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Abstract  Urban–industrial contamination in 
streams affects the functional structure of chironomid 
assemblages. The aims of this study were to deter-
mine whether water quality affects the functional 
diversity of Chironomidae, and which biological traits 
are related to water quality variables. We character-
ized species according to larval and pupal traits and 
used linear models to test whether functional richness 

and diversity were related to urban–industrial impact. 
We performed an RLQ and fourth-corner analysis to 
evaluate the relationship between traits and environ-
mental variables. Functional richness and diversity 
were related negatively to nutrients and depth, and 
positively to temperature, macrophyte cover and dis-
solved oxygen in the different seasons. Body size, 
thoracic horn shape and current velocity preferences 
were significantly related to environmental variables. 
Our results suggest that nutrients may be an envi-
ronmental filter for chironomids. The pupal thoracic 
horn was associated with highly impacted sites, sug-
gesting that oxygen depletion could be an environ-
mental challenge for pupae. Our study shows that 
urban–industrial impact decreases functional richness 
and diversity. Furthermore, because some character-
istics of the pupae were sensitive to urban–industrial 
impact, the use of pupal traits is suggested in future 
biomonitoring analyses of aquatic environments.

Keywords  Chironomidae traits · Chironomid pupal 
exuviae technique · Functional richness · Functional 
diversity

Introduction

Urbanization is one of the most important pro-
cesses that impairs the integrity of rivers (Allan, 
2004; Vörösmarty et  al., 2010; Wang et  al., 2011). 
For example, the increase in impermeable surfaces 
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intensifies flooding events, and runoff alters the 
loads of sediments, nutrients, and pollutants. These 
changes, jointly referred to as “urban stream syn-
drome”, lead to a decrease in biodiversity as toler-
ant species become dominant (Paul & Meyer, 2001; 
Meyer et al., 2005; Walsh et al., 2005; Cuffney et al., 
2010; Mcgoff et  al., 2013). In this context, biologi-
cal traits analysis may explain how the environmental 
conditions of urban rivers determine the dominance 
of certain species. Biological traits are measurable 
features that influence species’ performance and roles 
in the ecosystem (Violle et al., 2007; Villeger et al., 
2008). Moreover, the value and range of species traits 
in biological assemblages determine the functional 
diversity (Tillman, 2001). While species responses to 
environmental conditions depend on their biological 
traits, the functional diversity is considered to reveal 
more information about ecosystem functioning than 
taxonomic diversity.

Chironomids are one of the most important com-
ponents of benthic assemblages in South Ameri-
can lowland rivers. They may be dominant in soft 
bed rivers, where they play a key role in processing 
organic matter (Sanseverino & Nessimian, 2008; 
Saigo et al., 2016) and in connecting basal resources 
to higher trophic levels (Saigo et al., 2015). Chirono-
mids include species with contrasting biological traits 
such as feeding habits, habitat preferences, reproduc-
tive strategies, and life cycles (Maasri et  al., 2008; 
Roque et  al., 2010). Most studies on aquatic mac-
roinvertebrates have focused on the larval stages of 
Chironomidae. The pupal stage of chironomids links 
two active phases of the insect’s life: the larva and the 
adult. The pupal stage of chironomids is short, last-
ing from a few hours to several days. The value of the 
pupal stage was appreciated when pupal exuviae were 
studied as an aid to species identification and, later, 
in providing additional or alternative characters to 
larvae and adults in estimating phylogenetic relation-
ships. Pupal exuviae have been used as a quick, sim-
ple way to obtain ecological information on aquatic 
habitats, and data on autoecology and geographic 
distribution. The chironomid pupal exuviae technique 
(CPET) has been used in a variety of studies to inves-
tigate the composition of the Chironomidae commu-
nity (García & Añón Suárez, 2007; Anderson & Fer-
rington, 2012; Anderson et  al., 2014; Mestre et  al., 
2018), and to monitor surface water quality (Wilson 
& Bright, 1973; Wilson & McGill, 1979; Raunio 

et  al., 2007; Ruse, 2011) and phenology (Coffman, 
1973, 1974; Zanotto Arpellino et  al., 2022). Sev-
eral studies report that relatively high percentages 
of species or genera can be detected with moderate 
effort associated with sample processing (Rufer & 
Ferrington Jr, 2008; Anderson & Ferrington, 2011; 
Bouchard & Ferrington, 2011). In addition, pupal 
exuviae represent taxa that have originated in a wide 
range of microhabitats (Ferrington et al., 1991; Wil-
son, 1994; Coffman & de la Rosa, 1998). Despite 
their numerous advantages, pupal exuviae have not 
been included in most biomonitoring studies. Coff-
man (1973), Wilson & Bright (1973) and Wilson 
(1980) list several advantages, including the fact that 
it is usually relatively simple to identify the genus, 
and generally also the species, by using appropriate 
keys and descriptions. Diagnostic characters in pupal 
structures can generally be seen even if the exuviae 
are mounted. In the case of larvae, it is necessary to 
clarify the specimen to see the diagnostic characters, 
and the incorrect position of structures or worn parts 
often makes it difficult to determine the status of the 
character of interest.

