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Abstract Human activities are one of the main 
causes of biodiversity loss and the reduction of eco-
system services. These activities, together with sea-
sonality and the associated ecological and physico-
chemical changes, are the main modulators of fish 
communities in subtropical streams. Using data from 
62 streams from Uruguay, we analyzed the effect of 
environmental variables on several attributes of fish 
community structure. First, we evaluated the effect 
of climatic seasonality on fish biomass, density, 
mean body length and weight using a paired t-test. 
Secondly, we analyzed the relationship between sea-
sonality, environmental variables (environmental 
degradation, watershed area, and habitat diversity), 
and species richness with fish biomass using a linear 

mixed model. Fish biomass and density were higher 
in summer meanwhile, mean length was higher in 
winter. We found a humped relationship between 
biomass and environmental degradation in winter 
and summer, with low biomass in sites with high 
and low quality. Our model shows that species rich-
ness increase generates an increase in biomass, with 
the magnitude of this increase being greater during 
winter. In view of this results, we highlight that the 
humped pattern founded in our work should have 
special management attention to avoid misinterpre-
tation of biomass increases caused by environmental 
degradation.
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Introduction

The change in land use caused by conversion of natu-
ral environments to croplands and urbanizations is 
one of the most critical global drivers of losses in bio-
diversity and ecosystem services (Millennium Eco-
system Assessment (MEA), 2005). Intensification of 
human land use in a river basin has a direct and indi-
rect negative effect on the functioning of aquatic eco-
systems (Allan et al., 1997; Ahearn et al., 2004; Moi 
& Teixeira de Mello, 2022). Different types of land 
use can deteriorate water quality due to the arrival of 
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nutrients, pesticides, heavy metals, hydrocarbons and 
drugs through runoff (Metzger et al., 2006; de Mello 
et al., 2018).

Nutrients reaching streams can have drastic effects 
on the nutrient load of the system, favoring eutrophi-
cation processes, organic matter accumulation, and 
decomposition rates (Turner, 2002; Dodds, 2006; 
Burwood et  al., 2021). Eutrophication also affects 
ecosystem functioning, generating stoichiometric 
imbalances, altering the flow of energy and matter, 
and modifying oxygen availability. These changes, in 
turn, could affect the metabolism of the system (Kae-
nel et al., 2000; Wilcock & Nagels, 2001; Frost et al., 
2002; Dodds, 2006; Barnes et  al., 2014; Dodds & 
Smith, 2016).

Environmental degradation generated by land use 
could affect fish communities by decreasing both 
habitat diversity and species richness. The decrease 
in the number of different available habitats affects 
directly the community, as habitat diversity is posi-
tively related with the number of species, weaken-
ing interspecific interactions and promoting coexist-
ence (Chesson, 2000; Harrison et al., 2005). Indeed, 
small species and juveniles could use a more signifi-
cant number of refuges generated by habitat diversity, 
allowing the coexistence of predators and prey (Sih, 
1992; Lusardi et al., 2018). As habitat diversity, rich-
ness is negatively affected by environmental degrada-
tion, where different effects caused mainly by urban 
and agricultural land use have been described in low-
land streams. A loss of species and a decrease of the 
community mean body length, caused by an increase 
of the abundance of small tolerant species (i.e., Cnes-
terodon decemmaculatus) has been observed mainly 
in urban and agricultural streams (Chalar et al., 2013; 
Benejam et  al., 2016; Barrios & Teixeira de Mello, 
2022; Moi & Teixeira de Mello, 2022). Degradation 
effects could be attenuated or magnified depending 
on the climatic season. Increased temperature and 
reduced flow associated with summer could deterio-
rate water quality due to increased eutrophication pro-
cesses and decreased dissolved oxygen (Van Vliet & 
Zwolsman, 2008; Klose et al., 2012).

