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was the only index strongly correlated with total 
phosphorus and able to discriminate trophic levels. 
Most existing trophic indices are expert-based, and 
reflect community alteration rather than eutrophica-
tion. These expert-based indices are also dependent 
on numerous environmental factors, highlighting the 
need for robust predictive models to evaluate eco-
logical statuses accurately.  TIM2S is Water Frame-
work Directive-compatible and can be used widely 
in Europe to evaluate the trophic status and trophic 
alterations of SSLs.

Keywords Aquatic macrophytes · Bioassessment · 
Eutrophication

Introduction

Small shallow lakes (SSLs) are the most abundant 
lake types (Meerhoff & Jeppesen, 2010) and provide 
numerous ecosystem and social services, such as 
nutrient retention (Hilt et  al., 2017) or carbon stor-
age (Gilbert et al., 2021). They have a great conser-
vation value because they harbor a rich and original 
biodiversity (Williams et al., 2004). SSLs face many 
threats, including climate change, pollution due to 
agricultural intensification and land artificialization, 
and inappropriate management (Indermuehle et  al., 
2008). Among these threats, eutrophication is one of 
the most common causes of water quality degrada-
tion (Le Moal et  al., 2019) and aquatic biodiversity 

Abstract Small shallow lakes (SSLs) have great 
conservation value and support numerous ecosys-
tem services. However, these small ecosystems are 
faced with many threats, including eutrophication, 
which tends to shift biodiverse SSLs to a turbid state 
dominated by phytoplankton. The ecological qual-
ity of SSLs still remains poorly evaluated because of 
the lack of adapted tools. We propose a new trophic 
index—TIM2S—based on the tolerance range of 245 
macrophyte species to total phosphorus. As a single 
trophic index can favour oligotrophic ecosystems 
and their associated species to the detriment of more 
eutrophic but rare species, we converted  TIM2S into 
a predictive reference-based model. Then, we com-
pared  TIM2S with five existing trophic indices in their 
efficiency to discriminate trophic levels and disentan-
gle eight anthropogenic or internal pressures.  TIM2S 
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alteration (Schindler, 2006). Eutrophication can cause 
SSLs to shift to a turbid state (Scheffer et al., 1993; 
Meerhoff et  al., 2022), with dramatic losses in eco-
system services and biodiversity for fish, birds, mac-
rophytes and invertebrates (Hilt et  al., 2017). As a 
consequence, monitoring trophic alteration of SSLs is 
essential for preserving the biodiversity and ecosys-
tem services they provide (Williams et al., 2004).

Macrophytes are sensitive to the trophic level of 
water bodies (Hootsmans & Vermaat, 1991; Thiébaut 
& Muller, 1999; O’Hare et al., 2018). At the commu-
nity level, aquatic plants have been used as indicators 
of eutrophication of freshwater ecosystems for many 
years (Carbiener et  al., 1990; Holmes et  al., 1999; 
Thiébaut & Muller, 1999). Numerous indices based 
on the trophic profile of macrophyte species have been 
developed in Europe to evaluate the trophic status 
of rivers (Holmes et  al., 1999; Schneider & Melzer, 
2003; Haury et  al., 2006) or large lakes (Stelzer 
et  al., 2005; Seo et  al., 2014). However, SSLs—less 
than 50  ha in size—are rarely included in monitor-
ing programs (Biggs et  al., 2017). Only two trophic 
indices have been developed for SSLs in Europe: 
the macrophyte nutrient index for ponds (M-NIP) 
was developed in Switzerland for SSLs with surface 
areas from 6  m2 to 9.62  ha (Sager & Lachavanne, 
2009); the trophic ranking score (Palmer, 1992) and 
its reference-based version included in the predictive 
system for multimetrics (PSYM) index developed 
in Great Britain for SSLs with surfaces below 5  ha 
(Biggs et al., 2000). Their application at a larger geo-
graphical scale or to larger SSLs has not been tested. 
Numerous trophic indices for lakes in Europe con-
cerned only standing waters with surface area > 50 ha 
(Table 1). Most of them exclude helophytes as indi-
cator species, potentially crucial for the accuracy 
of a trophic index, especially for the smallest SSLs, 
with low floristic richness (Labat et al., 2021). Most 
existing trophic indices transposable to SSLs are 
expert-based (e.g. IBML for WFD French lakes), or 
community-based (e.g. TRS, PLEX), and could be 
uncorrelated with trophic levels as observed in other 
waterbodies like rivers (Demars et al., 2012).