Some pupal traits can play a key role in determin-
ing the success of a species in an aquatic system. 
Species with a multibranched thoracic horn are bet-
ter adapted to tolerating oxygen scarcity thanks to the 
increased surface area to volume ratio (Int Panis et al., 
1996; Rossaro et  al., 2007). Swimming structures 
help individuals to escape from the flow when the 
absence of stable substrates reduces shelter availabil-
ity (Statzner, 2008). The lower the oxygen concentra-
tion in the habitat, the more extensive is the fringe—a 
structure that improves the respiratory movements to 
drive water through the tube produced in the larval 
stage (Langton, 1995). Tube construction in the lar-
val stage provides advantages such as an adequate 
supply of oxygen and food in soft sediments, elimi-
nation of unneeded metabolites and carbon dioxide, 
and making the organism less visible to predators 
(Cranston, 1995; Van Kleef et al., 2015). Armament 
structures are used by the pupa to remain inside the 
tubes in environments with high energy flow (Lang-
ton, 1995), though in some species they may be used 
as an anchor within the tube to facilitate respiratory 
movements (Humphries, 1937).

The close relationship between the environmen-
tal conditions of the habitat and the biological traits 
of the species (river habitat templet; Townsend & 
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Hildrew, 1994), allows predicting changes in inver-
tebrate communities in environmental gradients 
(natural or anthropic) (Statzner et al. 2005). Accord-
ing to Bonada et  al. (2006), using biological traits 
allows obtaining functional information, since many 
of the traits used are directly or indirectly related to 
ecological functions, they can be used in studies at 
different spatial scales, since most of the traits they 
are independent of taxonomic aspects and, therefore, 
also of the biogeographical region that is considered. 
And finally, simple hypotheses can be established 
to predict changes in communities due to changes 
in the environment. Despite these advantages, the 
use of biological traits requires detailed biologi-
cal information for all species in a region, which is 
still incomplete (Statzner et  al., 2007). An analysis 
of the relationship between water quality and the 
functional features of chironomids in Pampean riv-
ers could provide important information about how 
this group responds to one of the main environmental 
threats in the region. Furthermore, focusing on pupae 
rather than larvae could result in novel insights about 
the environmental constraints that affect the aquatic 
stages of chironomids.

The present study analyzed traits of Chironomi-
dae larvae and pupae in streams exposed to urban and 
industrial pollution. The aims were to (1) determine 
if there is an effect of natural spatial and/or tempo-
ral variation in the community of Chironomidae in 
the Pampean streams, together with the assemblage 
description using diversity indices, (2) determine 
whether water quality affects the functional diversity 
of Chironomidae and (3) determine which biological 
traits are related to water quality variables. According 
to these objectives, we hypothesized that (1) there is 
a natural variation among the streams studied, which 
can be quantified and taken into account to explain 
possible changes in the assemblages and functional 
traits at each sampling site, (2) urban and industrial 
uses decrease the functional diversity of chironomids 
and (3) pupal biological traits are filtered by envi-
ronmental variables. In this study, the pupal exuviae 
technique is applied for the first time in chironomids, 
providing information on the characteristics of the 
chironomid community of first-order Pampas streams. 
This type of study is scarce worldwide and particu-
larly in our region, and given the previously explained 
benefits of functional traits, we consider this work 
as a good contribution to understand the ecological 

dynamics of Chironomidae and its possible applica-
tions in bioassessment of contaminants and other 
fields such as climate change and conservation.

Materials and methods

Study area

The study area comprises the southern sector of the 
Argentine Pampean grasslands. Rainfall and ground-
water feed into the streams, which flow at low cur-
rent velocity over a relief of gently sloping plains 
(0.3 m/km). The streambeds present a hard, homoge-
neous substratum, with high calcium carbonate con-
tent, upon which thin sediments are usually deposited 
(mainly silt and clay), without rocks or pebbles. The 
water in the Pampean streams is shallow, and has high 
conductivity (1,000–6,000 µS/cm) and slightly alka-
line pH. However, most of the physical and chemical 
variables vary widely due to the occurrence of floods 
and seasonal changes in flow. High levels of nutrients 
have been recorded in these streams, related to lithol-
ogy (Feijoó & Lombardo, 2007). It must be consid-
ered that areas with water erosion contribute addi-
tional concentrations of nutrients and sediments that 
also modify the quality of the water. A wide range of 
macrophytes grows on the streambeds, though macro-
phyte presence is variable and their coverage hetero-
geneous, depending, among other factors, on the sea-
son and the occurrence of heavy rainfall. The lack of 
autochthonous riparian forest determines high irradia-
tion, even in the upper reaches of the streams, while 
the low current velocity and high nutrient level in 
the Pampean water bodies lead to regular eutrophica-
tion (Giorgi et al., 2005; Feijoó & Lombardo, 2007). 
According to Köppen’s classification, the climate 
in the study sector is temperate with oceanic influ-
ence. The summer is warm, and the winter is cool 
with frequent frosts, but without snow. The average 
annual temperature is 17  °C, with high humidity in 
all seasons. Rainfall is concentrated in the spring and 
summer months (source: Argentine National Weather 
Services).

