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Abstract The fish communities in the Yangtze
River (YR) basin is in a degraded state due to the
influence of human factors. Here, we used environ-
mental DNA (eDNA) metabarcoding technology to
conduct a survey on the fish diversity in the upper
reaches of the YR from Jiangjin to Fuling to search
for better monitoring methods. We set up 12 sampling
sites in this river section, collected 36 environmen-
tal samples, and obtained 5,067,423 valid sequences.
After conducting an annotated comparative analysis
utilizing the NCBI public database, a total of 104
freshwater fish species were identified, belonging to 8
orders, 24 families, and 72 genera. This included six
nationally protected fish species, as well as endemic,
introduced, and previously unrecorded species within
this basin. The results of this survey indicate a trend
toward miniaturization of species and a decline in
endemic fish species as well as an increase in exotic
fish species in the region, which implied the fish
communities in the upper YR region remains in a
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degraded state. However, the species composition at
the family level has remained relatively stable over
the past decade. Furthermore, the diversity analysis
revealed that fish composition and diversity exhibit
variability across different locations.
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Introduction

The Yangtze River (YR) is the world’s third-longest
river, having a total length of 6380 km (Shen et al.,
2019). The upper reaches of YR refer to the main-
stream section from Yibin to Yichang, which includes
a variety of geomorphological types, such as moun-
tains, hills, and plains, with a substantial elevation
variation in the riverbed of more than 1500 m, alter-
nating slow and fast currents and complex flow pat-
terns (He et al., 2010; Wei, 2012; Liu et al., 2019;
Meng et al., 2019). It is home to several rare and
endemic fish species, as well as being a critical loca-
tion for the conservation of the genetic germplasm
and biodiversity of fish (Xie & Chen, 1999; Qin
et al., 2008). The intricate topography and hetero-
geneous climate of the YR basin have engendered a
wide variety of aquatic habitats, thereby fostering a
diverse array of aquatic communities, comprising
over 400 fish species (approximately 360 freshwater
fish species), with endemic fish constituting up to
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42% of the overall fish number (Cao, 2011; Liu et al.,
2019). Meanwhile, there are 286 fish species in the
upper YR, including 124 endemic fish, accounting
for 79.49% of all endemic fish in the YR (He et al.,
2010; Cao, 2011; Wei, 2012; Meng et al., 2019). With
a total length of nearly 200 km, the section of the YR
from Jiangjin to Fuling is located in the middle of
the upper reaches. It is a crucial section in the upper
reaches that includes the National Aquatic Germ-
plasm Resources Conservation Area of the four major
Chinese carps in the Chongqing Section of the Yang-
tze River (the reserve of the four major Chinese carps
(Ctenopharyngodon idella (Valenciennes 1844),
Hypophthalmichthys molitrix (Valenciennes 1844),
Hypophthalmichthys nobilis (Richardson 1845), and
Mylopharyngodon piceus (Richardson 1846)) and the
connecting section of the national nature reserve of
rare and endemic fish in the upper YR and the reserve
of the four major Chinese carps.

As an essential part of the water ecosystem, fish
impact the water environment and numerous aquatic
organisms via upstream and downstream effects (Reis
et al., 2020). However, due to anthropogenic factors,
including dam construction, dredging and quarrying,
and channel regulation, the endangerment of fish in
the YR is increasing, and the number of threatened
fish species is highest in the upper reaches of the
YR basin (Jiang et al., 2016b). According to recent
research, miniaturization of fish species is a serious
problem in the upper YR, and endemic fish communi-
ties have been drastically reduced (Gao et al., 2015;
Yang et al., 2017; Wang et al., 2019; Zhou et al.,
2022). Meanwhile, the number of some fish species
that are not native to the upper mainstream area of
the YR, such as Neosalanx taihuensis (Chen 1956)
and Pseudolaubuca engraulis (Nichols 1925), which
prefer slow or still water habitats, have increased in
the upper reservoir area (Gao et al., 2015; Yang et al.,
2017; Wang et al., 2019; Zhou et al., 2022). Accord-
ing to previous research, the development of the upper
YR cascade hydropower will fragment the habitats of
134 species of fish, restrict the migratory paths of 35
species, and impact the reproduction of 26 species
which reproduce by drifting eggs fish (Cheng et al.,
2015). Hence, the fish communities in the upper YR
must be protected immediately.