As a consequence, numerous SSLs lack an ade-
quate indicator to assess their trophic level. Moreo-
ver, existing trophic indices such as M-NIP are 
not reference-based or are specific to water types 
(Hering et  al., 2010). Interpretation of these indi-
ces implies that eutrophic waters are the result of an 

anthropogenic eutrophication, although eutrophic 
waters can be the natural trophic status of SSLs 
in lowlands due to long water resident times and 
low geographic relief (Borics et  al., 2013). These 
eutrophic waterbodies can shelter patrimonial or rare 
species (e.g., Ranunculus peltatus baudoti and Buto‑
mus umbellatus) (Rosset et al., 2014). This highlights 
the need to maintain various trophic conditions in 
an SSL network for biological conservation (Rosset 
et  al., 2014). Different trophic conditions could be 
taken into account in a reference-based trophic index, 
considering eutrophic waters resulting from a natural 
process in a “good” status.

Our goals were to propose (1) new trophic profiles 
for macrophytes of standing waters, widely applicable 
at the European scale, and (2) a new trophic index for 
SSLs computed from these new trophic profiles. To 
reach these goals, we compared the performance of 
this new trophic index with the performances of other 
existing trophic indices. The aims were (2a) to dis-
criminate trophic levels, and (2b) to identify sources 
of eutrophication pressures or plant community alter-
ations. Our first hypothesis was that the new index 
would be more correlated than the other indices with 
the trophic levels of SSLs. Our second hypothesis 
was that the new reference-based index would better 
discriminate the impacted sites and the pressure they 
underwent than the other indices did.

Materials and methods

The main steps of the design are summarized in 
Fig.  1, from data collection to the construction of 
the reference-based index and the identification of its 
ecological quality class boundaries.

Development of a new trophic profile for plants and 
its associated trophic index

Trophic levels of lakes and ponds are usually assessed 
from nutrient concentrations in water [total phos-
phorus (TP)], water transparency or chlorophyll a 
(Vollenweider & Kerekes, 1982; Søndergaard et  al., 
2005). Phosphorus is a key factor for aquatic plants 
in freshwaters, and it is easy to assess from TP con-
centrations (Correll, 1999). TP is highly correlated 
with water transparency and chlorophyll a (Qin et al., 
2012), and covaries with nitrogen (Håkanson, 2012).
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Trophic profiles are addressed in the literature 
for species living in lakes and rivers (Landolt, 1977; 
Melzer, 1988; Bornette et  al., 1994; Robach et  al., 
1996; Eglin et al., 1997; Holmes et al., 1999; Willby 
et  al., 2000; Thiébaut, 2008). They represent the 
nutrient ranges within which plant species can be 
found. We followed the methodology developed for 
the M-NIP to build our new trophic index. However, 
M-NIP is built for Alpine ponds and small Swiss 
lakes (6 to 96,200m2, and ranged along an altitudinal 
gradient from 210 to 2757 m above sea level a.s.l.).

To build a database from the trophic profiles of 
macrophyte species found in western European stand-
ing waters, we selected floristic and TP data from four 
climatic regions (Alpine, Atlantic, Continental, Medi-
terranean): 143 SSLs sampled with the  S3m method 
(Labat et  al., 2022) in France, 114 ponds from the 
M-NIP database (Sager & Lachavanne, 2009) sam-
pled with the IBEM method in Switzerland (Inder-
muehle et  al., 2010), and 53 lakes sampled with the 

protocol of the “indice biologique macrophyte lacus-
tre” (IBML) (AFNOR, 2010) in France. Surface area 
of the standing waters were from 1  m2 to 58.3  km2, 
and covered an altitude range from 3 to 3340 m above 
sea level. Principal characteristic of SSLs sampled 
with the  S3m method were summarized in Table  2. 
Mediterranean region was less sampled, because 
it was difficult to find SSLs with aquatic plants and 
water during the vegetation period.

TP was measured in winter, when biological activ-
ity is at its minimum intensity and the concentration 
of nutrients in their inorganic form tends to be high-
est (Linton & Goulder, 2000). Water samples were 
taken in the euphotic zone near the deepest point of 
each SSL, using a sampling bottle (approx. 20  cm 
under the water surface for ponds and SSLs, and an 
integrated sampling for lakes). Samples were stored 
in a cooler and were analyzed in less than 24 h. TP 
was measured by spectroscopy by an accredited labo-
ratory (AFNOR, 2009), or using the ascorbate acid/

Fig. 1  Flow diagram showing the main steps of the construction of  TIM2S and the efficiency test assessing the ability of all trophic 
indices to discriminate anthropogenic pressures and define ecological quality class boundaries
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molybdenum blue method for M-NIP data (APHA 
et  al., 1998). Then, TP values were converted into 
trophic categories: oligotrophic (0–10 µg/l TP), mes-
otrophic (10–35  µg/l), eutrophic (35–100  µg/l), or 
hypertrophic (> 100 µg/l) according to OECD thresh-
old values (Vollenweider & Kerekes, 1982).

