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in one species and opsin expression in all three spe-
cies. Within each species, we found large individual 
variation in cyp27c1 expression levels and no consist-
ent association with opsin expression levels. These 
results indicate that visual system plasticity of even 
closely related species can be differentially mediated 
by opsin and cyp27c1 expression, possibly associated 
with species differences in visual niche.

Keywords Local adaptation · Paralabidochromis 
sauvagei · Pundamilia sp. “pundamilia-like” · 
Pundamilia. sp. “nyererei-like” · Sensory drive

Introduction

Phenotypic plasticity, the ability of a single genotype 
to express different phenotypes depending on envi-
ronmental conditions, is a key determinant of organ-
ismal performance and greatly influences ecological 
interactions. Its role in evolution is also increasingly 
acknowledged (Bradshaw, 1965; Schlichting & Pig-
liucci, 1998; Agrawal, 2001; Pigliucci, 2001; West-
Eberhard, 2003; DeWitt & Scheiner, 2004; Van Snick 
Gray & Stauffer, 2004; Fusco & Minelli, 2010; Pfen-
nig et  al., 2010). Plasticity might weaken selection 
pressure for genetic change and thus slow down or 
prevent adaptive evolution (Huey et  al., 2003, Price 
et  al., 2003, DeJong, 2005), but it might also pro-
mote adaptive evolution by allowing a broad toler-
ance to environmental conditions (Schlichting, 1986, 
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West-Eberhard, 1989, Scheiner, 1993). Therefore, 
promotion or inhibition of evolution by plasticity may 
depend on the trait involved. In the present study, we 
explore the contribution of phenotypic plasticity to 
visual system variation in cichlid fish.

Organisms often rely on their visual system to 
assess and exploit their environments (e.g. foraging 
and social interaction) (Stevens, 2013) and may dif-
fer in visual sensitivity as a result of genetic variation 
and/or phenotypic plasticity (Collin & Shand, 2003; 
Smith et al., 2012; Hornsby et al., 2013; Dalton et al., 
2015). The visual system is often key in local adap-
tation, as it is fine-tuned to environmental features. 
Evidence for visual adaptation to local environments 
has been documented in numerous taxa, particu-
larly in aquatic species (Cummings & Endler, 2018), 
probably because aquatic environments constitute 
highly heterogeneous visual habitats with substantial 
variation in spectral composition and light intensity 
(Boughman, 2002; Seehausen et  al., 2008; Warrant 
& Johnsen, 2013). For several fish species, there are 
indications that divergent visual adaptation to differ-
ent light environments may contribute to, or even ini-
tiate, population divergence (Endler, 1992; Seehausen 
et  al., 1997; Boughman, 2002; Spady et  al., 2005; 
Fuller & Noa, 2010; Maan & Seehausen, 2010). 
Cichlid fish inhabit a large diversity of visual environ-
ments (Schelly et  al., 2006) and have highly diverse 
visual system properties (Carleton & Kocher, 2001; 
Seehausen et al., 2008; Terai et al., 2017). Moreover, 
several traits have been shown to be plastic in cich-
lids (reviewed in Schneider & Meyer, 2017) including 
the visual system. Here, we address the role of plas-
ticity in cichlid visual system variation by exploring 
the contributions of both developmental and environ-
mental plasticity to different components of the visual 
system in three closely related species of Lake Victo-
ria cichlids.

As in other vertebrates, cichlid visual pigments 
consist of an opsin protein covalently bound to a 
Vitamin A-based chromophore. Cichlid fish have one 
rod opsin gene (Rh1), involved in dim light vision, 
and seven cone opsin genes that are expressed in 
either one of two morphological cone types (Fernald 
& Liebman, 1980): single cones: three short-wave-
length-sensitive opsins (SWS1, SWS2a, SWS2b) and 
double cones: three medium-wavelength-sensitive 
opsins (Rh2b, Rh2aα, Rh2aß) and one long-wave-
length-sensitive opsin (LWS) (reviewed in Carleton 