Fish diversity is an essential aspect of biodiversity
in aquatic ecosystems and a critical indicator that can
be used to assess the health of aquatic ecosystems

@ Springer

(Holmlund and Hammer 1999; Zou et al., 2020). Sev-
eral researchers have explored and analyzed the upper
reaches of the YR, which is a hotspot for fish diversity
research. Traditional fishing methods (e.g., gill nets,
ground cages, etc.) are still widely employed in the
YR to monitor the fish diversity (Wu et al., 2011; Gao
et al., 2013; Xing et al., 2021), which is not only time-
consuming and the results are contingent, but is also
hazardous to fish and to the environment. Further, it
is challenging to discover rare or small-sized fish with
this technique (Becker et al., 2015; Sales et al., 2018).
Furthermore, acoustic detection has been utilized to
monitor YR fish (Shi 2019), however, this approach
focuses more on the density of species than on spe-
cies-specific identification. Simultaneously, in a non-
invasive manner, eDNA technology has been used
extensively due to its ability to gather information on
the presence of species and even produce quantitative
estimations of species (Doi et al., 2017).

By extracting DNA from the environment, select-
ing appropriate primers, and integrating molecular
biology techniques such as PCR and DNA sequenc-
ing, eDNA techniques are utilized for the qualitative
or quantitative analysis of species. All DNA present
in environmental samples, including mixed DNA
from inside and outside the cells of the target organ-
ism, such as epidermal cells, secretions, germ cells,
and so on, are referred to as eDNA. This allows us to
determine the presence of the species in the approxi-
mate range without collecting organisms (Taberlet
et al., 2012; Thomsen et al., 2015; Balasingham et al.,
2018). The technology is also commonly used in
the YR basin (Qu et al., 2020; Li et al., 2021; Wang
et al., 2022). Even though eDNA is easily affected
by many environmental factors, including the tem-
perature, ultraviolet light, and pH (Bohmann et al.,
2014, Strickler et al., 2015), studies have shown that
the detection efficiency and sensitivity of this technol-
ogy can be higher than those of traditional monitor-
ing methods (Dejean et al., 2012; Jerde et al., 2013;
Valentini et al., 2016), indicating that eDNA technol-
ogy is an effective complementary tool for traditional
monitoring methods (Hinlo et al., 2017).

On January 1, 2021, the “10-year ban on fishing in
the YR basin” came into effect. Traditional resource
survey approaches have been constrained in the con-
text of YR preservation. In this study, the eDNA tech-
nique was used to analyze the fish species composi-
tion in the upper reaches of the YR from Jiangjin to
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Fuling to explore its applicability for fish monitoring
and provide data for the “10-year ban on fishing the
YR

Materials and methods
Study area

The river section from Jiangjin (106° 26’ 44.43" E,
29° 21" 9.72" N) to Fuling (107° 30" 30.35" E, 29°
53" 6.02" N) is roughly 200 km long and is located in
the upper reaches of the YR. A total of 12 sampling
sites were established in this river section, with four
points in the non-protected areas, Luo Huang (LH),
Da Dukou (DDK), Chao Tianmen (CTM), and Xia
Kou (XK), and eight points in the protected areas,
Guang Yangdao (GYD), Mu Dong (MD), Ma Liu
(ML), Chang Shou (CS), Shi Tuo (ST), Li Du (LD),
Qing Xi (QX), and Nan Tuo (NT) (Fig. 1).

eDNA sampling and processing

In early August 2021, water collectors gathered 8 1
of surface water within 50 m of each sampling point
along the riverbank, which was further mixed, and
then 6 1 of the water samples were divided into three
polyethylene bottles (3 replicate samples), a total of
36 samples. Before collecting water samples from
several sampling sites, all equipment and sampling

106°21'40"E
i

bottles were rinsed with a 10% bleach solution and
replaced with disposable gloves to prevent exogenous
DNA contamination (Dibattista et al., 2017). Within
24 h, the water samples were immediately stored
under refrigeration and pumped through a vacuum
peristaltic pump onto a 0.45 pm mixed cellulose
membrane (Whatman, UK). Water samples with sedi-
ments were pre-filtered using sterile medical gauze
before collection (Stewart et al., 2017). Similarly,
all filtering apparatus were sterilized before sample
filtration to avoid cross-contamination between sam-
ples. A negative control was also set up with distilled
water at the time of filtration (Zhang et al., 2020).
Finally, the membranes were frozen at — 80°C until
use in the next DNA extraction step.