To reduce natural variability, similar Pampean 
streams were selected. All the streams are first order 
and belong to the ecoregion Tributaries of the Par-
aná and Río de la Plata Rivers (Feijóo & Lombardo, 
2007). The selected control sites are El Pescado 
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Stream (P1 and P2), Cajaravilla Stream (CJ) (tribu-
tary of the El Pescado Stream), and Juan Blanco 
Stream (JB1; JB2 and JB3). Disturbed sites are the 
Rodríguez Stream (R1; R2 and R3) and Carnaval 
Stream (C1; C2 and C3) (Fig. 1).

Field design

At each sampling station, three samples were col-
lected on the same day in every season, for two con-
secutive years (September 2016–August 2018). A 
D-net 25 cm in diameter and 250 μm mesh size was 
used to collect pupal exuviae. Sampling was active 
because of the low current in the streams. Three 30 
m2 samples were collected from each stream, and 
fixed in  situ with 80% ethanol. Pupal exuviae were 
separated under stereoscopic microscope at × 10 mag-
nification and preserved in 80% ethanol. Pupal exu-
viae were mounted on permanent microscope slides 
following the technique proposed by Pinder (1986) 
for subsequent taxonomic identification to the lowest 
possible level using specific literature for the region 
and the corresponding keys (Wiederholm, 1986; 
Wiedenbrug, 2000; Wiedenbrug & Ospina-Torres, 
2005; Merrit et  al., 2008; Prat et  al., 2014; among 
others). The specimens are deposited in the collection 

at Instituto de Limnología “Dr. Raúl A. Ringuelet” 
(ILPLA-CONICET-UNLP).

Along with the collection of exuviae, the follow-
ing physical and chemical parameters were measured 
in the field: current velocity (Cvel; m/s) (measured 
mid-channel, average of three measurements) by tim-
ing a float as it moved over a known distance (Gordon 
et al., 1994), depth (cm), water temperature (Tw, °C), 
dissolved oxygen (DO, mg/l) (dissolved oxygen meter 
Lutron YK-22DO), pH (Universal pH Test Paper 
Strips), conductivity (cond; mS) (AD204 Stand-
ard conductivity pocket tester), and transparency 
(Tran; cm) (Secchi disk). Water samples were taken 
for laboratory determination of nitrate (N-NO3; mg 
N/l), nitrite (N-NO2; mg N/l), ammonium (N-NH4; 
mg N/l), total phosphorus (P-PO4; mg P/l), biologi-
cal oxygen demand (BOD5) and chemical oxygen 
demand (COD), following standard methods (APHA, 
1998). At each sampling session, the percentage of 
macrophyte coverage (macrop) was weighted by 
means of the Mapping Technique (Feijoó & Menén-
dez, 2009), which consists of establishing transects 
at known distances along the section under study and 
estimating the percentage of total macrophyte cov-
erage. Greater macrophyte coverage provides many 
microhabitats and refuge sites for macroinvertebrates.

Fig. 1   Geographical location of the streams studied. Carnaval Stream (C1, C2, C3); Rodríguez Stream (R1, R2, R3); El Pescado 
Stream (P1, P2), Cajaravilla Stream (CJ), Juan Blanco Stream (JB1, JB2, JB3)
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Data analysis

Assemblage description and natural variation 
analysis

For each sample site, we calculated density (num-
ber of exuviae/m2), species richness (S), diversity 
(Shannon–Wiener) and equitability, using program 
PAST 3.0 (Hammer et  al., 2001). All community 
parameters between sample sites were analyzed 
using ANOVA. Because the assumptions of normal-
ity and homoscedasticity of the variance were not 
met, non-parametric Kruskal–Wallis tests were per-
formed. This analysis was performed with R statis-
tical software with the Agricolae package (de Men-
diburu, 2019).

We used canonical correspondence analysis to 
evaluate the relationship between physical and chemi-
cal variables and species composition. Environmen-
tal variables were standardized (ter Braak, 1986) and 
selected according to their significance (p < 0.05). 
Multicollinearity was controlled by requiring a vari-
ance inflation factor (VIF) to be less than 20. These 
analyses were performed with the software CANOCO 
Windows version 4.5.

Seasonal differences in Chironomidae have been 
shown to vary naturally and must be used cautiously 
in environmental assessment (Lenat, 1983; Milošević 
et al., 2013, 2022). We performed two different mul-
tivariate analyses to assess the natural variability and 
discriminate it from variability caused by anthropo-
genic influence on both chironomid diversity and 
biotic metrics on the spatial and temporal scale. We 
performed a similarity analysis (ANOSIM) by apply-
ing the Bray–Curtis similarity index (Clarke, 1993) to 
examine whether there were significant differences in 
the density of species between streams in each season 
and between sites. Significance was computed by per-
mutation of group membership with 999 replicates. 
We applied SIMPER (Similarity Percentage) analy-
sis to samples which presented significant differences 
(p < 0.05), to assess which taxa are primarily respon-
sible for the observed difference between groups of 
samples (Clarke, 1993). All these analyses were car-
ried out in the statistical program PAST 3.0 (Hammer 
et al., 2001).