Trophic profiles were defined based on two met-
rics, i.e., the indicator value (IV) and the ecological 
tolerance of each species.

To do so, we followed a procedure similar to that 
of Schneider & Melzer (2003) for rivers and by Sager 
& Lachavanne (2009) for SSLs. Species present in 
less than three SSLs were excluded.

The IV was calculated for each species using 
weighted averaging (Eq. (1)):

where IVa is the indicator value of species a, Oai the 
number of occurrences of species a in trophic cate-
gory i, and Ti the value of trophic category i (from 
1 = oligotrophic to 4 = hypertrophic, according to 
the thresholds defined by Vollenweider & Kerekes 
(1982)).

In order to express the ecological tolerance of a 
species to phosphorus, we calculated the root-mean-
square-deviation weighted by the number of occur-
rences in each nutrient category.

Tolerance ta was calculated for each species 
using the root-mean-square-deviation weighted by 
the number of occurrences of the species in each 

(1)IVa =

∑n

i=1
Oai × Ti

∑n

i=1
Oai

,

trophic category (Eq. (2)), and converted according to 
Table 3:

where ta is the tolerance of species a, Ti is the value 
of nutrient category i (from 1 = oligotrophic to 
4 = hypertrophic), IVa is the indicator value of species 
a, and Oai is the number of occurrences of species a 
in trophic category i. Then, ta and IVa computed with 
our dataset were weighted by ta and IVa obtained by 
Sager & Lachavanne (2009) according to the number 
of observations of each plant species in respective 
datasets.

The new index—called “trophic index for mac-
rophytes of small shallow lakes”  (TIM2S; Eq. (3)) 
corresponded to the formula of M-NIP (Sager & 
Lachavanne, 2009) or of TIM (Schneider and Melzer, 

(2)ta =

�

�

�

�

∑n

i=1

�

Ti − IVa

�2
× Oai

∑n

i=1
Oai

,

Table 2  Main features of the tested SSLs (mean and standard deviation in brackets, except for number of SSLs) of SSLs from devel-
opment and validation dataset. A.s.l. = above sea level

Climatic region Number of 
SSLs

Surface area  (m2) Mean depth (m) Elevation (m a.s.l.) TP (mg/L)

Development dataset
Alpine 19 1916 (± 42,978) 1.66 (± 2.00) 1647 (± 726) 0.049 (± 0.082)
Atlantic 75 16,088 (± 44,041) 1.09 (± 1.44) 82 (± 99) 0.038 (± 0.067)
Continental 44 44,240 (± 81,473) 1.61 (± 1.58) 502 (± 347) 0.076 (± 0.208)
Mediterranean 5 24,434 (± 48,884) 1.60 (± 0.65) 438 (± 319) 0.014 (± 0.005)
Validation dataset
Alpine 45 10,812 (± 30,789) 1.09 (± 1.53) 1895 (± 612)
Atlantic 160 18,683 (± 86,706) 1.10 (± 1.72) 79 (± 89)
Continental 94 39,684 (± 72,314) 1.31 (± 1.26) 515 (± 374)
Mediterranean 6 20,409 (± 44,822) 1.83 (± 0.81) 491 (± 313)

Table 3  Correspondence between the ecological tolerance 
range and the weighting factors attributed to each indicator 
species

Tolerance ta Weighting 
factor W

0–0.2 16
0.2–0.4 8
0.4–0.6 4
0.6–0.8 2
 > 0.8 1
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2003), and was also the term used in the saprobic 
index of Zelinka & Marvan (1961):

where TIM2S is the new trophic index for SSLs, IVa 
is the indicator value of species a, Wpa is the weight-
ing factor corresponding to the ecological amplitude 
of species a (Table 3), Qa the quantity of plant species 
a in the SSL, corresponding to the cubed abundance 
class scale of species a.

Performance of the new trophic index for French 
SSLs

To evaluate the performance of  TIM2s, six candidate 
indices were compared with the  S3m protocol in 305 
SSLs sampled in France. These indices (Table  1) 
were  TIM2S, M-NIP, the plant lake ecotype index 
for Great Britain lakes (PLEX; Duigan et al., 2007), 
the trophic ranking score (TRS; Palmer, 1992), the 
French macrophyte index for Water Framework 
Directive (WFD) lakes (IBML; Boutry et al., 2013), 
and the intercalibration common metric for European 
WFD lakes  (ICMLM; Hellsten et  al., 2014; Kolada 
et  al., 2014). PLEX and TRS are community-based 
indices, with scores corresponding to community 
types, and are sensitive to trophic alteration (Dui-
gan et al., 2007) or TP reduction (Gunn et al., 2013). 
PLEX is an update of TRS, excluding helophytes 
and redefining plant scores through a more precise 
typology. M-NIP is a TP-based trophic index, with 
profiles defined from TP concentrations, including 
ecological amplitude of species. The trophic profiles 
and ecological amplitudes of IBML are expert-based. 
 ICMLM was developed for WFD intercalibration exer-
cises, and propose a weighted-mean TP score from a 
wide set of WFD lakes, excluding helophytes, and do 
not considered ecological amplitude of plant species 
(European Commission. Joint Research Centre. Insti-
tute for environment and Sustainability & Poikane, 
2009; Kolada et al., 2014).