All the above variables affect the ecosystem, alter-
ing human benefits or ecosystem services. Fish stand-
ing biomass can be considered an ecosystem service 
and a proxy of ecosystem functions. It refers to the 
total amount of living organisms -in this case fish- 
present in a given ecosystem. Biomass is considered 

an ecosystem service for several reasons: as provi-
sioning and cultural service in subsistence and sport 
fishing, as support service because it supports ecolog-
ical functions such as nutrient cycling, predation, and 
maintaining biodiversity (Kitchell, 1979; Holmlund 
& Hammer, 1999; Hatton et al., 2015; Boerema et al., 
2017; Moi & Teixeira de Mello, 2022; Pelicice et al., 
2022). As a resource, fish biomass represents about 
17% of all animal protein consumed worldwide by 
humans (FAO, 2020). In this sense, Uruguay stream 
fishes constitutes provisioning and cultural services, 
as subsistence fishing of medium-sized fish (as food) 
and small (for bait and aquariums) fishes; as cultural 
services due to recreational activities like sport fish-
ing. However, these aspects have not been quantified 
in this region. As an ecosystem service, standing fish 
biomass is one of the most widely used metrics due 
to its relationship with ecosystem function since bio-
mass could reflect secondary production (Cusson & 
Borget, 2005; Dolbeth et  al., 2012). These services 
can be affected by the loss of species (e.g., Costanza 
et al., 2007; Moi & Teixeira de Mello, 2022), since a 
greater richness may also imply a more efficient use 
of the resources present in the ecosystem (“Niche 
complementarity”, Tilmann et al., 1997). Conversely, 
a reduction of species richness is related to a lower 
efficiency of biological communities affecting com-
munity functioning. In this sense, species loss is a 
negative factor that affects aquatic ecosystem ser-
vices, such as standing biomass (Cardinale et  al., 
2012; MEA, 2005; Tilman et al., 2012, Moi & Teix-
eira de Mello, 2022).

In this work, we evaluated how natural variables 
(climatic seasonality and species richness) and human 
impacts generated by types of land use can affect 
fish standing biomass. For this purpose, we worked 
in small lowland streams along Uruguay in a gradi-
ent of environmental deterioration considering sum-
mer and winter. In this sense, we hypothesize that: (i) 
In the summer, streams will have higher fish density, 
biomass and richness because increased primary pro-
duction during the warmer months allows the system 
to sustain this higher load. However, the increase in 
abundance will negatively impact community mean 
body length of fish community; (ii) Fish biomass will 
be lower at the extremes of the environmental deg-
radation gradient, generating a humped pattern. In 
contrast to low-density livestock farming, agriculture 
and urbanization are associated with high nutrient 
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concentrations that favor primary producers gener-
ating a bottom-up effect on fish biomass by energy 
transference. Also, these types of land use are associ-
ated with lower oxygen concentrations; (iii) A posi-
tive relationship will exist between species richness 
and fish biomass. Therefore, sites with higher species 
richness will have higher biomass because species 
richness increases the efficiency in which resources 
are utilized.

Materials and methods

Study area

Uruguay belongs to the Neotropical biogeographic 
region, and most of the natural grassland has been 
transformed into cattle or crop areas (Cabrera & 
Willink, 1973). These activities occupy approxi-
mately 45% and 35% of the country’s total land area. 
In addition, there is 15% occupied by afforestation, 
and 5% is occupied by urban areas (Hernández & 
Nuñez, 2015). Following Köppen’s classification, 
Uruguay has a humid subtropical climate (Cfa), with 

an average temperature ranging from 12 °C in winter 
to 25 °C in summer (Agudo, 1990).

Data were obtained from 62 streams of Strahler´s 
order 2–4 belonging (average surface area of the 
basin = 14.9  Km2, range = 1.2–68.4  Km2, SD = 13.6) 
to three watersheds from Uruguay: Negro River 
(70,714  Km2), Santa Lucía River (13,433  km2), and 
Maldonado River (585  km2) (Fig. 1). Sampling sites 
were located in different micro basins, which allowed 
the independence in the values of land use variables 
between stream segments.

