. Leg-
end: n = number of groups/
categories found for each 
functional measure
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also a functional trait used in MBFG (Kruk et  al., 
2010), the divergences observed between MBFG 
and Vol measures, especially regarding Sf compo-
nent, may be related to the influence of other traits 
in MBFG classification, which are highly related to 
environmental conditions, such as presence of muci-
lage and aerotopes (Litchman & Klausmeier, 2008). 
Further, MBFG multiple functional trait grouping is 
known to be a better predictor of larger scale varia-
tions (Salmaso et al., 2015), which may also explain 
the absence of significance at fine-scale spatial com-
ponent. Regarding the spatial signal, the overall CSR 
approach presented the highest explanation power in 
fine scale, which may indicate the dispersal-related 
ability comprised in the relation between the mor-
phological traits (surface, volume ratio, and maxi-
mum linear dimension) considered in this functional 
metric. The non-significant variance of MLD to 
local environmental component, in turn, may have 
occurred due to the spatial structure of local environ-
mental variables. This functional measure reflected 
most the influence of spatially structured environ-
ment variables (E + S). Besides, the maximum linear 
dimension of the organisms may not capture most 
of the environmental variability when used by itself, 
being rather used to track grazing susceptibility (e.g., 
Cardoso et al., 2019).

For phytoplankton, the small cell size and also the 
enormous abundance of vegetative cells and prop-
agules allows a huge passive dispersal potential (Fin-
lay, 2002; Sharma et  al., 2007; De Bie et  al., 2012; 
Incagnone et  al., 2015). Dispersal is distant depend-
ent (Kristiansen, 1996; Ng et  al., 2009) and a grad-
ual increase in dispersal limitation with body size 
in aquatic passive dispersers was already seen (De 
Bie et al., 2012).Within MBFG, we found fine-scale 
spatial significance for small body-related Groups 
I (small organism with high S/V) and II (small flag-
ellated organisms with siliceous exoskeletal struc-
tures. In addition, we found spatial signal (broad 
and fine scales) for the Groups VIII (Nitrogen-fixing 
cyanobacteria) and VI (non-flagellated organisms 
with siliceous exoskeletons—diatoms), which are 
also usually associated to environmental variability 
(Reynolds 2006; Vilmi et  al., 2016). For cyanobac-
teria (MBFG—Groups III, VII and VIII), Ribeiro 
et  al. (2018b) found that, at broader spatial scales, 
the community distribution was mainly structured 
by spatial (assumed dispersal limitation, considering 

a larger scale—220  km) and spatially structured 
environment components, whereas other studies 
indicated dispersal limitation occurring only at con-
tinental scales (Martiny et al., 2006; Izaguirre et al., 
2015). Although we do not assume dispersal limita-
tion because of the small scale of our study area, the 
results showed that nitrogen-fixing cyanobacteria 
reflected the influence of both environmental and dis-
persal processes even at small geographical extents. 
Regarding the diatoms (MBFG—Group VI), much of 
the species’ observed in the present study are mero-
plankton because of the hydrodynamics of the lakes’ 
system and the high wind influence (Online Appendix 
B). The previous study on planktic and surface sedi-
ment diatoms within the same reservoirs evidenced 
the influence of pure space in the planktic diatoms 
in terms of traits and species and pure environment 
in terms of traits based on morphology, meanwhile 
the surface sediment diatoms recorded spatial signal 
only with species and morphology-based traits and 
the environmental signal with species matrix (Zorzal-
Almeida et  al., 2017). Within the CSR system, the 
small species categories C (invasive opportunists/
competitors) and R (disturbance-tolerant/ruderals) 
showed significant fine scale spatial signals, whereas 
the larger organisms of S (acquisitive/stress-tolerant) 
were not explained by neither spatial nor local envi-
ronmental variables. For smaller species in group C 
(invasive opportunists/competitors), we found spatial 
and environmental significance, which is reasonable 
since these species are resource constrained (Reyn-
olds, 2006; Salmaso et al., 2015). In group R (distur-
bance-tolerant/ruderals) species generally need water 
turbulence to be suspended. Since that is a common 
feature in our study area (Bohnenberger et al., 2018), 
the lack of environmental signal may be caused by 
the absence of environmental constraint for this 
group, while the spatial signal may indicate that dis-
persal processes do overcome environmental filtering, 
at least for group R (disturbance-tolerant/ruderals) in 
our study area.