Study area and field survey

Fieldwork was performed from 2013 to 2021. The 
SSLs differed by their geology (calcareous to sili-
ceous), water supply (rainfall, groundwater, river 

(3)TIM2S =

∑n

i=1
IVa ×Wpa × Qa

∑n

i=1
Wpa × Qa

,

flow), surface area (1  m2 to 41.4  ha), mean depth 
(0.05 to 13  m), elevation (2 to 3340  m above sea 
level) and climatic region (Alpine, Mediterranean, 
Continental, Atlantic). They were man-made or 
natural.

Aquatic macrophytes and riparian vegetation were 
surveyed according to the  S3m protocol (Labat et al., 
2022) during the vegetation growth period (mostly 
in summer, except for the Mediterranean area, moni-
tored in spring). Vegetation abundance was assessed 
using a five-class abundance scale (class 1: a few 
individuals; 2: isolated small patches; 3: numerous 
small patches; 4: large discontinuous patches; 5: large 
continuous patches). Plants at the outer edge (includ-
ing plants growing to the highest water mark) and the 
shallow part of each site were inventoried by walking 
or wading in a zig-zag pattern, whereas deeper water 
zones were point-sampled from a boat, with a grapnel 
or a rake, following a zig-zag pattern. This sampling 
method is more representative and less time consum-
ing than quadrat sampling strategies for SSLs (Labat 
et al., 2022). Taxa such as Characeae, Callitriche and 
mosses were kept in alcohol or dried for identification 
in the laboratory. All hydrophytes and riparian veg-
etation (spermatophytes, bryophytes, and Characeae, 
excluding other algae) were identified at the species 
level when possible.

Correlation of the six indices with TP, and efficiency 
in discriminating trophic categories

We examined Spearman correlations between TP and 
each index, and we classified them into four trophic 
categories (oligotrophic to hypertrophic). These 
trophic categories were based on the thresholds of TP 
concentrations defined by Vollenweider & Kerekes 
(1982). Differences between the intervals of index 
values by trophic categories were checked with Wil-
coxon tests and expressed with box plots. These anal-
yses were conducted in the 146 SSLs sampled with 
the  S3m protocol and with TP data (“Development 
of a new trophic profile for plants and its associated 
trophic index” section).

Performance of the six indices in discriminating 
pressures using reference‑based models

We tested the ability of each trophic index to discrim-
inate anthropogenic pressures using reference-based 
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models, following the methodology summarized in 
Fig. 1.

The WFD recommends two strategies to develop a 
reference-based index. We followed system B, which 
predicts the reference values of an index directly from 
a large set of environmental predictors and index val-
ues obtained in a wide dataset of least impacted eco-
systems (Heiskanen et al., 2004). We expected system 
B to be more adapted to SSLs because (1) regionali-
zation is bound to be very complex for small ecosys-
tems because macrophyte communities partly depend 
on local conditions (e.g., geological singularities), (2) 
regionalization tends to oversimplify certain envi-
ronmental factors identified as determinants of mac-
rophyte communities because it uses intervals (e.g., 
elevation; (Labat et al., 2021), and (3) regionalization 
is adapted to one country, whereas we aimed at a ref-
erence-based index widely applicable in neighboring 
countries.

To predict the reference values of each index, we 
had to (1) identify the least impacted sites within a 
large dataset, and (2) identify the environmental pre-
dictors of each index in least impacted conditions so 
as to develop predictive models.

Identification of  the  least impacted sites First, we 
separated the least impacted SSLs from the impacted 
SSLs according to the presence of eight pressures 
likely to influence trophic levels or trophic indices. 
Three categories of pressures were considered: sur-
rounding land use, external pollution inputs, and biotic 
sources of disturbances.