Land use variables

Watershed area was calculated using digital eleva-
tion models from the Alaska Satellite Facility (https:// 
search. asf. alaska. edu/#/? datas et= ALOS) and the 
ALOS satellite from the Japan Aerospace Explora-
tion Agency (JAXA). These models and land-use lay-
ers provided by the Uruguayan Ministry of Housing, 
Land Use Planning and the Environment (MVOTMA, 
https:// sit. mvotma. gub. uy/ sit/) were analyzed employ-
ing the free Geographic Information System QGIS 
(QGIS Development Team, 2018). A matrix was 
generated with information on the watershed area 

Fig. 1  Uruguay location 
in South America (a; red 
square), map of Uruguay, 
and the 62 selected streams 
(b; red points). Example of 
streams with afforestation 
(c) and ranching cattle (d)

https://search.asf.alaska.edu/#/?dataset=ALOS
https://search.asf.alaska.edu/#/?dataset=ALOS
https://sit.mvotma.gub.uy/sit/
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occupied by each land use type (urban, livestock, 
cropland, and forest) per site. In this case, the for-
est category includes only planted forests. Consider-
ing the watersheds studied, land use coverage ranged 
from zero for all uses to more than 98% for agricul-
ture, livestock and forestry and 53% for urbanization 
(Table 1).

Environmental variables

Physical data (dissolved oxygen, conductivity, pH, 
and temperature) were obtained in  situ with a mul-
tiparametric sonde YSI 6600 while fish samples were 
collected. Water samples were collected at each site 
for laboratory analysis of total nitrogen and total 
phosphorus (Koroleff, 1970; Valderrama, 1981). We 
used a modification of the NOVANA (National Moni-
toring and Assessment Programme for the Aquatic 
and Terrestrial Environments) methodology (Friberg 
et  al., 2005; e.g., Teixeira de Mello et  al., 2012, 
2014; Borthagaray et  al., 2020) for stream habitat 

characterization. A stream section of fifty-meter in 
length was determined, marking six perpendicular 
transects at 0, 10, 20, 30, 40, and 50 m. In each tran-
sect, depth measurements were taken in addition to 
a qualitative evaluation of the substrate (percentage 
of sand, mud, clay, gravel, and stone) and vegetation 
cover every 25 cm. We generated the variable habitat 
diversity by applying Shannon´s diversity index with 
substrate and vegetation cover data (Table 2).

Fish community

Fish were collected in 62 streams by point electro-
fishing (P) in summer and winter between 2007 and 
2019 by performing 50 electric pulses on 50 m of the 
stream with an electrofisher powered by a 230 V gen-
erator (following Teixeira de Mello et  al., 2014). In 
this way, fish communities were sampled once in win-
ter and again in the following summer. In each elec-
tric pulse, all fishes were captured using hand nets 
(40 cm diameter, 0.2 cm mesh), and euthanized using 

Table 1  Mean, standard 
deviation (Std), and the 
maximum area occupied 
by each land use in all 
the stream watersheds are 
presented as a proportion of 
the total area (Relative) and 
area as squared kilometers

Land use Relative Area  (Km2)

Mean Std Max Mean Std Max

Urban 0.06 0.14 0.53 0.73 2.56 12.25
Agriculture 0.33 0.32 0.99 5.33 9.07 43.73
Cattle 0.48 0.29 0.99 6.18 7.28 49.01
Afforestation 0.14 0.28 0.98 1.99 5.19 35.12

Table 2  Mean, range and standard deviation (Std) during summer and winter of the environmental variables analyzed

Variable Summer Winter

Mean Range Std Mean Range Std

Total phosphorus (μg/l) 338.57 6.31–3091.83 585.23 292.70 7.93–1424.28 357.43
Total nitrogen (μg/l) 1400.83 67.87–9795.00 1825.20 1474.86 78.37–9308.35 2074.85
O2 (mg/l) 6.80 2.28–14.28 2.46 8.32 2.02–13.19 2.80
Conductivity (μS/cm) 428.34 56.34–1057.00 281.04 442.54 30.00–1192.40 288.78
Temperature (ºC) 21.31 16.08–28.12 2.56 13.53 7.47–22.83 1.47
Width (m) 3.39 1.25–7.54 1.46 3.56 1.20–9.19 1.66
Depth (m) 0.25 0.10–0.73 0.17 0.33 0.13–0.67 0.21
Sand (%) 25.36 0.00–95.5 22.75 28.45 0.00–95.50 24.68
Gravel (%) 17.17 0.00–75.00 21.59 16.47 0.00–75.00 22.22
Stone (%) 30.97 0.00–95.00 30.11 26.52 0.00–99.00 28.57
Clay (%) 8.82 0.00–100.00 17.45 8.78 0.00–69.75 17.98
Mud (%) 18.33 0.00–100.00 25.47 19.58 0.00–93.50 27.27
Vegetal cover (%) 22.31 0.00–81.96 19.05 22.46 0.00–86.00 20.30