The natural variation in environmental variables on 
the spatial and temporal scale were assessed using the 
Kruskal–Wallis test, and the analyses were performed 

with R statistical software, applying the Agricolae 
package (de Mendiburu, 2019).

Biological traits analysis

We characterized species according to 3 larval and 7 
pupal traits (see Online Resource 1—Supplementary 
Material). The affinity of each taxon with each trait 
modality was encoded using a fuzzy variable ranging 
from 0 to 3, where a score of 0 indicates non-affinity, 
while a score of 3 indicates strong affinity of a taxon 
for a trait modality. The information of the affinity of 
each taxon for each trait was obtained from the litera-
ture. All categories were evaluated at species level. 
When no information was available at species level, 
we used data at the genus level. Information on larvae 
was obtained from Saigo et al. (2016) and Ocón et al. 
(in press), based on studies conducted in Neotropical 
environments. Missing information was completed 
with data obtained by Vieira et al. (2006), and Serra 
et al. (2016).

As Chironomidae pupal traits have not yet been 
used, we proposed several characters to be analyzed 
in this study. Some pupal attributes were obtained de 
novo from the material collected for this study, and 
others from Zanotto Arpellino et al. (2022). To quan-
tify the body size of pupae, we measured the length 
of the abdomen from segment 1 to the tip of the anal 
lobe, including the accessory structures such as anal 
macrosetae and/or the anal fringe. We did not con-
sider the cephalothorax because the emergent adult 
splits the dorsal pupal thorax in a Y shape, deform-
ing this segment and making measurement inaccu-
rate. Although the analysis focused on the study of 
Chironomidae pupal traits, we decided to include lar-
val traits to analyze and compare against pupal traits. 
All the traits used in this study are summarized in 
Table 1.

At each site in each season, we calculated two 
functional diversity measures: functional richness 
(FRic) and Quadratic Rao’s entropy (RaoQ) using the 
FD R package (Laliberté & Legendre, 2010). FRic is 
a measure of the overall spread of traits in a particu-
lar community (Villeger et al., 2008). RaoQ considers 
both the distribution of traits and species abundances, 
combining functional richness and divergence (Rao, 
1982). To assess the relationship between functional 
diversity measures and environmental variables, we 
used linear models with an Akaike-based forward 
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Table 1   Traits and their categories and codes used for Chironomidae larvae and pupae

Trait Trait category Code Bibliography/define categories

Larvae Functional feeding groups Collector-gatherer ColG Ocón et al. (in press)
Collector-filterer ColF
Scraper/grazer ScG
Predator Pred
Shredder Shre

Tube construction Tube absent TubAbs Vieira et al. (2006) and Serra et al. (2016)
Tube without 

shape, unorgan-
ized

TubUnorg

Tube rigid/case-like TubRig
Hemoglobin Present HBpres Vieira et al. (2006) and Serra et al. (2016)

Absent HBabs
Pupae Mean abdominal length 0.9–4 Size1 Measured from segment 1 to the tip of the anal lobe, 

including the accessory structures such as anal 
macrosetae and/or the anal fringe. Specimens were 
grouped according to mean abdominal length into 
three categories established by dividing the differ-
ence between the minimum and maximum values 
evenly

4.1–7.1 Size2
7.2–10.2 Size3

Voltinism Univoltine Univol Zanotto Arpellino et al. (2022)
Bivoltine Bivolt
Multivoltine Multivol

Emergence season Spring SeasonSP Zanotto Arpellino et al. (2022)
Summer SeasonSu
Autumn SeasonA
Winter SeasonW

Horn shape Without horn hornNO The thoracic horn is the respiratory organ in the 
pupa. It could be absent, or present with different 
features

With plastron Plastron
Simple Simple
Branched Brach
Plumose Plumose

Swimming structures Yes SwimYES Swimming structures refers to the presence of two 
characters: well-developed anal lobes and fringe of 
setae along the outer margins of anal lobe

No SwimNO
Armament structures Weak ArmamW The armament structures are the patterns of distribu-

tion of spines, spinules and tubercles found in 
the pupal abdomen, which are used by the pupae 
to anchor to the tubes built by the larva or to the 
substrate. Weak structures are shagreen and/or 
small spinules, while strong structures are spines, 
hooklet, pedes spurii B and anal comb/anal spur

Strong ArmamS



4299Hydrobiologia (2023) 850:4293–4309	

1 3
Vol.: (0123456789)

selection procedure. In these models, FRic and RaoQ 
were the dependent variables and environmental vari-
ables were the predictors. Finally, we performed an 
RLQ and fourth corner analysis (Dray et al., 2014) to 
evaluate the association between individual traits and 
environmental variables. The RLQ is an ordination 
method that combines the information of three matri-
ces, one containing the values of environmental con-
ditions in each site (called “R”) one containing the 
abundances of species in each site (called “L”) and 
finally one with the information about the biological 
traits of each taxon (called “Q”). Thus, the RLQ anal-
ysis explores the relationships between the environ-
ment and each biological trait. Moreover, the fourth 
corner method is a permutation method that evaluates 
the statistical significance of these relationships. All 
these analyses were performed in R statistical soft-
ware, available in the Ade4 library.