et  al., 2016). Variation in the coding sequence (that 
may alter the wavelength spectrum absorbed by the 
pigment) and changes in expression patterns of these 
opsins, determine differences in visual sensitivity 
across species. In addition, opsin gene expression 
has been shown to be plastic (i.e. to be affected by 
environmental conditions) in cichlids, with vary-
ing degrees of plasticity among species (Carleton & 
Kocher, 2001; Carleton et al., 2005, 2008, 2016; Terai 
et al., 2006; Hofmann et al., 2010; Nandamuri et al., 
2017; Wright et  al., 2020). Pigment absorption pat-
terns not only depend on opsins, but also on the type 
of chromophore. Fish (as well as amphibians and 
some reptiles) use two types of chromophores, based 
on either Vitamin  A1 (11-cis-retinal) or Vitamin  A2 
(11-cis 3,4-didehydroretinal). Chromophore-based 
tuning involves changes in the proportion of these 
two forms in the retina. Switching from  A1- to  A2- 
results in a shift in absorption maxima towards longer 
wavelengths, with a stronger shift when coupled with 
longer-wavelength-sensitive opsins (Bridges, 1972; 
Hárosi, 1994; Parry & Bowmaker, 2000). Chromo-
phore composition varies among species and is asso-
ciated with variation in light conditions (Bridges 
& Yoshikami, 1970; Reuter et  al., 1971; Provencio 
et al., 1992; van der Meer & Bowmaker, 1995; Toy-
ama et al., 2008; Morshedian et al., 2017). Underwa-
ter light spectra in freshwater habitats are on average 
more red-shifted than in marine habitats. Consistent 
with this, freshwater and coastal species tend to use 
 A1/A2 mixtures or only Vitamin-A2-based chromo-
phores, while marine fish use  A1-based chromophores 
(Toyama et al., 2008). In some species, chromophore 
ratios change during the lifetime of an individual 
(Munz & McFarland, 1977), often related to sea-
sonal migration (Temple et  al., 2006) or develop-
mental alteration in diet (Giovannucci & Stephenson, 
1999). In cichlids, microspectrophotometry (MSP) of 
retinal tissues suggests that chromophore ratios may 
differ between species: species from clear waters 
(e.g. Lake Malawi) mainly use  A1-derivatives (Carle-
ton et  al., 2000; Parry et  al., 2005; Sugawara et  al., 
2005), while cichlids from turbid waters (entailing 
red-shifted visual conditions; e.g. Lake Victoria, 
Lake Nicaragua and Lake Managua) tend to have 
a higher proportion of  A2-based pigments (Terai 
et al., 2006). In zebrafish, conversion of Vitamin  A1 
to Vitamin  A2 is mediated by the enzyme Cyp27c1 
(Enright et  al., 2015). In line with this, studies in 
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bullfrog and lamprey have documented positive cor-
relations between cyp27c1 expression levels and  A2 
proportions in retinal pigments (Enright et al., 2015; 
Morshedian et al., 2017). This suggests that cyp27c1 
expression levels can be used as a proxy for  A2 pro-
portions. In a previous study, we observed that this 
gene is expressed in two closely related haplochro-
mine Pundamilia cichlid species from Lake Victoria, 
with higher cyp27c1 expression in populations from 
turbid waters than from clear waters in one of the two 
species (Wilwert et al., 2021). However, cichlid spe-
cies and populations from such red-shifted environ-
ments not only tend to have higher  A2 to  A1 ratios, 
but also higher expression of opsin genes that absorb 
longer wavelengths (i.e. Rh2 and LWS; Hofmann 
et al., 2009; Carleton et al., 2020). This suggests that 
opsin expression patterns and chromophore usage can 
jointly contribute to visual performance.

In addition to environmental effects, opsin gene 
expression is developmentally plastic: individuals 
from several species shift from high levels of short-
wavelength-sensitive opsin expression as larvae and 
juveniles to high long-wavelength-sensitive opsin 
expression as adults (Takechi & Kawamura, 2005; 
Carleton et  al., 2008; O’Quin et  al., 2011; Dalton 
et  al., 2015; Irazábal-González et  al., 2022). These 
patterns likely reflect differences between life stages 
in water depth occupation and foraging behaviour 
(Fryer, 1972; Novales-Flamarique & Hawryshyn, 
1994; Jordan et al., 2004). Environmental and devel-
opmental plasticity in gene expression is widely 
documented for opsin genes, but less is known about 
plasticity at the level of chromophore usage. 

In this study we explored (1) patterns of cyp27c1 
and cone opsin gene expression across three Lake 
Victoria haplochromine cichlid species, (2) the devel-
opmental trajectory and extent of environmental plas-
ticity of cyp27c1 expression level and (3) the asso-
ciation between cyp27c1 and cone opsin expression 
patterns. 

Methods

Cichlid species

We studied three closely related haplochromine 
cichlid species, inhabiting different light envi-
ronments in Lake Victoria (Fig. S1): Pundamilia 

sp.”pundamilia-like” (P), Pundamilia sp.”nyererei-
like” (N) and Paralabidochromis sauvagei (S). Pun-
damilia pundamilia (Seehausen 1998) and Pun-
damilia nyererei (Witte-Maas & Witte, 1985) are 
two closely related cichlids species. Males of the 
Pundamilia species pair differ in nuptial coloration 
(blue vs. red) (Seehausen, 1996). Until recently all 
Pundamilia populations with blue males were clas-
sified as P. pundamilia and all populations with red 
males as P. nyererei. However, population genomic 
analyses revealed that populations from the south-
ern and western Mwanza Gulf (Kissenda and Python 
islands) represent a separate speciation event; they 
are therefore referred to as P. sp.”pundamilia-like” 
and P. sp.”nyererei-like” (Meier et  al., 2017, 2018). 
For both Pundamilia species, we used first- and 
second- generation offspring of wild-caught indi-
viduals from Python Island in the Mwanza Gulf of 
Lake Victoria (− 2.6237, 32.8567). At this location, 
P. sp.”pundamilia-like” occurs in shallow waters 
(0–2  m) and encounters broad-spectrum light. P. 
sp.”nyererei-like” extends to greater depths (0–5 m), 
but is most abundant between 2.5 and 3.5  m (See-
hausen et  al., 2008). High water turbidity at Python 
Island results in heterogeneous visual conditions 
across depth ranges, with a shift of the light spec-
trum towards longer wavelengths with increasing 
depth, such that P. sp.”nyererei -like” experiences 
little short-wavelength light (Seehausen et al., 2008). 
Pa. sauvagei was collected from Makobe Island 
(Speke Gulf; − 2.3654, 32.9228), where water trans-
parency is higher than at Python (Seehausen et  al., 
2006; Castillo Cajas et al., 2012). The species has a 
relatively broad depth distribution (1.5–14  m; See-
hausen, 1996) and therefore encounters a range of 
light conditions, from broad-spectrum light in shal-
low waters to red-shifted conditions at the deeper 
end of its depth distribution (Fig. S1). Families were 
established opportunistically with 13 dams and 9 
sires for P. sp.”pundamilia-like”, 15 dams and 10 
sires for P. sp.”nyererei-like” and 15 dams and 8 sires 
for Pa. sauvagei. In total, eighty-nine crosses resulted 
in 166 test fish (Table S2). Test fish were randomly 
selected from these crosses. For individual identifica-
tion we inserted a microchip in the abdominal cavity 
(PIT tags, Passive Integrated Transponder, Biomark, 
ID, Idaho; USA, and Dorset Identification, Aalten, 
Netherlands) of each test fish. All haplochromines 
are maternal mouthbrooders; eggs were removed 
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approximately 6  days after fertilization from brood-
ing females and split evenly between two light condi-
tions (see below). Fish were housed at 25 ± 1  °C on 
a 12L:12D light cycle and fed twice a day with com-
mercial cichlid pellets and frozen raw food (Artemia, 
spirulina and krill). For gene expression analysis, fish 
were sacrificed by applying a lethal dose of buffered 
MS-222 (1  g/L) and subsequent cutting of the ver-
tebral column in the late afternoon (16:00–18:00; 
synchronized to maximize RNA yield and reduce 
effects of circadian variation in opsin and cyp27c1 
expression; Halstenberg et  al., 2005; Yourick et  al., 
2019). Eyes were extracted, preserved in RNAlater™ 
(Ambion) and frozen (− 20 °C).