Surrounding land uses were (1) % of fertilized 
meadows or intensive grazing, (2) crops, and (3) 
urbanization. They were computed with GIS analy-
ses from Corine Land Cover (2018), and a circular 
buffer zone with a 50  m-based radius weighted by 
the surface area of each SSL in  m2 (r = 50 + √sur-
face area) was applied: a 1  m2 pond corresponded to 
a 51 m radius buffer, a 1 ha pond to a 150 m radius 
buffer, and 10  ha to a 366  m radius buffer. This 
roughly corresponded to the efficient buffer zone for 
the detection of land use effects on plant commu-
nities in wetlands of equivalent surface areas (Hou-
lahan et al., 2006). Fertilized meadows or intensive 
grazing were differentiated from other meadows by 
expert advice by globally homogenized plant com-
munities in the surrounding meadows. Urban SSLs 
are more impacted than rural ponds by a cocktail of 

driving factors such as artificial substrates, a sim-
ple shoreline outline, low water quality, isolation, 
and exotic species (Oertli & Parris, 2019). The TP 
concentration tends to be higher in urbanized catch-
ments than in agricultural ones, whereas the nitro-
gen concentration tends to be higher in agricultural 
catchments (Duan et  al., 2012; Matej-Lukowicz 
et  al., 2020). The water quality of SSLs is indeed 
largely dependent on different agricultural land uses 
(meadows/crops) (Zębek & Szymańska, 2017), with 
a greater influence of intensive agriculture (Halina 
et  al., 2005; Céréghino et  al., 2007). Meadows 
should not be neglected because they can be at least 
a source of nutrients through pasture (Ruggiero 
et al., 2004) and long-term inputs of inorganic ferti-
lizers and manure (Jennings et al., 2003).

External pollution inputs corresponded to (4) the 
presence of a sewage treatment plant in the water-
shed or a polluted stream feeding the SSL, accord-
ing to river WFD evaluation or, if lacking, expert 
decision.

Direct or indirect biotic sources of disturbances 
were: (5) livestock pressure, with visual degrada-
tions on banks or plants, (6) visible alteration of the 
littoral zone by waterbirds, (7) the presence of exotic 
species: muskrats, coypu or bioturbators crayfish, and 
(8) the presence of cyprinids. Livestock can affect 
macrophyte communities through organic pollution, 
nutrient loads, sediment resuspension, trampling, and 
increased soil salinity and drying (Kutschker et  al., 
2014). Fish, waterbirds, muskrats and coypu can mod-
ify plant communities by grazing on them (Prigioni 
et al., 2005; Wood et al., 2012; Phillips et al., 2016; 
Gethöffe & Siebert, 2020); eutrophication can also be 
increased by the presence of bread of human origin 
(Turner & Ruhl, 2007) or dejections (Scherer et  al., 
1995). Fish—especially cyprinids—can affect macro-
phyte communities and nutrient cycling through sedi-
ment resuspension and zooplankton feeding (Moss 
et al., 1997); trophic levels can also be increased by 
angling baits (Arlinghaus & Mehner, 2003). Biotur-
bators exotic crayfish such as Procambarus and Faxo‑
nius immunis destroy aquatic vegetation when they 
proliferate (Rodríguez-Pérez et  al., 2016; Herrmann 
et al., 2018; Hossain et al., 2020), and generate bio-
turbation likely to increase nutrient concentrations 
in water (Gao et al., 2021), or may influence trophic 
indices by eliminating significant indicator species.
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Candidate environmental predictors of  the  indi‑
ces To test the ability of the six trophic indices to 
disentangle trophic pressures in a reference-based pre-
dictive model, we selected eleven candidate environ-
mental predictors suspected to influence trophic levels 
in least impacted contexts. These environmental pre-
dictors were collected during the macrophyte survey 
or computed/measured through GIS analyses. They 
included three spatial predictors: (1) distance from 
the source (DIS), (2) distance from the nearest river 
(DNR), and (3) distance from the coast (DC). DIS is a 
simple proxy of watershed size because the watersheds 
of SSLs are often difficult to delimit. When the SSL 
was outside a river floodplain, it was very small and 
DIS = 0. When the SSL was itself a source, DIS = the 
length of the longest distance from the banks to the 
SSL outlet. When the SSL was a river impoundment, 
DIS = the length from the source of the river to the 
SLL outlet. Where the SSL was in a river floodplain, 
DIS = the length from the source to the perpendicu-
lar formed by the line between the river and the SSL. 
DNR is a proxy of river connectivity, whereas DC is 
a proxy of marine influence, including sea sprays and 
sea water intrusions in freshwater groundwater.

Other factors were (4) elevation, (5) geological 
typology (siliceous = 1; calcareous = 2) according 
to a cross-analysis of sylvoecoregions (Cavaignac, 
2009), the IPR+ database (Marzin et al., 2016), and 
the “European typology for rivers and lakes” data-
base (Lyche Solheim et  al., 2019), (6) shading (% 
of surrounding vegetation), (7) mean depth, and (8) 
surface area. Finally, climatic conditions were consid-
ered with (9) mean annual temperature, (10) annual 
temperature amplitude, and (11) mean precipitations, 
extracted from the French National Institute for Agro-
nomic and Environmental Research (INRAE) rea-
nalysis (Marzin et al., 2016) of the SAFRAN/France 
database for the years 2010–2016 (Vidal et al., 2010).