Results

Natural variation analysis

The ANOSIM of the temporal variation in species 
richness showed seasonal differences in every stream 
except for El Pescado Stream (p < 0.0118), which 
established the independence of the biological func-
tional traits analyzed in each season. SIMPER analy-
sis enables examination of the species which contrib-
ute to the dissimilarity between the seasons, and was 
consistent with a previous study on the phenology 
and voltinism of chironomids for the streams ana-
lyzed (Zanotto Arpellino et al., 2022). Out of the four 
seasons, spatial variation was significant (p < 0.01) 
only in Spring (Table 2).

The Kruskal–Wallis test of environmental vari-
ables revealed significant differences among sites 

for all variables (Online Resources 2 and 3—Sup-
plementary Material). The environmental variables 
in Juan Blanco Stream and El Pescado Stream were 
within the typical values for Pampean streams. Urban 
streams had the highest transparency and flow veloc-
ity (0–0.41  cm/s), and the lowest vegetation cover 
and depth. Rodríguez Stream had the highest levels 
of conductivity, pH, dissolved nutrients, BOD5, and 
COD.

Assemblage description

We collected a total 107,676 pupal exuviae belong-
ing to 54 species and 31 genera. Most species were of 
the subfamily Chironominae (27), while Tanypodinae 
(14) and Orthocladiinae (13) were less represented.

At control sites, density ranged from 0.01 to 58.39 
ind/m2 and the dominant taxa were Cricotopus sp.2, 
Parachironomus sp.2 and Rheotanytarsus sp.1. At 
highly impacted sites, average density ranged from 
0.01 to 189.4 ind/m2 and the dominant taxa were Chi-
ronomus calligraphus Goeldi, 1905 and Cricotopus 
sp.1, which accounted for 92% of the total abundance. 

Table 1   (continued)

Trait Trait category Code Bibliography/define categories

Current velocity preferences (cm/s) 0.0–1.6 VELO1 The values of all the sites sampled in all the seasons 
throughout the sampling period were taken and 
re-arranged from minimum to maximum. The 
distribution obtained was divided into three equal 
ranges, to which the specimens were assigned

1.7–3.3 VELO2
3.4–5 VELO3

Table 2   Results of ANOSIM analysis (based on Bray–Curtis 
dissimilarity) of the temporal and spatial variation in species 
richness. In bold type, thesignificant p-values (p ≤ 0.05)

Temporal variation Spatial variation

Stream R (p-value) Season R (p-value)

Juan Blanco 0.1335 
(p = 0.0011)

Winter 0.0481 
(p = 0.1016)

El Pescado 0.0628 
(p = 0.0118)

Spring 0.1674 
(p = 0.0038)

Carnaval 0.1031 
(p = 0.0002)

Summer  − 0.0888 
(p = 0.9205)

Rodríguez 0.2039 
(p = 0.0001)

Autumn 0.1174 
(p = 0.0194)
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The highest species richness, diversity, and equitabil-
ity were observed at sites C2, P2, and JB3, and the 
highest density was recorded in Rodríguez Stream 
(Table 3).

The first and second axis of the CCA explained 
90.6% of the variance in species–environment rela-
tionship (Eigenvalue 0.478 and 0.428), and both 
were different from randomization (p < 0.002). The 
first ordination axis showed a human impact gradi-
ent, where control sites were displayed on the right 
side of the axis, while the more highly impacted sites 
were on the left. The DO, macrophyte cover and 
depth were on the right side, while dissolved nutri-
ents, transparency, BOD5 and COD were on the left. 
Regarding species, C. calligraphus, Cricotopus sp.1 
and Dicrotendipes embalsensis Paggi, 1987 were on 
the left side, while the rest of the species were on the 
right (Fig. 2).

Functional richness and diversity

In winter, both FRic and RaoQ were significantly 
related to environmental variables. There was a 
negative relationship between FRic and COD and 
between RaoQ and PO4 (p < 0.05). In autumn, there 
was no significant relationship between FRic and any 
environmental variable. Conversely, RaoQ showed 
positive significant relationships with DO, tempera-
ture, depth and macrophyte cover, and negative rela-
tionships with current velocity, transparency, NO3 
and COD (p < 0.05). In spring, Fric was positively 
related to transparency, and negatively related to PO4 

and NH4. RaoQ was positively related only to DO 
(P < 0.05). In summer, FRic was negatively related to 
PO4 and BOD, while RaoQ was positively related to 
DO and negatively related to NH4 and NO2 (p < 0.05, 
Table 4).