Light conditions

Fish were reared in two different light conditions, 
mimicking shallow (i.e. broad-spectrum light) and 
deep (i.e. red-shifted light) water conditions in Lake 
Victoria (described in Maan et  al., 2017; Fig. S1). 
For both light conditions, we used halogen light bulbs 
with a green light filter (LEE #243). For the broad-
spectrum light condition, we added blue light bulbs 
(Paulmann, 8809). For the red-shifted light condi-
tion we added a yellow filter (LEE #015) to reduce 
short-wavelength light. Rearing light conditions were 
designed to mimic the spectral differences between 
depths and partly recreated intensity differences 
encountered in the lake (i.e. the red-shifted light envi-
ronment had a light intensity of ~ 70% of the shallow 
light condition; see Fig. S1).

Sampling

Fish were sacrificed at several developmental time 
points, ranging from 10 to 1391  days post fertiliza-
tion (dpf). Lake Victoria haplochromines reach adult-
hood at ~ 180 dpf (6 months). Accordingly, fish sam-
ples were classified into two categories: juveniles 
(ranging from 10 to 180 dpf, 5 timepoints: 10; 40; 
90; 170; 180 dpf) and adults (older than 190 dpf). 
We included individuals from at least two families 
for each timepoint. To obtain sufficient retinal RNA 
(Carleton et al., 2008), we pooled both eyes from one 
individual for time points 10–40 dpf  and one whole 
eye from one individual at 90 dpf onwards. From 120 
dpf onwards, one retina (instead of the whole eye) per 
individual was extracted (Table S3).

Measuring expression levels

Real-time quantitative polymerase chain reaction 
(qRT-PCR) was used to quantify cpy27c1 and opsin 
gene expression. Total RNA was isolated using Tri-
zol (Ambion) followed by a DNase treatment to 
remove genomic DNA. 1  µg of RNA was reverse-
transcribed into cDNA using Oligo(dT)18 primer 
(Thermo Fisher Scientific) and RevertAid H Minus 
(Thermo Fisher Scientific) at 45  °C. cDNA was 
diluted to a final concentration of 10 ng/µl.

Cyp27c1 expression

As a reference for cyp27c1 expression, we used 
three housekeeping genes (HKGs): L-lactate dehy-
drogenase 1 (ldh1), Glyceraldehyde-3-phosphate 
dehydrogenase 2 (gapdh2) and ß-actin (Jin et  al., 
2013; Torres-Dowdall et  al., 2017). Stability of 
HKG expression was confirmed using RefFinder 
(Xie et al., 2012). After a denaturation step (95 °C 
for 3 min), qRT-PCRs were run for 45 cycles (95 °C 
for 15 s, 60 °C for 25 s, 72 °C for 30 s). Each reac-
tion mixture (20  µl) contained the gene-specific 
primer pair (Table  S1), diluted cDNA sample and 
SYBR Green PCR Master Mix (BioRad). Fluores-
cence was monitored on a StepOnePlus Real-Time 
PCR System (Applied Biosystems). To test for 
specificity of amplification, qPCR was followed by 
a melting curve analysis. We used LinRegPCR (Rui-
jter & Ramakers, 2003) to determine the initial con-
centration (N0) of cyp27c1 and the HKGs. Expres-
sion levels were based on two technical replicates. 
We applied the following quality control thresholds: 
PCR efficiency 1.75–2.25 and standard deviation 
between duplicates ≤ 0.5. We used the mean of the 
duplicate No estimates to calculate relative expres-
sion levels. The following equation was used to cal-
culate the relative cyp27c1 expression Ecyp for each 
sample separately:

where N0 cyp is the initial concentration of cyp27c1 
cDNA (or mRNA) and N0 Reference is the geometric 
mean of the starting cDNA (or mRNA) concentration 
of the three HKGs.