The total DNA from the water samples was
extracted from the filter membrane using the Pow-
erWater DNA Isolation Kit (Qiagen) in accordance
with the instructions of the manufacturer. Next, 1%
gel electrophoresis was used to detect the quality of
the extracted eDNA. Each sample was extracted sepa-
rately, and a blank filter membrane was established
as a negative control simultaneously. Finally, the
extracted DNA samples were stored at — 80°C until
the next step of PCR amplification.

The samples were amplified using universal prim-
ers (tele02-F: 5'-AAA CTC GTG CCA GCC ACC-3';
tele02-R: 3'-GGG TAT CTA ATC CCA GTT TG-5"),
which amplify a short fragments of the 12S rRNA
mitochondrial gene (Taberlet et al., 2018). The 20
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ul TransStart Fastpfu DNA polymerase amplifica-
tion system contains 4 pl of 5xFastPfu buffer, 2 pl
of dNTPs (2.5 mM), 0.4 pl of FastPfu polymerase,
1-2 pl of template DNA (10 ng), 0.8 ul of each of the
upstream and downstream primers (10 uM in total).
It was made up to 20 pl with ddH,0. The following
PCR reaction conditions were used: predenaturation
at 95°C for 5 min, 35 cycles of 95°C for 30 s, 58°C
for 30 s, and 72°C for 45 s, and a final extension at
72°C for 10 min. The ddH,O was used as a template
for the PCR negative control to determine whether
contamination occurred during the PCR amplifica-
tion. The PCR amplification process was repeated
three times for each sample, and their PCR products
were mixed and detected by 2% agar gel electro-
phoresis. The target bands in this investigation were
obtained by electrophoresis for 36 samples and were
found to be around 167 bp in length, but none of
the negative controls had a target band. Finally, the
purified PCR products were recovered, then the Illu-
mina PE250 library preparation was constructed and
sequenced via paired-end sequencing by the Illumina
sequencing facility.

Bioinformatic analyses and taxonomic assignment

Firstly, some poor-quality sequences, such as those
less than 100 bp in length, were filtered out using
Trimmomatic v.0.36 (Bolger et al., 2014), and pairs
of reads were merged into a sequence using FLASH
(v.1.2.11) (Magoc¢ and Salzberg 2011). Then, the chi-
meras were removed using Usearch software com-
bined with the reference sequences of the GOLD
database and denovo sequences. Using Usearch
(version 10 http://driveS.com/uparse/), high-quality
sequences were combined as “parent—child” sets with
97% similarity (Zhang et al., 2022), and the unique
sequences were obtained. Later, the comparison and
taxonomic annotation were done on the public data-
base, NCBI (https://www.ncbi.nlm.nih.gov/) with the
Blastn tool using the uclust algorithm. A preliminary
taxonomic (i.e., molecular operational taxonomic unit
(MOTU)) annotation table was obtained by searching
the unique sequences in the public database using cri-
teria of >97% similarity (Sales et al., 2020), e < 1073,
and coverage>0.9. The results obtained from the
annotations were manually filtered to remove MOTUs
sequences of non-fishes, and then combined with his-
torical data from the Yangtze River basin to screen
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out MOTUs sequences of fish that are unlikely to
belong to the region. Finally, MOTUs with sequence
numbers of greater than ten were retained (Shu 2022;
Zhang et al., 2022).

Reads from each sample were randomly selected
using QIIME v.1.9.0 to normalize all eDNA sample
data by the smallest number actually sequenced in all
samples (Caporaso et al., 2010). After standardiza-
tion, the relative sequence abundance (read ratio) of
each species in each sample was kept constant. The
averaged values of three parallel samples were taken
for subsequent analyses such as species composition,
alpha diversity, and beta diversity. The species com-
position mapping was based on the species sequence
abundance > 1%, where parts with an abundance of
less than 1% can be merged with others (Wang et al.,
2022). The alpha diversity, often expressed as the
species richness, is the diversity of species within a
relatively small area and reflects the results within a
sample (Tuomisto 2010). The beta diversity analysis
shows the variation in species characteristics across
sites, reflecting the relationships among samples
(Anderson et al.,, 2011). Based on the Bray—Curtis
distance, the principal co-ordinates analysis (PCoA)
and non-metric multidimensional scaling (NMDS)
analysis were selected for the beta analysis.