Biological traits vs. environmental variables

The fourth corner analysis revealed that the traits 
body size, thoracic horn shape and current velocity 
were significantly related to environmental variables 
(Table 5).

Notably, most of these traits refer somehow to the 
pupal stage. The traits plumose shape of the thoracic 
horn, larger mean abdominal length, and preference 
for medium current velocity showed a positive rela-
tionship with the variables associated with human 
impact (dissolved nutrients, conductivity, BOD5, and 
COD) and a negative relationship with the variables 
associated with control sites (Fig. 3).

Discussion

This study explored how water quality affects the 
functional diversity of Chironomidae assemblages. 
Our results showed that both taxonomic and func-
tional structures of chironomid assemblages differed 
among streams with different water quality. The 
streams analyzed had high levels of nutrient concen-
tration and organic matter, especially the Rodriguez 

Table 3   Kruskal–Wallis 
(H) output for species 
richness, density, diversity 
and equitability. In bold 
type, the significant 
p-values (p ≤ 0.05)

Source of variation H p-value Posteriori

RICHNESS Site 76.21 7.90e−12 ↑ C2, P2, J3
Stream Reach 39.95 2.10e−09 ↑ Lower, middle
Stream 14.48 0.002 ↑ Carnaval stream

DENSITY Site 112.99 0 ↑ R1, R2, R3
Stream Reach 5.14 0.077 ↑ Lower
Stream 92.94 0 ↑ Rodriguez stream

DIVERSITY Site 78.24 3.22e−12 ↑ C2, P2
Stream Reach 35.25 2.21e−08 ↑ Lower, middle
Stream 24.88 1.64e−05 ↑ Carnaval stream

EQUITATIBILITY Site 47.24 1.95e−06 ↑ C2, P1, P2
Stream Reach 25.56 2.81e−06 ↑ Lower, middle
Stream 12.67 0.005 ↑ El Pescado and 

Carnaval Stream
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Stream. This is typical of rivers that run through 
urban areas (Alexander et al., 2000; Rabalais, 2002).

The density and dominance metrics were higher 
in impacted rivers, while the opposite trend was 
observed for species richness and diversity. This 
is consistent with previous studies that reported a 
decline in taxonomic diversity in freshwater ecosys-
tems subjected to change in water quality (Bini et al., 
2014; Wang et  al., 2016; Paz et  al., 2022). Previous 
studies have reported that macroinvertebrate densities 

could be high in impacted rivers because of tolerant 
species thriving. Species composition also differed 
between rivers. Previous studies have concluded that 
the taxonomic composition of chironomid assem-
blages is sensitive to nutrient enrichment (Maasri 
et al., 2008; Stewart et al., 2014). Our results showed 
that C. calligraphus and Cricotopus sp.1 were domi-
nant in the highly impacted stream, while in the rest 
of the rivers, these taxa were scarce or absent. This is 
in line with previous studies that reported high domi-
nance of these taxa in impacted rivers (Marques et al., 
1999; Vos et  al., 2000; Rosa et  al., 2014). Several 
authors have noted that several species of the genus 
Chironomus are tolerant and dominate many fresh-
water systems (Calle-Martínez & Casas, 2006; Chaib 
et  al., 2011), and are therefore used as indicators of 
anthropic impact (Moller Pillot, 2009; Cortellezi 
et al., 2011).

At the functional level, we found a negative rela-
tionship between functional richness, Rao’s quadratic 
entropy, and environmental variables that indicate 
human impact, such as dissolved nutrients, BOD5, 
and COD (Tilmann et  al., 2001). This result is con-
sistent with previous studies that reported lower func-
tional diversity in impacted rivers (Flynn et al., 2009; 
Kuzmanovic et al., 2017; Gutierrez et al., 2020; Liu 
et al., 2021). In this context, numerous authors have 
suggested that urbanization could imply an environ-
mental filter for species by means of habitat simpli-
fication, eutrophication, and pollution. This, in turn, 
could exert a homogenization effect on biological 
assemblages (Kuzmanovic, 2017), severely impair-
ing their functions, stability, and resilience (Olden 
et  al., 2004). However, the relationship between 
urban impact and community homogenization may 
be complex and context-dependent (Petsch et  al., 
2021). Our results suggest that in the systems stud-
ied, nutrient concentration and organic matter could 
imply an environmental filter for chironomids. This 
is consistent with the results reported for the Yang-
tze River, where the functional diversity of chirono-
mids was negatively affected by eutrophication (Jiang 
et al., 2019), and natural forested areas promoted the 
functional diversity of macroinvertebrates (Liu et al., 
2021). Similarly, an analysis of rivers impacted by 
trout farming in Serbia concluded that nutrient con-
centration (NH4 and NO3) was one of the main envi-
ronmental drivers of Chironomidae assemblages 
(Milošević et  al., 2018). A recent study performed 

Fig. 2   Biplot showing distribution of sites vs. environmental 
variables (A) and species vs. environmental variables (B) with 
respect to the physical, chemical and hydraulic variables. Car-
naval Stream (C1, C2, C3); Rodríguez Stream (R1, R2, R3); El 
Pescado Stream (P1, P2), Cajaravilla Stream (CJ), Juan Blanco 
Stream (JB1, JB2, JB3). Species acronyms are provided in 
Online Resource 1—Supplementary Material
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in Mongolia showed that land use intensity led to a 
decline in functional diversity and that NO3 was one 
of the main drivers of biological traits of macroin-
vertebrate assemblages (Yadamsuren et al., 2020). In 
South America, Paz et al. (2022) also concluded that 
the functional diversity of macroinvertebrates was 
negatively affected in urban–industrial streams.