371Hydrobiologia (2024) 851:367–381 

1 3
Vol.: (0123456789)

2-phenoxyethanol (CHEA protocol No 603, 101). In 
the laboratory, all sampled fishes were identified to 
species level, counted, and measured (standard length 
at 0.1 cm; weight at 0.01 g). Since multiple pass elec-
trofishing (MP) is the only method that allows an esti-
mation of biomass (BM) and abundance by area, we 
used the abundance relationship between MP and P 
observed by Teixeira de Mello et al. (2014) using the 
equation:

were Y is the number of individuals collected by 
multiple pass electrofishing and X is the number of 
individuals collected by point electrofishing. Using 
the corrected number of individuals and the area of 
each fished stream segment (data obtained from the 
ANOVA) we could calculate fish density (individu-
als/m2). Multiplying density by the average weight 
of each individual (g/individual) we obtained average 
biomass per square meter (g/m2). Finally, richness 
was calculated as the number of species by rarefac-
tion to remove the effect of the number of individuals 
(Hsieh et al., 2020).

Statistical approach

Seasonal differences between fish community metrics 
(density, species richness, biomass, mean length, and 
mean weight) were evaluated using a paired t-test. In 
order to evaluate if the seasonal differences in bio-
mass, density and mean standard length was caused 
by a particular species this variables were analyzed 
for those species that represent 90% of the total bio-
mass. For this purpose, a paired t-test was carried 
out for each species biomass, density and mean body 
length between seasons.

To generate a new variable that reflects the envi-
ronmental degradation, a principal components anal-
ysis (PCA) was performed after standardizing and 
centering environmental variables (total phosphorus 
and nitrogen, dissolved oxygen and conductivity) and 
types of land use (urban, afforestation, cattle and agri-
culture) with a covariance matrix. The number of sta-
tistically significant components was estimated using 
the “broken stick” method included in the “PCDi-
mension” package (Coombes & Wang, 2019). The 
broken stick method showed that the first principal 
component (PC1) was the only significant.

log (Y) = 0.98 log (X) + 0.39

A linear mixed model was built to evaluate the 
possible effect of environmental degradation, spe-
cies richness, watershed area, habitat diversity, and 
season over fish biomass. Before modeling, the pos-
sible distribution of the fish biomass per square meter 
(BM) was evaluated using the “fitdistrplus” package 
to select the family of the LMM (Delignette-Muller 
& Dutang, 2015). Two distributions (Normal and 
lognormal) were fitted and Akaike’s criterion (AIC) 
was used to determine the best fitting. This analysis 
showed that BM was best suited to a lognormal dis-
tribution. Then, simple linear regressions were made 
between the response variable (BM) and the explana-
tory variables (PC1, richness, watershed area, and 
habitat diversity) as an exploratory of the relationship 
(linear or nonlinear) between variables. This relation-
ship was evaluated by observing the tendency line 
in a visual exploration (Online Appendix S1: Fig. 
S1). This exploration shows that PC1 has a quad-
ratic relationship with fish biomass, indicating that 
it should be appropriate to include a quadratic term 
of this variable in the model. Using all the data men-
tioned above, a first linear mixed model was gener-
ated with the “lme” package (Pinheiro et  al., 2020). 
In this way, PC1,  PC12, richness, habitat diversity, 
watershed area, and season were established as fixed 
effects and stream identity as a random effect. Stream 
identity was used as a random effect to remove the 
variation generated at each site by its individual life 
history. The model selection consisted of generat-
ing simpler models in which variables that do not 
contribute significance are removed. This simpli-
fied model was then compared with the previous one 
using the likelihood ratio test (LRT). If the LRT did 
not detect significant differences between the models, 
they are equivalent, so the selection continued with 
the simpler one. A final model that did not include 
habitat diversity or watershed area was produced 
with these criteria. Using the “DHARMa” package, 
model residuals were simulated to evaluate normal-
ity and variance homogeneity (Harting, 2020). The 
residual analysis confirmed that the model meets the 
assumptions of normality and variance homogeneity. 
The final model was adjusted and presented using the 
“ggeffects” package (Lüdecke, 2018). This package 
allowed us to generate a graphical visualization of the 
adjusted model´s predictions. All statistical analyses 
were performed with free software R (R Core Team, 
2020).