Ecyp =

N0 cyp

N0Reference

,
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Opsin gene expression

Opsin gene expression was quantified only for adults. 
Expression levels of the opsin genes (SWS2b, SWS2a, 
Rh2, LWS) were determined in relation to total opsin 
gene expression, using previously described methods 
(Wright et al., 2019). Expression was quantified using 
gene-specific Taqman primers and probes (Table S1). 
Rh2aα and Rh2Aβ were combined as Rh2A, as they 
are more than 99% similar in sequence and function 
(Parry et  al., 2005). Opsin gene expression (SWS2a, 
SWS2b, Rh2 and LWS) was monitored on StepOne-
Plus Real-Time PCR System (Applied Biosystems 
TMStepOnePlusTMReal-Time PCR System) for (95 °C 
for 2  min, 95  °C for 50  s, 60  °C for 1  min). Using 
LinRegPCR (Ruijter & Ramakers, 2003), we deter-
mined the initial concentrations (N0) and the critical 
threshold cycle numbers (Ct) of all four opsin genes. 
This approach determines the upper and lower lim-
its of a “window-of linearity” by examining the log-
linear of the PCR curve of each sample (Ruijter & 
Ramakers, 2003). On each plate, we included a serial 
dilution of a construct composed of one fragment of 
each of the four opsin genes ligated together. We used 
the mean of the technical replicates No estimates to 
calculate relative expression levels. Individual opsin 
gene expression was quantified relative to total opsin 
expression, using the following equation:

where N0/N0,all is the expression of a given opsin gene 
relative to the total expression of all measured opsin 
genes, Ct is the critical threshold cycle number of the 
sample, b the intercept and m the slope value derived 
from the construct linear regression (Gallup, 2011).

Data analysis

All analyses were performed in R (v4.1.2; R Develop-
ment Core Team, 2021). Prior to statistical analysis, 
relative gene expression data were tested for outli-
ers (1.5 * the interquartile range), separately for each 
species, light treatment and age class (juveniles and 
adults). Outlier removal resulted in 149 samples for 
cyp27c1 expression (15 removed) and 83 samples 
for opsin gene expression (7 removed). To analyse 
the effects (and interaction) of species differences 

Eopsin =
N0

N0,all

=

e
cti−b

m

∑

i e
cti−b

m

,

and light treatments on cyp27c1 expression across 
life stages, we modelled expression as: relative gene 
expression ~ species * treatment * age + (1|mother 
ID) + (1|father ID). To analyse the relationship 
between opsin and cyp27c1 expression in adult fish, 
we included opsin expression data of an additional 
38 Pundamilia adults, reported in Wright et al., 2019. 
These data were obtained using the same protocol as 
applied in our study. In addition, to describe changes 
at the cone type level, we calculated ratios of SWS2a/
SWS2b (single cones) and LWS/Rh2 (double cones). 
We used linear mixed effects modelling (lmer, R 
package lme4) for each gene and ratio separately. 
To determine minimum adequate models, we used 
stepwise backward selection based on statistical sig-
nificance. We used Anova (car package; Fox et  al., 
2017) of the minimum adequate model to estimate 
the parameter effects, degrees of freedom, and P val-
ues of the significant factors with Kenward–Roger 
degrees of freedom (Kenward & Roger, 1997; Hale-
koh & Højsgaard, 2014). To estimate parameter 
effects, P values and degrees of freedom, we per-
formed ´KRmodcomp´ (pbkrtest package). In case of 
more than two categories, we used Tukey tests (glht 
– multcomp package, Hothorn et  al., 2008) to esti-
mate parameter effects and P values. Finally, princi-
pal component analysis (PCA) was used to obtain a 
visual representation of species- and treatment-spe-
cific expression profiles in terms of both opsin gene 
expression levels and cyp27c1 expression levels.

Results

Species differences in cyp27c1 and opsin gene 
expression

Cyp27c1 expression levels differed significantly 
between species (juveniles and adults com-
bined; F2,12.1 = 29.18, P < 0.001; n = 146): expres-
sion was highest in Pa. sauvagei (compared to P. 
sp.“pundamilia-like”: z = 4.133, P < 0.001; com-
pared to P. sp.“nyererei-like”: z = 3.72, P = 0.001), 
while the two Pundamilia species showed similar 
levels of cyp27c1 (z = −  0.37, P = 0.983). For opsin 
expression patterns (adults only, n = 90), we found 
that proportions of LWS (70.9% ± 1.3) and Rh2 
(16.6% ± 1.2) were high across species, together mak-
ing up 87.5% ± 2.5 of total opsin expression, while 
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the expression levels of SWS2a (11.1% ± 0.5) and 
SWS2b (1.4% ± 0.03) were low. Independent of light 
treatments, we found species differences in opsin 
gene expression (Rh2: F2,11.5 = 45.40, P < 0.001; 
LWS: F2,7.04 = 47.38, P < 0.001). Consistent with ear-
lier work (Wright et  al., 2019), P. sp.”pundamilia-
like” expressed a higher proportion of LWS (z = 3.08, 
P = 0.011) and lower Rh2 (z = 5.17, P < 0.001) com-
pared to P. sp.”nyererei-like” (Fig.  2a). Pa. sau-
vagei had lower LWS expression than both Punda-
milia species (compared to P. sp.”pundamilia-like”: 
z = − 10.09, P < 0.001; compared to P. sp.”nyererei-
like”: z = 5.39, P < 0.001), and higher Rh2 expres-
sion (compared to P. sp.”pundamilia-like”: z = 12.16, 
P < 0.001; compared to P. sp.”nyererei-like”: 
z = −  5.31, P < 0.001). Proportions of SWS2a and 
SWS2b did not differ between species (SWS2a: 
F2,7.516 = 2.81, P = 0.122; SWS2b: F2,18.9 = 0.83, 
P = 0.451; Fig. 2a).