Based on the relative sequence abundance of the
species, the Shannon index (Shannon 1948), Simpson
index (Simpson 1949), and Pielou index were calcu-
lated for each site, and the McNaughton index was
used to determine the dominant species (Ling et al.,
2022; Woodland et al., 2019). The Shannon index
measures the community diversity by taking the rich-
ness and evenness of the community into consid-
eration, with a higher index values indicating higher
community diversity (Shannon 1948). The Simpson
index commonly represents an area biodiversity,
where higher values indicate a lower community
diversity (Simpson 1949). The index is calculated as
follows:

Shannon-Wiener index: H' = Z P;logP;, P, = n[-/N @))]

Simpsonindex : D=1 — [Zni(ni— 1)]/N(N— 1
)

Pielouindex : J=H/H,,, 3)


http://drive5.com/uparse/
https://www.ncbi.nlm.nih.gov/

Hydrobiologia (2023) 850:4067-4088

4071

McNaughtonindex : Y; = n; / N'f; )

In the formulas, N is the total number of fish
sequences detected; n; is the number of sequences of
the i-th fish species; H is the Shannon index; H,,, is
the maximum Shannon index that can be achieved
with the same species richness (i.e., when the abun-
dance of all species in the community is identical);
Y; is the dominance index of the i-th fish species
(species with ¥;>0.02 are dominant); and f; is the
frequency of occurrence of species i. The statisti-
cal analysis was performed and figures were gener-
ated using the Biozeron Cloud Platform (http://www.
cloud.biomicroclass.com/CloudPlatform).

Results
Sequence information and taxonomic assignment

A total of 5,067,423 valid sequences were collected
from 12 sample locations. The sequenced data are
published in the NCBI sequence Read Archive
(SRA) database (accession numbers: SRR19217018-
SRR19217053). A total of 62 MOTUs were shared
by all sampling sites, which accounted for 59.62% of

Fig. 2 Petal map of
MOTUs with fish in this

. . . .
river section contained in %
each sampling site. (The
number in the middle of the
petal map represents the

the total number of MOTUs in the fish with this river
section (Fig. 2). A comparative annotation analysis of
the database the fish in the Jiangjin to Fuling section
of the upper YR included eight orders, 24 families,
72 genera, and 104 fish species based on recovered
MOTUs (Table 1).

Fish species composition based on historical
information and eDNA

Over the last 10 years, we have collected data from
the YR section from Yibin to Wushan (Li et al., 2013;
Xiong et al., 2015; Wei et al., 2021). In this section,
there are 175 fish species belonging to 11 orders, 28
families, and 98 genera, included 11 national-level
protected fish species, 12 municipal-level protected
fish species, and 79 endemic fish species (Table S1).
The Cyprinidae represent the most species-rich fam-
ily in the region, accounting for 56.57% of the popu-
lation, followed by the Cobitidae at 9.14% and Bagri-
dae at 8.57%, while the specie number of all other
families are low (Fig. 3b).

In the eDNA data, based on number of species,
Cyprinidae (n=54) was shown to have the high-
est share of 51.92%, followed by Cobitidae (n=11)
with 10.58% and Bagridae (n=10) with 9.62%. The
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[ Cyprinidac 51.92% B Cyprinodontidac 0.96%

Cobitidac 10.58% B Pocciliidac 0.96%
/// [ Bagridae 9.62% Bl Clariidac 0.96%
B serranidac 2.88% Ictaluridae 0.96%

/ [ Salangidae 1.92%

. Centrarchidae 1.92% . Catostomidae 0.96%

. Amblycipitidae 1.92% . Engraulidae 0.96%
Siluridae 1.92%

[ Bulitoridae 1.92%
Acipenseridae 1.92%
Sisoridae 0.96%
Belontiidae0.96%

| Mastacembelidae 0.96%
Eleotridae 0.96%

B Gobiidac 0.96%

[ Cichlidae 0.96%

[ channidae 0.96%

. Synbranchidae 0.96%

[ Cyprinidae 56.57% [ channidac 0.57%
Cobitidae 9.14% . Synbranchidae 0.57%
[ Bagridae 8.57% B rocciliidae 0.57%
Bl Gobiidac 2.29% Ictaluridac 0.57%
’ W seranidac 1.71% [l Catostomidae 0.57%
‘ Acipenseridae 1.71% . Engraulidae 0.57%
- [0 salangidae 1.14% B Polyodontidac 0.57%