Computation and  selection of  the  reference‑based 
models To predict reference values in least impacted 
conditions, we used a generalized additive model 
(GAM; (Hastie & Tibshirani, 1999)) between trophic 
indices and the eleven candidate predictors from 
the least impacted SSLs. Candidate predictors were 
assessed for normality and homoscedasticity using 
Shapiro–Wilk tests and by examining histograms, and 
transformations were applied when appropriate. The 
significant predictors were identified according to the 

REML method combined with null space penalization 
(Marra & Wood, 2011). All combinations of the ten 
quantitative candidate predictors associated with geo-
logical typology (1022 combinations) were tested.

Each trophic index Ti was expressed in ecological 
quality ratio (EQR) following Hering et  al. (2006), 
Eq. (4):

With Obs = real computed value of the selected 
trophic index, Worst = minimum value (IBML) or 
maximum value (all other indices) computed for the 
305 sites for each index, Best = predicted value of the 
trophic index according to the GAM model.

To select the best predictive model for each index, 
we applied a 3-step validation:

(1) Good prediction of reference values: the model-
predicted values were not significantly different 
than the index values obtained in least impacted 
conditions, according to Wilcoxon test.

(2) Discrimination efficiency: each  TiEQR discrimi-
nated as many pressures as possible according to 
discrimination efficiency (DE ≥ 0.6) (Ofenböck 
et  al., 2004). DE is the proportion of impacted 
SSLs with lower EQR values than the first quar-
tile of the distribution of the least impacted SSLs.

(3) Explanatory power: the model explained the 
highest deviance.

This 3-step validation avoided biases induced 
by the inevitable spatial heterogeneity of the least 
impacted SSLs in strongly anthropized areas.

Finally, we used Pearson correlation test on ref-
erence-based indices to test correlations between 
the indices and the intercalibration metric  ICMLM in 
order to determine the WFD-compatibility of each 
candidate index.

Ecological quality class boundaries

As recommended by the WFD, we defined ecologi-
cal class boundaries according to the distribution of 
the  TIM2SEQR values in the least impacted condi-
tions. The “high-good” and “good-moderate” bound-
aries corresponded to the 75th and 25th percentiles, 
respectively. Then, the “moderate-poor” and “poor 
bad” boundaries corresponded to a division of the 0 

(4)TiEQR =
Obs −Worst

Best − Worst
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to good-moderate boundaries into three equal classes 
(Mondy et al., 2012).

Results

TIM2S: new trophic profiles for macrophytes of west 
European standing waters

TIM2S trophic profiles are provided in Table  S1. 
Two hundred and fifty-one indicator species were 
included.

Correlation between the seven trophic indices and 
trophic levels

TIM2S was the index with the highest correlation with 
TP (Table  4). IBML, TRS, PLEX and  ICMLM were 
strongly correlated with each other (r > 0.7 or < − 0.7) 
(Table 4). Only  TIM2S discriminated trophic catego-
ries from oligotrophic to eutrophic ones, but failed to 
significantly discriminate eutrophic SSLs from hyper-
eutrophic ones (Fig. 2).

Discrimination efficiency of the six indices in 
reference-based models

Table  5 summarizes the main results obtained from 
the 1022 combinations of environmental predic-
tors after the 3-step selection of the best predictive 
models.

Each trophic index was predicted by different 
combinations of environmental predictors. Shade 
was a determinant of all indices except M-NIP. 
Elevation was a strong predictor for  TIM2S, M-NIP 

and TRS (F = 2.83, 7.28 and 14.99, respectively), 
whereas geology was a very strong predictor for 
PLEX, TRS,  ICMLM and IBML (t = 8.18, 7.34, 6.84 
and −  5.38, respectively). Climate, surface area and 
spatial predictors (DIS, DC and DNR) also influ-
enced certain indices.  TIM2S characterized the larg-
est number of SSLs (99%), followed by IBML and 
TRS (97%). M-NIP was not computed for 45% of the 
SSLs. IBML was the index with the higher mean DE 
(0.593), discriminating 6 pressures, followed by TRS 
(mean DE = 0.596) and  TIM2S (mean DE = 0.571), 
discriminating 5 pressures. No index discriminated 
SSLs concerned by fertilized meadows or livestock. 
Only PLEX, TRS and IBML discriminated urbanized 
landscapes.

WFD compatibility: correlation of the indices with 
reference-based ICMLM

The Pearson correlation analysis of the reference-
based indices highlighted that  TIM2SEQR,  ICMLMEQR 
and  IBMLEQR were highly correlated with each other 
(P > 0.6, Table 6).