Developmental pattern and effect of light conditions 
on cyp27c1 expression

Cyp27c1 expression levels changed with age 
(F1,114.4 = 106.75, P < 0.001; n = 146), but the devel-
opmental pattern of cyp27c1 expression differed 
between species (i.e. significant species by age 
interaction; F3,120 = 4.88, P = 0.003). In the Punda-
milia species cyp27c1 expression slightly decreased 
with age (P. sp. “pundamilia-like”: F1,18.3 = 15.88, 
P = 0.001; P. sp. “nyererei-like”: F1,24.8 = 25.53, 
P = 0.001) and did not differ between rearing light 
conditions (P. sp. “pundamilia-like”: F1,41.56 = 1, 
P = 0.408; P. sp. “nyererei-like”:  F1,44.23 = 1, 
P = 0.455; Fig.  1a). In Pa. sauvagei, however, the 
developmental pattern of cyp27c1 expression was 
significantly influenced by the light conditions 
(F1,41.1 = 12.14, P = 0.001): in both light conditions, 
cyp27c1 was expressed at low levels in early life 
stages (10–90 dpf), but in the broad-spectrum light 
condition it increased with age while it remained low 
in the red-shifted light condition (Fig.  1). This was 
also reflected by a significant species by light treat-
ment interaction (F2,127.9 = 2.88, P = 0.038), indicating 
that species responded differently to the different light 
treatments. Pa. sauvagei individuals reared in broad-
spectrum light tended to express higher cyp27c1 
compared to their siblings reared in red-shifted light 
(z = 2.36, P = 0.072), while in the Pundamilia species, 

expression levels did not differ between light condi-
tions (P. sp. “pundamilia-like”: z = 0.63, P = 0.950; P. 
sp.”nyererei-like”: z = 0.54, P = 0.972) (Note that we 
did not document the developmental patterns in opsin 
expression in Pa.sauvagei; for the Pundamilia species 
the developmental is reported in Irazabal et al., 2021).

Effects of light conditions on cyp27c1 and opsin gene 
expression in adult stage

To explore the effects of light conditions on cyp27c1 
expression at the adult stage, we used the same data-
set as above, but now only included adults (n = 93). 
We found a similar pattern as described in the previ-
ous section: the different rearing light conditions did 
not induce a plastic response in cyp27c1 expression 
in the Pundamilia species (P. sp. “pundamilia-like”: 
z = 1.41, P = 0.407; P. sp.”nyererei-like”: z = 1.18, 
P = 0.559), while Pa. sauvagei reared in broad-spec-
trum light expressed higher cyp27c1 compared to sib-
lings reared in red-shifted light (z = 3.03, P = 0.007; 
Fig.  1b). For opsins (n = 89),we found a signifi-
cant effect of rearing light on the relative expres-
sion levels of SWS2b (F1,22.1 = 22.11, P < 0.001) and 
a tendency for an effect on SWS2a (F1,70.8 = 2.83, 
P = 0.097) and LWS (F1,73.9 = 3.51, P = 0.065) in 
adult fish. No effect on Rh2 expression was observed 
(F1,73.2 = 1, P = 0.349) (Fig.  2c). We found that P. 
sp.”nyererei-like” individuals reared in the red-
shifted environment expressed lower proportions of 
SWS2b (z = -3.08, P = 0.008) and SWS2a (z = -3.32, 
P = 0.003) and higher proportions of LWS (z = -2.87, 
P = 0.016), compared to their siblings in the broad-
spectrum light condition. Similar to P. sp.”nyererei-
like”, Pa. sauvagei reared in the red-shifted light con-
dition expressed lower SWS2b proportions compared 
to their siblings reared in the broad-spectrum light 
condition (z = -5.89, P < 0.001). P. sp.”pundamilia-
like” individuals showed no difference in opsin 
expression profiles between rearing light condi-
tions (SWS2b: z = 0.84, P = 0.864; SWS2a: z = -0.05, 
P = 0.999; Rh2: z = 0.25, P = 0.998; LWS: z = -0.53, 
P = 0.971).

No clear association between cyp27c1 and opsin gene 
expression in adult fish

To visualize the relationship between species differ-
ences in opsin expression and species differences in 
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cyp27c1 expression, we calculated the ratios of opsin 
expression within single cones (SWS2a/SWS2b) and 
double cones (LWS/Rh2) and plotted these against 
mean cyp27c1 expression levels, for each species 
(Fig. 2b, 2c). This shows that Pa. sauvagei combines 
low SWS2a/SWS2b and LWS/Rh2 ratios with a high 
cyp27c1 expression level, while P. sp. “pundamilia-
like” combines high SWS2a/SWS2b and LWS/Rh2 

ratios with a low cyp27c1 expression level. In P. sp. 
“nyererei-like”, SWS2a/SWS2b ratio, LWS/Rh2 ratio 
and cyp27c1 expression were low. Thus, Pa. sauvagei 
and P. sp. “pundamilia-like” differ in both cyp27c1 
expression and opsin ratios, while P. sp. “nyererei-
like” differs from Pa. sauvagei mostly in cyp27c1 
expression level. In line with this, PCA indicated that 
the cluster dominated by Pa. sauvagei had positive 