Our results revealed some relationship between 
water quality and individual biological traits. The 
plumose thoracic horn, which is a respiratory struc-
ture, was associated with highly impacted sites, 
showing a positive relationship with COD. The mor-
phology of the thoracic horn provides an example of 
correspondence between morphological characters 

and physiological adaptation (Rossaro et  al., 2007). 
Orthocladiinae species, which are mostly intolerant to 
low oxygen concentration, have a respiratory thoracic 
horn that is small or even absent (Marziali & Rossaro, 
2005). Some Chironominae species which are tolerant 
to low oxygen levels have a well-developed thoracic 
horn with multiple branches. This could be an eco-
logical adaptation to oxygen depletion as it increases 
the surface area for oxygen exchange by presenting a 
larger area/volume ratio than other types of thoracic 
horns (e.g., simple, branched) (Armitage et al., 1995). 
In a previous study, Paz et al. (2022) concluded that 
aerial respiration through spiracles in Chironomidae 
is a trait that is sensitive in urban–industrial streams. 

Table 4   Output of the 
linear model depicting 
the relationship between 
functional richness and 
environmental variables

Selected variables Estimate Std. Error t p-value

Winter FRic Transparency  − 2.7 1.775  − 1.521 0.145
COD  − 6.288 1.775  − 3.543 0.002**

RaoQ Intercept 14.624 1.452 10.07 0***
PO4  − 5.722 1.486  − 3.85 0.001***

Autumn FRic – – – – –
RaoQ DO 5.185 2.074 2.5 0.041*

Temperature 13.797 3.44 4.011 0.005**
Depth 5.968 2.241 2.663 0.032*
Current velocity  − 3.975 1.802  − 2.207 0.063
Transparency  − 6.682 2.325  − 2.874 0.024*
Macrophyte cover 6.04 1.852 3.261 0.014*
NO3  − 5.146 1.928  − 2.669 0.032*
COD  − 5.203 2.577  − 2.019 0.083

Spring FRic Depth 0.1882 0.11197 1.681 0.11
Transparency 0.34076 0.11617 2.933 0.009**
PO4  − 0.81684 0.12981  − 6.292 0***
NH4  − 0.43341 0.11365  − 3.814 0.001**

RaoQ DO 0.2591 0.1223 2.119 0.049*
Transparency  − 0.1568 0.1237  − 1.267 0.222
Macrophyte cover 0.1967 0.1345 1.462 0.162
PO4  − 0.2589 0.1509  − 1.715 0.104
NO3 0.1484 0.1193 1.244 0.23

Summer FRic pH 4.924 2.71 1.817 0.091
Temperature 4.833 2.707 1.786 0.096
PO4  − 9.135 2.669  − 3.422 0.004**
BOD  − 6.571 2.699  − 2.434 0.029*

RaoQ DO 6.656 2.78 2.394 0.033*
Temperature 4.566 2.392 1.908 0.079
Macrophyte cover 3.027 1.982 1.527 0.151
NH4  − 7.341 2.729  − 2.69 0.019*
NO2  − 4.985 2.112  − 2.36 0.035*
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Nonetheless, in Chironomidae the spiracles are pre-
dominantly absent (apneustic), although the metap-
neustic condition (with posterior spiracles only) 
occurs in some Podonominae (Cranston, 1995).

This is in line with the fact that urban impact often 
causes dissolved oxygen deficit in rivers due to the 
input of oxygen-demanding substances, including 
dissolved organic matter (Sánchez et  al., 2007; De 
Oliveira et  al., 2016). In this context, Chironomidae 
larvae have traditionally been considered as tolerant 
to organic pollution (Rosenberg, 1992). Our results 
suggest that oxygen depletion could be a challenge to 
some Chironomid pupae.

The preference for medium flow velocity 
(1.7–3.3  cm/s) was related to many of the envi-
ronmental variables that indicate urban impact. 
This is consistent with the fact that stream course 

modifications are known to alter river discharge 
(Dewson et  al., 2007). However, this effect is 
context-dependent, as different land uses may 
exert contrasting effects on river discharges. On 
the one hand, Walsh et  al. (2005) concluded that 
urban impact tends to increase river flow veloc-
ity by means of channel rectification and macro-
phyte removal. Because of their very low gradi-
ent, Pampean rivers are typically characterized by 
extremely low flow velocities (nearly 0 m/s) (Feijoó 
& Lombardo, 2007). The fact that species adapted 
to medium flow velocities were positively associ-
ated with nutrient concentrations and COD suggest 
a relationship between urban impact and river flow 
velocity in the study system.