/ I Balitoridac 4.00% B Loricariidac 0.57%
B Amblycipitidac 1.71% B Anguillidae 0.57%
Belontiidae 1.14%

Eleotridae 1.14%

Sisoridae 1.14%

Siluridae 1.14%
B Clasiidae 1.14%

q

Serrasalmidae 0.57%
[ Hemiramphidac 0.57%
[ Cichlidae 0.57%

. Percoidea 0.57%

H

Fig. 3 Family level composition map based on eDNA (A) and traditional methods (B) (Li et al., 2013; Xiong et al., 2015; Wei et al.,
2021). (The boxed families are unique to this result)
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remaining families contained no more than three
species each (Fig. 3a). The results of this study also
included six national protected fish species Acipenser
sinensis (Gray 1835), Coreius guichenoti (Sauvage
et Dabry 1874), Rhinogobio ventralis (Sauvage et
Dabry 1874), Schizothorax davidi (Sauvage 1880),
Leptobotia rubrilabris (Dabry 1872), Myxocypri-
nus asiaticus (Bleeker 1864), three municipal-level
protected fish species Ochetobibus elongatus (Kner
1867), L. rubrilabris, Leptobotia microphthalma (Fu
et Ye 1983), and 19 species of fish that are endemic to
the upper YR, along with 17 exotic species, account-
ing for 16.35% of the total number of species.

The species composition differed between sam-
pling sites at the genus level, as shown in Fig. 4. The
McNaughton index was used to determine the species
dominance, and the eight dominant fish species in
the YR section were shown to be C. idella, Hemicul-
ter tchangi (Fang 1942), Rhodeus sinensis (Glinther
1868), Pseudorasbora parva (Temminck et Schlegel
1846), Cyprinus carpio (Linnaeus 1758), Triplophysa
cf. rosa (Chen et Yang 2005), Tachysurus fulvidraco

100 —

(Richardson 1846), and Rhinogobius cliffordpopei
(Nichols 1925), which all exhibited extremely high
levels of relative sequence abundance at all sampling
sites. In contrast, M. asiaticus, Elopichthys bambusa
(Richardson 1845), O. elongatus, Acheilognathus cf.
rhombeus (Temminck et Schlegel 1846), and 16 other
fish species were found exclusively at a few sampling
points (<5 sampling points) with extremely low rela-
tive sequence numbers. Moreover, the overall rela-
tive sequences abundance of the “Four major Chinese
carp” varied considerably in this river section. C.
idella was dominant in terms of its relative sequence
abundance among the “Four major Chinese carps,”
followed by H. molitrix, then H. nobilis and finally M.
piceus.

On one hand, the division of fish by habitat stra-
tum at each sampling site revealed that demersal
fish accounted for more than half of all fish species,
whereas benthopelagic fish accounted for 40% to
54%, based on the relative sequence abundance. In
contrast, the spawning types of results demonstrated,
based on the species number and relative sequence

H = B E BB = pgEEN
—
— = - — - — |
. - -
80 = [ ] | B |
|
[ ]
|
o
S
o 60
5}
=}
5
el
=]
2
<
o
2 a0
=
B}
o~
20 —
0
LH CT™ GYD MD ML CS ST LD QX NT
B Cyprinus B Pseudorasbora O  Ancherythroculter O Gambusia B Opsariichthys B Coilia
B Tachysurus O Triplophysa O Carassius B Squaliobarbus 3 Pseudobrama B Others

O Hemiculter O Rhodeus
B Crenoph de B Rhi hi

O Micropercops

O Hypophthalmichthys

B Schizothorax
O Paramisgurnus

B Neosalanx
B Siniperca

Fig. 4 Species composition of fish at the genus level based on the relative sequence abundance
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abundance, that adhesive eggs accounted for more
than 50% of all egg types at each sampling site.
Between the sampling points, the percentages of dif-
ferent habitat layers or different spawning types were
relatively similar (Fig. 5).