372 Hydrobiologia (2024) 851:367–381

1 3
Vol:. (1234567890)

Results

We caught 49,334 individuals belonging to 63 spe-
cies, six orders, and 15 families, with Characiformes 
being the most abundant order with 22 species. The 
species with the highest abundance was Cnestero-
don decemmaculatus (Jenyns, 1942) (Cyprinodon-
tiformes, Poeciliidae) with 29,955 individuals. This 
species, in conjunction with Cheirodon interruptus 
(Jenyns, 1942) (Characiformes, Characidae) was the 
most frequent, being present in 58 streams. In terms 
of biomass of all streams, Gymnogeophagus terra-
purpura Loureiro, Zarucki, Malabarba & González-
Bergonzoni, 2016 (Cichliformes, Cichlidae) was the 
species with the highest biomass per square meter, 
followed by Hoplias argentinensis (Rosso, González-
Castro, Bogan, Cardoso, Mabragaña, Delpiani, Díaz 
de Astarloa, 2018) (Characiformes, Erythrinidae). 
Given their high abundance, C. decemmaculatus 
ranked fourth among the species with the highest 
biomass despite being a small size species (1–2  cm 
approx.).

Regarding community attributes, biomass and 
number of individuals per square meter were higher 
in summer, the mean body size was larger in winter 
and there was no difference in species richness and 
mean body weight between seasons (Table  3). The 
analysis by species shows that biomass was signifi-
cantly higher in winter for Psalidodon eigenmannio-
rum (Cope, 1894) (Characiformes, Characidae), Oli-
gosarcus jenynsii (Günther, 1864) (Characiformes, 
Characidae) and Cyphocharax voga (Hensel, 1870) 
(Characiformes, Curimatidae). In terms of density, C. 
decemmaculatus showed significantly higher densi-
ties in winter. In terms of mean length, C. decemmac-
ulatus and Hyphessobrycon meridionalis Ringuelet, 
Miquelarena & Menni, 1978 (Characiformes, Char-
acidae), showed significantly greater lengths in win-
ter. In addition, there was a tendency for most species 

to show a higher biomass and density in summer with 
a smaller body size than in winter (Fig. 2). 

The first component of the principal components 
analysis explained 45.6% of the variance and resumed 
the changes in water quality between cattle and affor-
ested watersheds by one hand, and urban and agri-
cultural by the other hand. Cattle and afforestation 
watersheds were mainly associated with high oxygen 
concentrations, low nutrient concentrations, and low 
conductivity. In contrast, urbanization watersheds 
showed high nutrient concentration and conductivity, 
with low dissolved oxygen. Finally, mainly agricul-
tural watersheds showed intermediate levels of nutri-
ents, conductivity, and oxygen (Fig. 3). It is important 
to highlight that in several streams, phosphorus and 
dissolved oxygen levels exceeded the limits estab-
lished by Uruguayan government (maximum of 25 µg 
per liter  for phosphorus and minimum of 5  mg per 
liter  for oxygen) (Table  2). The correlation of each 
variable with component 1 is shown in Table 4.

After the model selection process, the final linear 
mixed model showed that only PC1 (and its squared 
variant), species richness, and season had signifi-
cantly influenced fish biomass per square meter (BM) 
(Table 5). In addition, there was a significant interac-
tion between richness and seasonality. Considering 
the random effects, the model explained 55% of the 
variance (conditional R2 = 0.55). Finally, the model 
could be summarized in the following equation:

with x taking values of 0 in summer and 1 in winter.
The linear mixed model revealed that BM has 

a hump-shaped response to environmental degra-
dation. The lowest BM was observed in streams 
with low and high environmental degradation lev-
els, associated with watersheds whose main land 

log(BM) = 0.12 PC1 − 0.09 PC12

+ (0.45−0.27x)Richness + (1.9 + 0.42x)

Table 3  Mean, standard 
deviation (Std), minimum 
and maximum of the fish 
community characteristics 
in winter and summer