Another trait associated with urban impact is larger 
body size, expressed in the trait mean abdominal 

Table 5   Results of the Fourth-Corner tests for seasons

Significant (p < 0.05) positive (+) and negative (–) associations are represented. Trait acronyms are provided in Table 1

Cond pH DO Tw Depth Cvel Tran Macrop PO4 NO2 NH4 BOD5 COD

Winter Size3  +   + 
SeasonSP  − 
Plumose  +   −   +   +   +   +   + 
Pred  + 
Shre  +   + 
VELO2  +   −   −   +   +   +   + 

Autumn Size1  − 
Multivol  −   + 
SeasonA  − 
Shre  +   +   +   +   + 
TubAbs  −   −   −   − 
TubRig  − 
VELO2  +   +   + 
VELO3  − 

Spring Size3  + 
SeasonSu  − 
SeasonA  + 
Plumose  + 
ArmamentW  + 
ArmamentS  − 
VELO2  +   +   + 

Summer Size1  − 
Size3  − 
Plumose  − 
Shre  − 
VELO2  −   + 
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length. In our results, mean abdominal length was 
associated positively with the variables indicating 
urban impact. Similar results were found by Serra 
et al. (2017).

Analysis of the biological traits of chirono-
mid pupae was effective in detecting impacts due 
to changes in water quality in streams. Our results 
agree with previous studies performed in the region 
and elsewhere. However, whereas most of the stud-
ies neglected the pupal stage of aquatic insects, the 
present study provides novel information on this 
overlooked issue. The advantages of this approach 
are many. First, even though the pupa is the last 

aquatic stage in the chironomid life cycle, it deter-
mines whether an aquatic ecosystem is suitable for 
certain species (Wentsel et  al., 1978). Moreover, 
the pupa is generally immobile and therefore a par-
ticularly vulnerable stage of the life cycle. Thus, 
focusing on larvae and neglecting pupae could lead 
researchers to underestimate the environmental 
challenges that chironomids face during the aquatic 
period of their life cycle. Moreover, the sampling 
method applied in this study has logistic advan-
tages. While larvae sampling requires a great effort 
to cover the diversity of microhabitats in a river, 
exuviae sampling integrates the information of the 

Fig. 3   Biplot depicting the distribution of Chironomidae biological traits and sample sites for season. Only significant traits 
(p < 0.05) are displayed
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entire river reach (Ferrington et  al., 1991; Wilson, 
1994; Coffman & de la Rosa, 1998).

Although chironomids are amongst the most 
diverse insect families (Armitage et al., 1995; Epler, 
2001), in most studies they are identified at a rela-
tively coarse level, conditioning the analyses of the 
ecological processes (Saulino & Trivinho-Strixino, 
2018). In our study, at impacted sites, the subfamily 
Orthocladiinae was represented by only one taxon 
(Cricotopus sp.1). Two other Cricotopus were highly 
abundant at the reference sites. The genus Cricoto-
pus is one of the Orthocladiinae genera with the larg-
est number of species and found in a wide range of 
habitats and water quality conditions (Harrison, 1992; 
Anjos & Takeda, 2010; Drayson et  al., 2015). The 
utilization of functional traits at genus level, or even 
family level, may be insufficient to explain the rela-
tion between functional diversity and biological traits. 
The use of chironomid exuviae enhances the preci-
sion of taxonomic determinations (Coffman, 1973; 
Wilson & Bright, 1973; Wilson, 1980) and may there-
fore lead to new insights into the ecological aspects of 
the species of Chironomidae for the Neotropics.

Finally, our results support previous studies that 
have shown the benefits of using chironomids in dif-
ferent bioassessment programs, estimation of specific 
types of contamination, as well as improvement and 
increase in bioassessment accuracy (Lenat, 1983; 
Koperski, 2009; Milosević et  al., 2018). Although 
there is temporal variation of the species, our results 
show that such variation is determined mainly by 
phenology and voltinism, in agreement with Serra 
et al. (2017) and Zanotto Arpellino et al. (2022), and 
that this natural variability is a factor that should be 
considered in environmental evaluations (Kerans & 
Karr, 1994; Lindegaard & Brodersen, 1995; Langton 
& Casas, 1998; Rossaro et al., 2006).

Conclusion

The present study is, as far as we are aware, the first 
to address the effects of urban impact on functional 
diversity and biological traits of chironomid pupae. In 
line with previous research, we conclude that urban 
and industrial impact tend to decrease the functional 
richness and RaoQ quadratic entropy. Moreover, we 
reported that some pupal traits were sensitive to urban 
impact, suggesting that pupae could be a crucial stage 

of the chironomid life cycle in rivers under urban and 
industrial impact. The main traits associated with 
the contamination conditions were maintained in the 
different environments throughout all seasons, pro-
viding an important tool for biomonitoring aquatic 
environments.
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