Ecological quality boundaries of the most 
discriminant indices

The calculated values of the ‘high–good’, 
‘good–moderate’, ‘moderate–poor’ and ‘poor–bad’ 
boundaries for the reference-based  TIM2SEQR were 1, 
0.795, 0.530 and 0.265, respectively. The four most 
discriminant indices  (IBMLEQR,  TRSEQR,  TIM2SEQR 
and  ICMLMEQR) were clearly efficient in discrimi-
nating the least impacted sites (sites with 0 pressure 

Table 4  Results of the Spearman correlation test between the six indices and total phosphorus (TP)

TIM2S Trophic Index for Macrophytes of Small Shallow lakes, M‑NIP Macrophyte Nutrient Index for Ponds, PLEX Plant Lake 
Ecotype index, TRS Tropic Ranking Score, ICMLM Inter-Calibration Metric for Lake Macrophytes, IBML Indice Biologique Macro-
phytes Lacustres

TIM2S M-NIP PLEX TRS ICMLM IBML TP

TIM2S 1 0.60 0.55 0.47 0.60 − 0.61 0.62
M-NIP 1 0.33 0.40 0.32 − 0.48 0.24
PLEX 1 0.90 0.82 − 0.81 0.10
TRS 1 0.74 − 0.82 0.07
ICMLM 1 − 0.72 0.19
IBML 1 − 0.22
TP 1
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identified) from those with high pressure levels (the 
sites with at least four pressures identified, Fig. 3).

Discussion

Most of the trophic macrophyte profiles used for 
freshwater trophic indices are expert-based. As dis-
cussed by Demars et al. (2012) for rivers, these pro-
files tend to confound other chemical, physical and 
spatial factors with nutrients. IBML and  ICMLM were 
strongly correlated with the community-based indices 
TRS and PLEX, and these four indices were weakly 
correlated with TP. These results confirm that these 
four indices highlight community alterations induced 

by a large panel of pressures more than eutrophica-
tion. The lowest correlation between TP and M-NIP 
can be explained by the dominant calcareous geology 
substratum in Switzerland, resulting in the absence of 
trophic profiles for common indicator species typi-
cal of siliceous SSLs such as Potamogeton polygoni‑
folius or Isolepis fluitans. As a consequence, we did 
not compute M-NIP for numerous SSLs from France. 
 TIM2S was the only index with a strong correlation 
with TP. Our first hypothesis was validated.

M-NIP and PLEX discriminated pressures least. 
These bad results can be explained by (1) the lack 
of numerous indicator species of siliceous SSLs for 
M-NIP, (2) the consideration of only hydrophyte spe-
cies for PLEX. Very small SSLs harbor a very low 

Fig. 2  Box-plots of the six trophic indices per trophic category based on TP (OECD TP trophic scale). Small letters (a, b, c) corre-
spond to significantly different groups according to Wilcoxon tests
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floristic richness (Hassall et  al., 2011; Labat et  al., 
2021). Therefore, including all taxa (helophytes, 
bryophytes and hydrophytes) in the calculation of the 
index can be determining for a robust evaluation of 

trophic levels whatever the SSL size or shading likely 
to reduce floristic richness. Even if some species or 
groups of species were not directly sensitive to the 
nutrient status, they may have disappeared due to the 

Table 5  Discrimination efficiencies (DE), F values and t values of the best GAM models, GAM statistics and % of SSLs with a cal-
culable index for each index

Bolded values correspond to Discrimination Efficiency (DE) ≥ 0.6
Significance: ***P < 0.001, **P < 0.01, *P < 0.05
TIM2S Trophic Index for Macrophytes of Small Shallow lakes, M‑NIP Macrophyte Nutrient Index for Ponds, PLEX Plant Lake 
Ecotype index, TRS Tropic Ranking Score, ICMLM Inter-Calibration Metric for Lake Macrophytes, IBML Indice Biologique Macro-
phytes Lacustres. F values concerned all predictors except geology (t values). DIS distance from the source, DNR distance from the 
nearest river, DC distance to the coast

TIM2S M-NIP PLEX TRS ICMLM IBML

DE Fertilized meadows 0.3182 0.3235 0.2857 0.4773 0.2973 0.4090
Crops 0.6923 0.5294 0.7368 0.7692 0.7894 0.8462
Exotic species 0.6970 0.6250 0.7000 0.4063 0.5384 0.6061
Waterbirds 0.6364 0.3333 0.6000 0.6364 0.7273 0.8182
Livestock 0.3429 0.5263 0.2631 0.3125 0.3478 0.1176
Cyprinids 0.6923 0.6667 0.3333 0.6923 0.5833 0.6154
External pollution inputs 0.6944 0.4231 0.6667 0.6111 0.7667 0.6667
Urbanization 0.5000 0.4167 0.6250 0.6111 0.4375 0.6667