Alpha diversity analysis

Each sampling point had a coverage of between
0.999959 and 0.999908, suggesting that the sequenc-
ing depth included all sequences and reflects the true
situation of the samples (Chen, 2020). The mean
Shannon index value for the 12 sampling sites ranged
from 2.346796 to 2.721591. The LH had the highest
Shannon index value among all sampling sites, indi-
cating the highest community diversity. QX had the
lowest value, indicating that it had the lowest commu-
nity diversity. Despite the fact that the Simpson index
showed the opposite trend to the Shannon index, it had

Al. 100 A2. 100
75
0] 0]
2 50 g
=] =]
[} [
5 5
A [~

25

LH CTM DDK XK GYD MD ML CS ST LD QX NT

B1. 100 B2.100

75 75

= &
N

o
g’n )
& 50 8 50

=]
= )
1) o
o 2
5 5}
o =¥

2

W

25

75

50

LH CTMDDK XK GYD MD ML CS ST LD QX NT

LH CTMDDK XK GYD MD ML CS ST LD QX NT

roughly the same meaning. Furthermore, the Pielou
index of each sampling site was not significantly dif-
ferent, suggesting that the species distribution was con-
sistent across the sampling sites.

Beta diversity analysis

The X-axis PC1 accounted for 21.56% of the variance
in the sample composition, the Y-axis PC2 explained
18.537%, and the Z-axis PC3 accounted for 11.264%.
These values were calculated by the PCoA of each
sampling point (Fig. S1). Except for four sampling
sites, LH, MD, ML, and XK, which were far apart
from each other, all sampling points were closer to
each other, indicating that the fish compositions of
the LH, MD, ML, and XK locations varied more
than at the other sampling points.

We divided the 12 sampling sites into 12 groups
(three parallel samples from each sampling site were

B Benthopelagic fishes
@ Demersal fishes
B Pelagic fishes

LH CTMDDK XK GYDMD ML CS ST LD QX NT

B Adhesive eggs
O Drifting eggs
® Other types

B Demersal eggs
O Pelagic eggs

Fig. 5 Habitat stratigraphy classification (A1 based on the number of species; A2 based on the number of sequences) and spawning
types (B1 based on the number of species; B2 based on the number of sequences B2)
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grouped) and used the Bray—Curtis distance matrix
to conduct an NMDS analysis of the species compo-
sition at the species level. We obtained a stress score
of 0.10969, indicating that the results have some
explanatory significance. The findings revealed that
the fish composition was dissimilar between the sub-
group samples (nmdsl, R?=0.21, P=0.02; nmds2,
R*=0.58, P=0.30). In Fig. S2, MD, XK, and GYD
are scattered and far apart from other sampling
sites, implying that the fish compositions at these
three sampling points is more differed from that of
other sampling points. This result is similar to that
obtained in the PCoA.

Discussion
Species composition

In the upper reaches of the YR from Jiangjin to Ful-
ing, a total of 104 species of freshwater fish were
found using eDNA technology, with a coverage rate
of 70%. This is compared to the 149 species of fish
contained in the most recent reference in histori-
cal data. The composition results at the family level
based on eDNA revealed proportions of 51.92%
Cyprinidae, 10.58% Cobitidae, and 9.62% Bagridae.
These results are similar to those obtained with tra-
ditional methods in the previous decade, indicating
that eDNA technology has some applicability in this
watershed and could be a significant complementary
tool for conventional investigation methods (Jiang
et al., 2016a; Wang et al., 2022).

According to the survey findings, the “Four major
Chinese carp” sequence abundance vary considerably
in this river section. It may be related to their living
habitat, in terms of the relative sequence abundance,
the results showed a ranking of C. idella> H. moli-
trix> H. nobilis> M. piceus. Based on this, C. idella
is the most active and lives closest to the surface,
followed by H. molitrix and H. nobilis, M. piceus is
the least active (Xian et al., 2010; Xu et al., 2017).
Our survey was primarily conducted in surface water,
leading to more mixed DNA of C. idella and H.
molitrix, which have active habits. Hence, they have
higher relative sequence abundances than the other
two fish species. Furthermore, the amount and rate
of eDNA released into the water was shown to vary
among the species, and the activity of an organism

was demonstrated to influence the amount of eDNA
released into the water column (Geerts et al., 2017,
Minamoto et al., 2017). This suggests that we should
use a mixture of upper, middle, and lower water sam-
ples for eDNA sampling.