Results of the two-sample 
paired t-test for each 
community feature between 
seasons (t-statistic and 
P-value)

Summer Winter

Feature Mean Std Min Max Mean Std Min Max t P value

Biomass (g/m2) 15.10 25.84 0.27 102.32 7.61 7.36 0.29 37.17 2.63 0.01
Estimated richness 18 8 3 45 18 8 3 51  − 0.26 0.79
Density (ind/m2) 9.68 58.10 0.17 157.08 4.01 6.08 0.06 46.58 2.82 0.01
Mean weight (g/ind) 3.51 0.79 0.18 49.23 3.04 0.26 0.36 11.63  − 0.55 0.58
Mean length (cm/ind) 3.65 1.36 1.66 8.47 3.98 1.23 2.10 7.61 2.39 0.02
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Fig. 2  Mean differences 
between Winter (left) and 
Summer (right) in mean 
biomass per square meter 
(a), mean density (b), and 
mean standard length for 
fish species that represent 
the 90% of total biomass 
collected. Means between 
seasons where evaluated 
with paired t-test and dif-
ferences are pointed out 
with an asterisk. *0.005; 
**0.001; ***0.0001. Note 
that the density value for 
Cnesterodon decemmacul-
tus should be multiplied by 
a factor of ten
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use was cattle-afforestation and urban, respectively. 
Meanwhile, the highest levels of BM were detected 
at medium degradation levels related to mainly agri-
cultural watersheds (Fig.  4). Moreover, there was a 
seasonal effect since BM was significantly higher in 
summer.

In terms of species richness, there was a positive 
relationship between the number of fish species and 
BM. Seasonality also influenced this relationship; 
the slope was less steep in winter than in summer. 
When the trophic groups were analyzed separately 
(Carnivore, Omnivore and Detritivore), we found that 
the increase in the number of species generated an 
increase in biomass in each trophic group except in 
detritivores, were the slope was no significant (Online 
Appendix S1: Methods, Fig S2, Table S1).

Discussion

Land use and water quality

Environmental and land use data summarized with 
the PCA resume the patterns of environmental 

variation in relation to land use and nutrient concen-
trations among the studied environments. The rela-
tionship between PC1 and land use fits with results 
from other works, detailed that land use in the water-
shed affects the water quality (Bolstad & Swank, 
1997; Tong & Chen, 2002; Goyenola et  al., 2020). 
Our results show that afforestation and low den-
sity ranching were principally associated with better 
water quality metrics than urban and agriculture. As 
reported in the bibliography, afforestation was asso-
ciated with lower degradation because it reduces 
soil erosion and nutrient runoff from the watershed 
(van Dijk & Keenan, 2007). Although intensive cat-
tle ranching generally has a negative impact on water 
quality, it is reported that in zones with low livestock 
density, the impact of this type of land use on water 
quality is minor (de Mello et  al., 2018). This could 
happen in the studied streams because all the stud-
ied cattle watersheds were occupied by low density 
ranching. Agriculture and urbanization show to be the 
types of land use with the more significant impact on 
water quality, biotic integrity indexes, and ecosystem 
services (Wang, 2001; Benejam et al., 2016; Alvareda 
et  al., 2020; Goyenola et  al., 2020; Alcantara et  al., 

Fig. 3  Graphical result 
of the Principal Compo-
nents analysis showing the 
streams ordination (black 
dots) in the function of the 
analyzed variables: types of 
land use (Urban, Agricul-
ture, Cattle, and Forestry), 
total phosphorus (TP), total 
nitrogen, conductivity, and 
dissolved oxygen (O2)
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2021; Moi & Teixeira de Mello, 2022). Phosphorus 
and nitrogen concentrations and organic matter in 
water increase in agricultural and urban watersheds 
(Lenat & Crawford, 1994; Paul & Meyer, 2001; Silva 
et al., 2011; Beckert et al., 2011). Larger quantities of 
organic matter increase metabolism associated with 

higher decomposition rates and oxygen demand. This 
process causes oxygen depletion in agricultural and 
urban streams, as observed in our data (PCA) (Mis-
kewitz & Uchrin, 2013). In this sense, 25% of the 
studied streams in summer presented high nutrient 
values (total phosphorus mean = 428.9 ± 81.5  μg/l; 
total nitrogen mean = 2191.1 ± 505.9  μg/l) and low 
oxygen concentrations (mean = 3.6 ± 0.2  mg/l), indi-
cating eutrophication processes (Dodds et  al., 1998) 
and harmful conditions for fishes (i.e., concentra-
tions lower that 5 mg/l; Franklin, 2014) as recognized 
in the Uruguayan legislation (class 1 to 3; National 
Decree, Dec, 2019, 253/79, MVOTMA of the Water 
Act Law No. 14.859/78).