Fig. 1  Cyp27c1 expres-
sion. (a) Over development 
and (b) in adulthood (> 190 
dpf). Cyp27c1 expression 
decreased with age in the 
Pundamilia species, but 
increased in Pa. sauvagei 
individuals reared in broad-
spectrum light. Irrespective 
of the light conditions, 
cyp27c1 expression was 
higher in Pa. sauvagei than 
in the Pundamilia species. 
Each symbol represents an 
individual (for 10 dpf two 
individuals were pooled). 
The grey line indicates the 
transition from juvenile 
state to adulthood. Shaded 
areas indicate ± 95% 
confidence intervals. Boxes 
represent 25–75th percen-
tiles intercepted by the 
median. Error bars indicate 
95% confidence intervals. 
Colours indicate light treat-
ments (blue = broad-spec-
trum light; yellow = red-
shifted light)



2306 Hydrobiologia (2023) 850:2299–2314

1 3
Vol:. (1234567890)

PC1 values (indicating high cyp27c1 and Rh2, but 
low LWS), while the cluster dominated by P. sp. 
“pundamilia-like” had negative PC1 values (indicat-
ing low cyp27c1 and Rh2, but high LWS; Fig. 3a). The 
cluster dominated by P. sp. “nyererei-like” shows that 
P. sp. “nyererei-like” overlaps primarily with P. sp. 
“pundamilia-like”, but also with Pa. sauvagei.

Using the same cone-class-specific opsin expres-
sion ratios, we visualized the light-induced changes 
in opsin and cyp27c1 expression for each species 
(Fig. 2d–f). We observed that in response to the dif-
ferent light conditions, P. sp.”pundamilia-like” did 
not change opsin or cyp27c1 expression, while P. sp. 
”nyererei-like” changed SWS2a/SWS2b ratios, but 
not LWS/Rh2 ratios or cyp27c1 expression levels. 
Pa. sauvagei in red-shifted light conditions did not 
change LWS/Rh2, but increased SWS2a/SWS2b ratio 
and decreased cyp27c1 expression. In line with this, 
PCA indicated more pronounced plastic responses 
in the cluster dominated by Pa. sauvagei and P. 

sp. ”nyererei-like” than P. sp.”pundamilia-like” 
(Fig. 3b).

At the individual level, we found no consistent 
relationship between cyp27c1 and opsin gene expres-
sion (Fig. 4; Fig. S2). There was substantial individ-
ual variation, but the nature and extent of variation 
differed between species. For instance, we observed 
large individual variation in cyp27c1 expression in 
Pa. sauvagei, particularly in individuals reared in 
broad-spectrum light conditions, but not in the Pun-
damilia species.

Discussion

Phenotypic plasticity allows organisms to rapidly 
adjust to environmental changes, but its potential role 
in evolutionary change is unclear. Here, we explored 
the extent of phenotypic plasticity in multiple com-
ponents of the visual system in three closely related 

Fig. 2  Relationship between opsin gene and cyp27c1 expres-
sion. (a) Opsin expression in adult P. sp. “pundamilia-like”, 
P. sp. “nyererei-like” and Pa. sauvagei, (b–c) Relation-
ship between opsin gene expression (SWS2a/SWS2b and 
LWS/RH2 ratio) and cyp27c1 expression across species. (d) 
Light-induced changes in opsin expression, (e–f) Relationship 
between light-induced changes in opsin and cyp27c1 expres-

sion across species. Boxes represent 25–75th percentiles, inter-
cepted by the median and black symbols are outliers. Shapes 
in (e–f) indicate species (Pa. sauvagei (■), P. sp. ”nyererei-
like”(▲) and P. sp. ”pundamilia-like”(●). Sample sizes are 
indicated above each boxplot and error bars represent ± 95% 
confidence interval. *** indicates P < 0.001, **P < 0.01 and 
*P < 0.05
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haplochromine cichlid species from distinct photic 
environments in Lake Victoria, to start to understand 
the role of plasticity in cichlid visual system varia-
tion. We explored variation across species, environ-
ments and life stages by measuring the expression 
levels of opsin genes and, as a proxy for chromophore 
usage, the cyp27c1 gene (Enright et  al., 2015). We 
have previously shown that cyp27c1 is expressed in 
two of these species (P. sp. “pundamilia-like” and 
P. sp. “nyererei-like”), although at very low levels, 
with variation in expression levels across species 
and populations (Wilwert et al., 2021). In the present 
study, we added a third, more distantly related hap-
lochromine species (Pa. sauvagei) and explored envi-
ronmental and developmental plasticity in cyp27c1 
expression of all three species. We also explored the 
relationship between cyp27c1 expression and opsin 
gene expression profiles.