Mean DE 0.571 0.481 0.526 0.565 0.561 0.593
GAM
F values or t values

DIS 3.62** 11.11*** 5.65***
Elevation 2.83** 7.28*** 14.99***
Shade 4.52*** 3.42** 3.28** 24.41*** 6.82***
Surface area 2.13* 1.99**
Geology 8.18*** 7.34*** 6.84*** -5.38***
T° amplitude 4.79*** 13.09*** 3.03**
Precipitation 2.08*
DC 2.06**
DNR 1.90* 3.09**

GAM statistics R2-adjusted 0.24 0.28 0.67 0.58 0.61 0.45
Deviance 27% 34% 69% 60% 64% 47%

% SSLs with index value 99% 55% 73% 97% 80% 97%

Table 6  Results of the Pearson correlation test comparing the EQRs of the six indices

TIM2S Trophic Index for Macrophytes of Small Shallow lakes, M‑NIP Macrophyte Nutrient Index for Ponds, PLEX Plant Lake 
Ecotype index, TRS Tropic Ranking Score,  ICMLM Inter-Calibration Metric for Lake Macrophytes, IBML Indice Biologique Macro-
phytes Lacustres

TIM2SEQR M-NIPEQR PLEXEQR TRSEQR ICMLMEQR IBMLEQR

TIM2SEQR 1 0.66 0.02 0.51 0.65 0.63
M-NIPEQR 1 0.03 0.55 0.39 0.51
PLEXEQR 1 0.01 0.00 0.05
TRSEQR 1 0.68 0.64
ICMLMEQR 1 0.63
IBMLEQR 1
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development of more competitive taxa in eutrophic 
conditions, e.g., Bryophyta vs. higher plants (Ber-
gamini & Pauli, 2001).  TIM2S was computable in 
99% of the SSLs. A strictly TP-based trophic index 
can be applied in larger geographical areas than 
community-based trophic indices can be.  TIM2S was 
only influenced by elevation, shade and surface area, 
whereas community-based indices were also influ-
enced by determining factors of community compo-
sition such as climate, mineralization (geology and 
DIS) or connectivity (DIS and DNR) (Labat et  al., 
2021). Consequently, the accuracy of these commu-
nity-based indices is more dependent on environmen-
tal factors than strict trophic indices are. For example, 

IBML reference values for the WFD are predicted 
according to four meta-types depending on elevation 
and alkalinity (Boutry et  al., 2013), whereas in our 
study it was influenced by the complex interaction 
of six environmental predictors such as temperature 
amplitude, lake size or connectivity.

Finally, the predictive models provided four 
reference-based indices with high discrimination 
efficiency and sensitive to major sources of eutroph-
ication [crops, external pollution inputs (Carpen-
ter, 2005) and waterbirds (Boros et  al., 2021)]. 
 TIM2SEQR was also sensitive to the bioturbators 
crayfish, coypu and cyprinids, but failed to strongly 
discriminate urbanization effects, in contrast to 

Fig. 3  Boxplot representing the best reference-based indices and their ecological quality boundaries according to the 143 least 
impacted SSLs, the 115 SSLs with 1–3 pressures and the 23 SSLs with more than 4 pressures
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 IBMLEQR and  TRSEQR. Therefore, our second 
hypothesis is partially validated. The lower effi-
ciency of  TIM2SEQR in disentangling urbanization 
effects can be explained by interactions between 
urbanized areas and the natural areas that frequently 
surround urban SSLs and can play a buffer role for 
nutrients (Patenaude et  al., 2015). As community-
based indices,  IBMLEQR and  TRSEQR can better dis-
entangle other urbanization effects, e.g., exotic spe-
cies (Ehrenfeld, 2008) or anthropogenic trampling 
(Pescott & Stewart, 2014). Finally,  TIM2SEQR was 
the only index well correlated with nutrient levels. 
With various pressures with DE > 0.6, it could be 
included in new multimetric indices.

In this study, we propose objective nutrient pro-
files derived from TP for a large number of plants, a 
new trophic index  (TIM2S) and its reference-based 
index. Numerous macrophyte trophic indices are 
still not reference-based because it is hard to find 
references or least impacted conditions (Garcia 
et  al., 2003; Demars et  al., 2012). The reference-
based indices for the large lakes of the WFD are 
inevitably under human influence in most European 
countries because they belong to large watersheds 
and supply numerous services requiring paleolim-
nological investigations or retrospective analyses 
(Hutorowicz, 2020). On the other hand, SSLs in 
least impacted conditions are easier to find because 
they belong to smaller catchment areas, some-
times free of human activities. Reference-based 
indices developed especially for SSLs can indeed 
be more reliable because of more robust reference 
data. Including some least impacted SSLs in WFD 
indices could be useful to increase their efficiency, 
despite possible differences in their functioning 
(Padisák & Reynolds, 2003).
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