Fish community characteristics

Species richness found in the analyzed streams was 
similar to that reported for similar systems but lower 
impacted from Uruguay, Argentina and Brasil (see 

Table 4  Loadings of the analyzed variables and principal 
components 1

Variable PC1

Urban  − 0.38
Agriculture  − 0.27
Cattle 0.23
Afforestation 0.18
TP (μg/l)  − 0.45
TN (μg/l)  − 0.42
Conductivity (μS/cm)  − 0.44
O2 (mg/l) 0.36

Table 5  Linear mixed 
model coefficients (Coef.), 
confidence interval (CI), 
standard deviation (Std), t 
statistic, and P-value

Fixed effect Coef CI Std t P value

PC1  − 0.12 (− 0.25 to 0.02) 0.07  − 1.74 0.08
PC1^2  − 0.09 (− 0.14 to (− 0.04)) 0.03  − 3.77  < 0.005
Winter richness 0.45 (0.21–0.70) 0.13 3.62  < 0.005
Summer richness 0.18 (− 0.57 to 0.03) 0.15  − 1.77 0.08
Winter 1.90 (1.60–2.20) 0.15 12.5  < 0.005
Summer 2.32 (2.03–2.61) 0.15 15.60  < 0.005

Fig. 4  Relationship 
between fish biomass per 
square meter (g/m2) and 
environmental degradation, 
species richness in summer 
and winter. Environmental 
degradation in the x-axis 
goes from high (left) to low 
(right) degradation. Differ-
ent colors indicate richness 
percentile: first quartile 
(red), second quartile 
(blue), and third quartile 
(green). The points corre-
spond to model predictions 
obtained with the package 
“ggeffects”
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revision on Teixeira de Mello et  al., 2012). This 
could indicate that our sites are representative of 
the region in terms of richness. However, the maxi-
mum densities and biomass found in this study (157 
ind/m2 and 102  g/m2, respectively) are much higher 
than those reported in other regional studies (21 ind/
m2 and 30.7  g/m2, respectively—Teixeira de Mello 
et  al., 2012). These differences may be because in 
this work, we include systems with a medium impact 
that increase the fish densities and biomass. In water-
sheds with a medium to high impact (principally 
agricultural and urban streams), the size spectrum is 
wider than in non-impacted systems (Benejam et al., 
2016). This may be due to an increase in the number 
of small species associated with the increased impact 
of land use (Pott et al., 2021). The increase in small 
species abundance associated with these watersheds 
could be generating an increase in the density. In our 
case, the sites with higher densities where associated 
with agricultural watersheds, were tolerant and small-
sized species like Cnesterodon decemmaculatus were 
dominant.

Seasonal effects on the fish community

As reported previously for streams in the same 
region, individual density at community level was 
greater in summer than in winter (González-Ber-
gonzoni et  al., 2016), also in summer, a higher bio-
mass and a smaller body size of fish were observed 
(Table 3). One possible mechanism to explain the dif-
ference found, lies in fish reproductive periods. Tem-
perature is critical for fish reproduction and repro-
ductive activity is generally concentrated in warmer 
months (Andrade & Braga, 2005). Although our 
results shows that significant differences at the spe-
cies level occur only in a few cases, such differences 
generate differences at the community level. This may 
be a result of spring breeding events, in coincidence 
with previous observations (e.g., Bryconamericus 
iheringii, González-Bergonzoni et  al., 2016). In our 
case, it is worth noting the significant increase in the 
density of smaller individuals of Cnesterodon decem-
maculatus, which increased from 1.6 to 7.1 ind/m2, 
which, being a small, non-migratory species, makes 
the reproduction peak evident.