Species differences in cyp27c1 and opsin gene 
expression

We observed species differences in cyp27c1 expres-
sion levels, with Pa. sauvagei expressing higher 
levels than the two Pundamilia species. Possibly, 
this relatively low expression in Pundamilia species 

indicates that it is not relevant for visual adaptation 
in these species. For opsin gene expression profiles, 
we found that P. sp.”pundamilia-like” expressed 
higher LWS and lower Rh2 than P. sp.”nyererei-
like”, in line with previous work in wild-caught and 
laboratory-reared Pundamilia (Wright et  al., 2019, 
2020). In Pa. sauvagei, we found substantially lower 
LWS and higher Rh2 proportions compared to the two 
Pundamilia species. Together, these findings show 
that, even when reared under the same light condi-
tions, Lake Victoria cichlids show species-specific 
expression levels of opsin and cyp27c1, supporting a 
genetic basis of species differences in visual system 
gene expression profiles. Thus, Pa. sauvagei has a 
markedly different expression profile for both opsins 
and cyp27c1. There are at least two not mutually 
exclusive explanations for these observations. First, 
the three species inhabit different visual niches. This 
implies that species occupying similar visual niches 
(Pundamilia) show similar visual system properties, 
compared to a species with a more diverse visual 
niche (Pa. sauvagei). Second, species differences 
might be related to their phylogenetic history: The 
two Pundamilia species are very closely related and 
even hybridize incidentally, while Pa. sauvagei is 
less closely related to both Pundamilia species. Thus, 

Fig. 3  Expression profiles of cyp27c1 and opsins (a) form two 
clusters: the cluster dominated by Pa. sauvagei (▲) was char-
acterized by positive PC1 scores, indicating high expression 
levels of cyp27c1 and Rh2, but low expression levels of LWS. 
The cluster dominated by P. sp. ”pundamilia-like” was char-
acterized by negative PC1 scores, indicating low expression 
levels of cyp27c1 and Rh2, but high expression levels of LWS, 
while the cluster dominated by P. sp. ”nyererei-like” overlaps 

with Pa. sauvagei and P. sp. ”pundamilia-like”. Each symbol 
represents an individual. (b) Plastic responses in cyp27c1 and 
opsin expression were more pronounced in the two species 
experiencing a broader visual niche (i.e. P. sp. ”nyererei-like” 
and Pa. sauvagei). Colours indicate species: P. sp. ”punda-
milia-like”(blue) P. sp. ”nyererei-like” (red) and Pa. sauvagei 
(orange). Linetypes indicate light treatment: broad-spectrum 
light (solid) and red-shifted light (dashed)
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visual system properties in Pundamilia may resemble 
each other more not because of current adaptative sig-
nificance, but due to shared evolutionary history. To 
evaluate the contributions of each of these, assessing 
expression patterns in additional species is needed.

Effects of environmental light on cyp27c1 and opsin 
gene expression

Adaptive evolution and diversification of the visual 
system may be facilitated by phenotypic plastic-
ity. Given the red-shifted sensitivity associated with 
increased  A2, one would expect higher cyp27c1 
expression levels in fish reared under red-shifted 
light conditions. We found no such effect. In Punda-
milia, expression levels were low and did not change 
in response to light manipulation. This is in line with 
our previous study (Wilwert et  al., 2021), where we 
also observed very low cyp27c1 expression in both 
Pundamilia species, and hypothesised that cyp27c1 
may not contribute significantly to visual function-
ing in these species. The absence of phenotypically 
plastic responses to light manipulation may indi-
cate that cyp27c1 also contributes little to individual 
adjustment to prevailing light conditions in these 
species. In contrast, in Pa. sauvagei, the different 
light treatments induced a strong plastic response in 
cyp27c1 expression. However, against the expecta-
tion, fish reared in broad-spectrum light expressed 
more cyp27c1 than fish reared in red-shifted light. 
Because Cyp27c1 is not a structural component of 
the pigments, it could be that in broad-spectrum 
light, the expression of cyp27c1 ensures a buffer of 
the enzyme to be employed when the light suddenly 
changes towards longer wavelengths. This could yield 
a swifter response than altering opsin expression 
levels (Munz & McFarland, 1977; Collin & Shand, 
2003). In red-shifted light, the opsin expression pro-
file may ensure sufficient visual flexibility, precluding 
the need for high expression levels of cyp27c1. It is 
important to note that the plastic response observed in 
Pa. sauvagei does not fully account for the observed 
species difference (i.e. Pundamilia vs. Pa. sauvagei) 
in cyp27c1 expression. Even when comparing within 

the same light condition, Pa. sauvagei expressed 
higher levels of cyp27c1 than Pundamilia, suggest-
ing a genetic difference in the regulation of cyp27c1 
expression between the species. Together with its 
stronger response to the light treatments, this suggests 
that chromophore-level variation may be more impor-
tant in visual system functioning in Pa. sauvagei than 
in Pundamilia, or that Pundamilia species have a dif-
ferent pathway to modulate chromophore ratios. Fur-
ther studies are needed to investigate the effects of 
cyp27c1 and opsin expression levels on actual visual 
functioning in cichlids.

In line with previous work (Wright et  al., 2019), 
light conditions significantly influenced opsin expres-
sion patterns (i.e. SWS2b, SWS2a and LWS) in P. sp. 
”nyererei-like”, but not in P. sp. ”pundamilia-like”, 
however it should be noted that part of the opsin 
expression data reported in this study (22 out of 64 
of Pundamilia individuals) came from Wright et al., 
2019. In Pa. sauvagei, we observed that these differ-
ent light conditions induced a change in SWS2b pro-
portions. Apparently, P.”nyererei-like” respond to 
different light conditions by changes in opsin expres-
sion levels, while Pa. sauvagei respond by changes 
in cyp27c1 and SWS2b expression levels. We discuss 
this further below.