As found for CSR, MLD smaller-sized catego-
ries picophytoplankton (0.2 to 2  µm) and nanophy-
toplankton (2 to 20  µm) displayed fine-scale spatial 
significant sensitivity. However, for the larger species 
categories microphytoplankton (20 to 200  µm) and 
mesophytoplankton (200 to 2000 µm), the results did 
not show significance with any explanatory variable. 
The absence of environmental influence for larger 
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microorganisms may be caused by their higher in-cell 
nutrient storage capacity, lower metabolic rate, and 
greater resistance to predation, all factors that assist 
organism to withstand environmental constraints 
(Litchman et al., 2010; Iatskiu et al., 2018; Pančić & 
Kiørboe, 2018).

Lastly, regarding the Vol categories I (volume < 10 
µm3), II (volume between 11 and 1000 µm3), and IV 
(volume > 10,000 µm3) showed fine spatial scale sig-
nificance, while groups II and III (volume between 
1001 and 10,000 µm3) were significantly explained 
by broad spatial scale. In this metric, only the larger 
species group IV (volume > 10,000 µm3) showed no 
significance with the local environmental compo-
nent, yet it presented the higher significance with the 
Sf component. As larger organisms may have higher 
tolerances to environmental constraints (Iatskiu et al., 
2018), which undermine explanation power of envi-
ronmental variables, one may wonder if in a gradual 
size increase, the environmental filtering is replaced 
by dispersal limitation for the larger organisms 
(here > 10,000 µm3), even in our small study area.

In a general view, based on the presented results, 
the spatial signal found for the overall functional 
measures can be interpreted as high dispersal effects 
or mass effects (Heino et  al., 2015; Vilmi et  al., 
2017), given the scale comprised in the present study. 
As spatial signals in phytoplankton are found at larger 
geographical scales and commonly interpreted as lim-
ited dispersal (Huszar et  al., 2015; Izaguirre et  al., 
2015; Soininen et  al., 2016; Moresco et  al., 2017; 
Ribeiro et  al., 2018b; Wu et  al., 2018; Xiao et  al., 
2018), our findings do imply that dispersal processes 
are significant drivers of phytoplankton metacommu-
nity variation even at smaller spatial scales. Since dis-
persal mechanisms were historically ignored factors 
structuring microorganism metacommunities (Huszar 
et  al., 2015; Incagnone et  al., 2015; Padisák et  al., 
2016), our results contribute to the actual understand-
ing that microorganism community may be structured 
by other processes, rather than environmental factors 
alone (Beisner et al., 2006; Martiny et al., 2006; Vel-
lend et al., 2014; Zhou & Ning, 2017).

Summing up, we evaluated different influences of 
community drivers not only through using distinct 
approaches but also when analyzing data variation 
in between groups/categories of the same func-
tional measure. We showed that both spatial and 

environmental are important drivers of commu-
nity variation in a small-scale area, but their influ-
ence can be tracked differently depending on the 
approach used, as seem by Guo et  al. (2019). In 
our study, taxonomic composition displayed better 
influence of environmental and spatial components 
than some functional approaches and should not be 
neglected in phytoplankton community assembly 
studies. Our findings also indicated that, by access-
ing community through functional traits that are 
highly responsive to environmental filtering and dis-
persal, studies can uncover different aspects of the 
metacommunity driving factors. Considering func-
tional measures, Vol and MBFG seemed to be fit-
ting classifications to uncover phytoplankton struc-
turing factors, because of its higher explanatory 
power and sensitivity to spatial and environmental 
signals. However, when deconstructing the overall 
classifications and evaluating the functional groups 
(usually composed by multiple traits), it may not be 
easy to relate the ecological mechanisms of interest 
in metacommunity studies. Using size traits (MLD 
and Vol) to access dispersal processes improved our 
spatial signal, as all functional measures used were 
related to morphology and displayed spatial signif-
icant sensitivity at least in one scale. Volume dis-
played the best results, being the only trait measure 
of the present study that was significantly sensitive 
to both environmental and spatial signals (broad and 
fine). It also presented the higher explanation power 
of the variables comparing to all other approaches, 
resulting in a lower residual value, indicating to be 
a promising functional trait in metacommunity stud-
ies, and should be better explored in further stud-
ies. In conclusion, all functional measures evaluated 
might be considered complementary, as they were 
all, in some way, evidenced the community drivers. 
Therefore, to provide a direct and more conceive 
answers to patterns observed in nature we need to 
evaluate and understand the functional relevance 
of the metric used, as well the relationship of the 
traits to local environmental variables and dispersal 
processes in phytoplankton metacommunity stud-
ies. As future perspectives, comparative approaches 
upon functional classifications and species compo-
sition must be encouraged in different spatial scales 
to strengthen the understanding of these measures 
in the context of microorganism metacommunities 
assembly.
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