The current status of fish communities

Twenty-two species included in the present survey
results, such as Misgurnus cf. mizolepis (Giinther
1888), T. rosa, and Sinobdella cf. sinensis (Bleeker
1870), are not contained in historical data. It is possi-
ble that the scarce numbers or specific habits of these
species resulted in them not being observed in this
river section by conventional methods [e.g., O. elong-
atus, Hemiculterella sauvagei (Warpachowski 1888)].
In addition, it has been shown that traditional DNA
macrobarcoding is unable to distinguish some sib-
ling species (Shen et al., 2019). In the eDNA method,
the barcodes are shorter, which would result in a low
taxonomic resolution and therefore a failure to distin-
guish some sibling species [e.g., Siniperca cf. obscura
(Nichols 1930) and Siniperca chuatsi (Basilewsky
1855)], which would have to be further validated by
traditional methods (Sales et al., 2020, 2021). This is
a limitation of the current eDNA method. Meanwhile,
the Yangtze River has an extremely rich fish diversity,
and there is also a possibility that some species could
not be assigned to the correct species because their
information was not included in the reference data-
base (Li et al., 2019). However, these are the cases of
a very small fraction of species and need to be han-
dled with caution when making relevant descriptions.

Previous studies have shown that fish in the upper
YR tend to undergo species miniaturization (Wei
et al., 2021), and our study results support this con-
clusion. The study revealed that the dominant fish
species in the Chongqing section of the YR main-
stream in 2019 included H. nobilis, Saurogobio
dabryi (Bleeker 1871), and H. molitrix (Wang et al.,
2021). However, our results showed that small fish
species, such as H. tchangi, R. sinensis, and P. parva
had the highest relative sequence abundances, which
may be related to the overfishing that occurred before
the fishing ban (Chen, 2016). However, it is also pos-
sible that smaller fish are more active and shed more
DNA (Minamoto et al., 2017), or the results may be
related to the sampling time and frequency. There-
fore, it is important to perform multi-season and
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multi-frequency sampling to obtain more accurate
results from the eDNA method.

Meanwhile, the number of endemic fish species
was shown to account for 18% of all fish species con-
tained in the eDNA results and 20% of the endemic
fish species in the historical data, which implies a
possible declining trend in the number of endemic
fish species in the upper YR, while other studies have
also shown a decline in the number of endemic fish in
the Three Gorges reservoir area in the upper YR (Wei
et al., 2021), possibly owing to habitat destruction
(Yang et al., 2017). The study also discovered a high
proportion of demersal fishes and adhesive egg fish in
the upper reaches of the YR from Jiangjin to Fuling,
which may be related to the formation of the Three
Gorges Reservoir area (the nearest sampling site is
about 492 km away from the Three Gorges Dam),
leading to slower water flow, an increased water
depth, sediment deposition, and increased bait organ-
isms for demersal fish. The formation of the reservoir
area is more favorable for the survival of demersal
fish and adhesive egg fish (Cao, 2019). In summary,
the current state of degradation of fish communities
in the upper YR should be seriously considered, and
necessary measures must be taken to protect them.

Fish diversity

Table 2 depicts the alpha diversity index of the fish
community abundance. The Shannon and Simpson
indices synthetically reflect the diversity and even-
ness of the species (He, 2016). The Shannon index

Table 2 Alpha diversity index of each sample

Sample  Shannon Simpson Pielou coverage
LH 2721591  0.893771  0.606329  0.999951
DDK 2.582817  0.864963  0.576865  0.999920
CTM 2483002  0.864995  0.549119  0.999923
XK 2466842  0.861550  0.559791  0.999943
GYD 2384609  0.867316  0.539646  0.999929
MD 2704738  0.887118  0.608812  0.999954
ML 2.622857  0.887673  0.587307  0.999959
CS 2.510026  0.870916  0.562042  0.999953
ST 2.661453  0.887292  0.597496  0.999915
LD 2489412 0.865433  0.566490  0.999941
QX 2346796  0.848250  0.524150  0.999942
NT 2.445789  0.863395  0.550525  0.999908
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and Simpson index values were the highest for LH,
revealing that this sampling site contains the highest
fish community diversity, which may be related to
the richness of the fish species and the evenness dis-
tribution of sequences at this sampling site. Based
on the above two indicators, QX was found to have
the least number of fish species, which could be
attributed to the sampling site proximity to a freight
terminal and the high influence of human factors
at this site, resulting in a reduced fish abundance.
Nevertheless, different indices for assessing the fish
diversity have different emphasis, and the commu-
nity richness index is not a perfect indicator of high
community diversity (Ling et al., 2021).