Cyp27c1 expression across life stages

Over the course of an individual’s lifetime, opsin gene 
expression profiles may change to match develop-
mental changes in water depth occupancy and feeding 
behaviour (Carleton et al., 2008; Dalton et al., 2015; 
Härer et al., 2018). Haplochromine cichlid larvae and 
juveniles typically feed on zooplankton (Fryer, 1972), 
naturally occurring in shallow waters where the light 
spectrum is still relatively rich in short-wavelength 
light (Goldschmidt et  al., 1990). Over development 
fish change their foraging strategies (Fryer, 1972) and 
explore greater depths encountering different photic 
conditions. Prior work has shown that the Pundamilia 
species pair shifts from shorter-wavelength sensitive 
to longer-wavelength sensitive opsins with increasing 
age (Irazábal-González et  al., 2022). Here, we find 
that cyp27c1 expression slightly decreases with age in 
Pundamilia. If this decrease is functionally relevant, 
it would be consistent with the expected decrease in 
long-wavelength sensitivity with age, adding to the 
pattern observed for opsins. In Pa. sauvagei, cyp27c1 

Fig. 4  Relationship between opsin gene and cyp27c1 expres-
sion at individual level. Symbols represent individual fish. 
Shaded areas indicate ± 95% confidence intervals. **P < 0.01 
 and•P < 0

◂
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expression levels were also low at the start of devel-
opment, but increased significantly with age in the 
broad-spectrum light condition, while remaining 
low in the red-shifted light condition. Establishing 
whether or not these species differences in develop-
mental and environmental plasticity reflect different 
ecologies requires detailed observation of juvenile 
behaviour in (semi-) natural conditions. In addition, 
the developmental pattern of opsin expression in 
Pa. sauvagei must be determined, to assess whether 
this also differs from that of Pundamilia species and 
whether it covaries with light conditions.

Possibly, the observed differences are related to the 
different visual niches experienced by the three spe-
cies. P. sp. “pundamilia like” inhabits a narrow vis-
ual niche (0–2 m) occurring exclusively in rock crev-
ices at shallow depths (Seehausen et  al., 1998). The 
two other species, P. sp. “nyererei like” and Pa. sau-
vagei, experience broader visual niches and are also 
more responsive to the different light manipulations 
(Fig. S1): P. sp. “nyererei like” inhabits shallow and 
deep waters between 0 and 5 m, while Pa. sauvagei 
extends to even greater depths (1.4–15 m) (Seehausen 
et al., 1998).

Based on our findings, we can formulate three pos-
sible ways in which opsin and cyp27c1 expression 
together may contribute to visual performance. First, 
opsin expression and chromophore usage may act in 
an additive fashion, where red-shifted light conditions 
select for increased expression of both LWS opsin 
and cyp27c1. This has been observed in Neotropical 
Midas cichlids, where populations from turbid waters 
showed increased LWS and cyp27c1 expression 
compared to populations from clear waters (Torres-
Dowdall et  al., 2017; Härer et  al., 2018). A second 
scenario could involve a compensatory mechanism, 
where reduced long-wavelength sensitivity (i.e. lower 
LWS proportions) is counteracted by higher Vita-
min  A2 usage (i.e. higher cyp27c1 expression) and 
vice versa, as was observed in populations of A. cf. 
citrinellus from turbid waters (Härer et  al., 2018). 
Third, there might be no functional relationship at 
all between opsin genes and cyp27c1 expression. Our 
observations could be explained by two of these sce-
narios: first, the high expression of cyp27c1, but low 
LWS in Pa. sauvagei and the low cyp27c1, yet high 
LWS proportions in P. sp. “pundamilia-like” suggests 
a compensatory effect. Second, the absence of a clear 
relationship between expression levels of opsin genes 

and cyp27c1 at individual level, despite substantial 
inter-individual variation, is consistent with the third 
scenario in which there is no relationship between the 
two, suggesting that other factors are more important 
in regulating visual system properties.

An implicit assumption of this study is that 
cyp27c1 expression levels represent  A1/A2 ratios. Pre-
vious studies in zebrafish and bullfrog have shown 
that the expression of cyp27c1 is correlated with the 
presence of Vitamin  A2. In cichlids, however, only a 
few data points are available to substantiate this pat-
tern (Torres-Dowdall et  al., 2017). The fact that our 
findings are different from previous findings (Härer 
et al., 2018), shows that we do not have a full under-
standing of the mechanism by which cyp27c1 may or 
may not mediate chromophore composition and, how 
its expression interacts with other genes involved in 
visual system functioning. In zebrafish and bullfrogs 
cyp27c1 is expressed in the retinal pigment epithe-
lium (Enright et  al., 2015). However, in cichlids, 
Vitamin  A1/A2 conversion might be regulated differ-
ently and does not necessarily have to occur in the 
retina. Hence, to interpret cyp27c1 expression levels, 
direct measurements of Vitamin  A1/A2 ratios directly 
in the visual pigments of Lake Victoria cichlids are 
required.

Our current picture of cichlid visual adaptation 
and its role in species divergence is primarily based 
on opsin level variation. This study illustrates that 
visual adaptation is more complex, as we not only 
observe developmental and environmental plasticity 
of cyp27c1 expression, but also find that even closely 
related haplochromine cichlids may use different 
visual strategies. Ultimately, a better understanding 
of the molecular basis of the fish visual system will 
enhance its value as a model system for evolutionary 
research. This will allow us to exploit it for under-
standing how organisms adapt, how fast they can 
respond to environmental changes and how the com-
ponents of the visual system and phenotypic plasticity 
contribute to local adaptation.
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