A larger number of juveniles could be affecting 
not only densities but also the mean body length 
of the community. Furthermore, the observed data 

could be explained by the temperature itself. The 
increase in density associated with a decrease in 
size is in line with what is proposed in the meta-
bolic theory of ecology (MTE) since smaller indi-
viduals would be most expensive in terms of energy 
than larger ones, then they are expected to be more 
abundant during periods of higher temperature 
(Brown et al., 2004).

The increase in fish biomass/m2 in summer may be 
due to reproductive events or the arrival of individu-
als from other locations. However, it is important to 
consider how the system could maintain this higher 
biomass. In this way, primary production is essential 
in sustaining the food web’s upper levels controlling 
upper biomass levels through a bottom-up mechanism 
(Downing et al., 1990; Rosemond et al., 1993; Borer 
et  al., 2006). An increase in light availability (and 
temperature) during the summer, stimulates primary 
productivity, increasing standing biomass of consum-
ers (Kevern & Ball, 1965; Rosemond et  al., 2000; 
Dejen et al., 2017).

Fish biomass and environmental degradation

The results found for fish biomass show a similar 
behavior to that proposed for richness in the inter-
mediate disturbance theory (Connell, 1978). As 
observed in our results, fish biomass use to increase 
with increased richness. Therefore, in intermediate 
degradation (disturbance) scenarios, richness and thus 
biomass would be higher than in less and high degra-
dation extremes. Fish biomass is lower at high nutri-
ent levels and low oxygen concentration sites. These 
conditions could be considered an intense stress 
generated by the high level of environmental degra-
dation, where only a few species considered tolerant 
can survive (Wang et al., 1997; Morgan & Cushman, 
2005). Our results showed that C. decemmaculatus, 
a small and tolerant omnivore, is the dominant spe-
cies in the most deteriorated streams, as previously 
reported (Benejam et al., 2016). This biomass pattern 
was also observed at low environmental degradation 
sites. Low nutrient concentrations associated with 
these environments could affect primary productivity 
(e.g., filamentous algae, Gudmundsdottir, 2011), lim-
iting the growth of high trophic levels, which harms 
the total standing biomass (Malzahn et al., 2007; Moi 
& Teixeira de Mello, 2022).
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Fish biomass and species richness

Biomass increase associated with increased species 
richness is a pattern already reported in the litera-
ture (Borthagaray et al., 2020; Woods et al., 2020). A 
higher species number could favor an optimal use of 
the resources available in the aquatic systems (Har-
grave, 2009). This efficiency is related to a biomass 
increase in each functional group, where abundant 
and dominant species determine how resources are 
exploited (Bellwood et  al., 2003; Cardinale et  al., 
2012). In our case, the final model shows that add-
ing one species has differential effects depending on 
the season. Therefore, an increase in fish species rich-
ness is accompanied by an increase in fish biomass in 
omnivores and carnivores, the slope of this increase 
is greater in winter. Considering that there are no sig-
nificant differences in richness between seasons, the 
observed pattern may be due to species identity or the 
traits of the added species. In addition to species iden-
tity, trophic role (Moi & Teixeira de Mello, 2022) and 
interspecific interactions could be affecting the eco-
system function (biomass production) (Kirwan et al., 
2009). This may indicate that, in terms of biomass 
increase, it is important not only to know how many 
species are being added, but also their trophic groups. 
Although biomass tends to grow with richness, the 
trophic group to which the new species belongs may 
affect the magnitude of this growth (e.g., in this work 
omnivores versus detritivores). These results shows 
the relevance of knowing how different traits (e.g., 
trophic group, spawning season) can affects biomass 
production in subtropical streams.

Conclusion

Our findings highlight the importance of climatic 
seasons in modulating fish biomass changes caused 
by land use. It is important to highlight the humped 
response pattern found because, like other environ-
mental responses to impacts, biomass response was 
non linear. This response requires special manage-
ment attention because initially an increase in dete-
rioration shows increased biomass. This pattern could 
be seen as positive until the deterioration continues 
and the effects can be irreversible as the community 
may collapse (known as a tipping point). It is impor-
tant to continue generating information about the fish 

community’s responses since they are strong indica-
tors of environmental degradation and provide count-
less services for human well-being (Pelicice et  al., 
2022).
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