The PCoA and NMDS analyses of each sampling
site revealed that the fish species compositions at
the LH, GYD, MD, ML, and XK sampling sites
differed from those at other sampling sites, which
could be related to the river topography and anthro-
pogenic activities carried out near the sampling
sites. It has become clear that the abundance and
density of fish species are linked to the horizontal
area and dimensions of river basins. The species
composition and diversity of these fish communi-
ties are directly influenced by the longitudinal slope
drop and bed substrate of rivers, among other fac-
tors (Platts, 1979; Walters et al., 2003; Liao 2021).
Anthropogenic activities such as cultivation, laun-
dering of clothes, and machine operations can alter
the nitrogen and phosphorus elemental contents
and sediment the content of the water, affecting the
distribution and diversity of fish (Liu et al., 2004;
Shi et al., 2018). Other sampling sites showed com-
parable results close, implying that they had more
similar fish species composition, probably because
they are continuous rivers with no obstacles in
the center, allowing fish to swim back and forth
between nearby sampling sites. Meanwhile, eDNA
can be transported downstream at least 50 km in
large rivers. Thus it is possible that the similarities
in the fish species composition are also due to the
transmission of eDNA by rivers (Pont et al., 2018).

Exotic species

This survey discovered Acipenser schrenckii (Brandt
1869), Coilia brachygnathus (Kreyenberg et Pappen-
heim 1908), Neosalanx cf. tangkahkeii (Wu 1931),
Protosalanx chinensis (Basilewsky 1855), and 17
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other exotic species, accounting for 16.35% of the
total number of eDNA fish species. In a recent study
that investigated the fish diversity in the Three Gorges
Reservoir area using traditional fishing methods, 20
exotic fish species were identified, accounting for
13.42% of all fish in the study (Wei et al., 2021).
We detected a higher proportion of exotic species,
indicating that the invasion risk in the Three Gorges
Reservoir area is continuously increasing. Exotic spe-
cies, such as A. schrenckii, Micropterus salmoides
(Lacepede 1802), and N. tangkahkeii, which are com-
monly farmed in the Three Gorges Reservoir area,
originate primarily from fish escaping from surround-
ing farms, blind introduction, and human release (Wu
et al., 2007; Qiao et al., 2010; Ba & Chen, 2012). The
lack of necessary escape prevention measures on the
farms led to the invasion of these species into the YR.
The impoundment of water in the Three Gorges Res-
ervoir area has resulted in drastic changes in the water
environment, destruction of structure and function of
the original ecosystem, the severe vacancy of eco-
logical niches, and resource enrichment, which have
facilitated the settlement and spread of exotic species
(Ba & Chen, 2012).

The invasion of exotic species can result in the
simplification of community composition of ecosys-
tem and the harshness of the original ecological envi-
ronment. Exotic species can also compete with native
species for resources, reduce the genetic diversity of
native species, and cause the decline or even extinc-
tion of indigenous fish species. For example, the
introduction of species such as N. taihuensis into the
Dianchi lake has resulted in the depletion of endemic
fish stocks (Xiong et al., 2006). Since the 1950s, C.
idella, H. molitrix, and other fish from the middle and
lower reaches of the YR have been introduced into
the water bodies of the Yunnan—Guizhou Plateau on a
large scale, resulting in the endangerment and extinc-
tion of many indigenous and endemic fish on the Pla-
teau (Xie & Chen, 2001). Therefore, we should miti-
gate against the invasive hazards of exotic species by
establishing a scientific selection and breeding assess-
ment system for exotic species, developing a compre-
hensive set of laws and regulations related to exotic
species, monitoring and alerting existing exotic spe-
cies, and improving the protection of indigenous spe-
cies (Xu et al., 2004; Qiao et al., 2010; Ba & Chen,
2012).

Conclusion

The eDNA results imply that fish communities in this
area have tended to undergo species miniaturization,
and the endemic fish may also be gradually declin-
ing as well as the exotic fish species are increasing
in the upper reaches of the YR from Jiangjin to Ful-
ing. However, the species composition at the family
level has remained stable over the last decade. Simul-
taneously, eDNA technology detected 104 species of
freshwater fish from 72 genera and 8 orders, and 24
families were detected in this river section, indicating
that this technology has particular relevance in this
river section and can be used as an auxiliary tool to
the traditional method.
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