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Abstract Consequences of anthropogenic climate
change directly affect freshwater ecosystems and their
aquatic biological communities. Diatoms are amongst
the most sensitive organisms to hydric stress, making
them good indicators of preceding hydrological con-
ditions. We assume that river types with low runoff
and associated high temperature and mineralization
host the most tolerant diatoms to climate change.
We performed a cluster analysis with reference sites
throughout Spain, based on their physiographic and
hydrological characteristics. We obtained seven end-
groups spread in the three existing ecoregions, onto
which we estimated the indicator diatom taxa (Ind-
Val). Brackish and aerophilic diatom were indicator
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taxa in mineralized and low discharge rivers. We
simulated the impact of climate change on the river
types, to conclude that under the RCP 8.5, the most
impacted of all types would be the mineralized riv-
ers. We predict higher homogenization in the diatom
assemblages’ composition, with higher proportion of
planktonic taxa, and a potential increase of terrestrial
and aerophilic diatoms, as the best adapted to the
harsh conditions imposed by runoff reduction. For-
mulating clear predictions of climate change effects
should rely on planned, long-term monitoring includ-
ing accurate hydrological and biological data.
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Introduction

The latest IPCC report (IPCC, 2021) stresses that cli-
mate change imprints ramping changes in the global
water cycle, reductions in snow and ice cover, and
higher frequency of extreme climatic events. Impacts
of climate change will be more stressful in some
regions than others. In Europe, Northern regions will
progress towards wetter conditions, while the Medi-
terranean region will suffer from more acute drying.
Overall, a runoff decrease is expected in southern
Europe, which will add to strong human pressures on
water resources (Sabater et al., 2018), either directly
through flow regulation and water withdrawal for
irrigation, or indirectly through effects of landscape
change (Jaramillo & Destouni, 2015; Gudmundsson
et al., 2021).

Climate change effects on hydrological conditions
will directly affect freshwater ecosystems and their
biological communities (Dudgeon et al., 2006). While
impacts will concern all biological components of
the aquatic ecosystem, some are highly sensitive and
perform as early warning indicators. This is the case
of the diatoms, siliceous microscopic algae making
up the largest fraction of algal assemblages in river
systems (Pan et al., 1999). Diatoms are highly sensi-
tive organisms to flow reduction and desiccation, this
affecting their typology and community composition
(Tornés et al., 2021). We have recently observed that
under extreme non-flow conditions, only aerophilic
diatoms persist, while sensitive species disappear
after a few days of non-flow (Tornés et al., 2021).
Diatoms may then provide an ideal model group on
which to explore the response of biological communi-
ties to water flow reduction associated to climate and
global change.

We here use diatom assemblages from reference
sites in river networks spread throughout several
ecoregions in continental Spain. Reference conditions
in freshwaters refer to the absence or minimal anthro-
pogenic impact (Wallin et al., 2003). According to
the European Water Framework Directive (WFD-
European Commission, 2000), reference sites should
consistently show this minimal impact in biological,
hydromorphological, and physical and chemical char-
acteristics. A central aspect of the WFD is accounting
for type-specific ecological assessment and classifi-
cation of waterbodies, using reference sites as a con-
trast to impacted sites (Feio et al., 2013). Biological
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communities, and diatoms amongst them (Tornés
et al., 2012), play a central role under this scheme.

We here aim to characterize the distribution of dia-
tom assemblages in reference sites of the main river
basins of continental Spain and associate them to the
present physiographic conditions of temperature and
runoff. We subsequently associate the current assem-
blages’ distribution to predicted climate changes
affecting the different ecoregions within Spain. We
used an extensive dataset of reference sites distrib-
uted throughout continental Spain, and covering a
wide range of fluvial typologies, to test the working
hypotheses that (a) river types with lower runoff and
associated high temperature and high mineralization
may harbour the most tolerant diatoms to climate
change; and (b) that differences between river types
are reduced because of the strong decrease in water
runoff caused by climate change, which may lead dia-
tom assemblages towards homogenization.

Material and methods
Study sites

The study was conducted in 346 reference stream
sites (Fig. 1) distributed over the Spanish territory
and the most relevant watersheds, covering the flu-
vial typologies recognized in the country (Toro et al.,
2009). We used 32 national river types, originally
classified using progressive segregation of fluvial net-
work subsets by establishing thresholds for each of
the variables. This is an open hierarchical classifica-
tion based on a GIS tool map. The variables used to
determine the river types were altitude (meters a.s.l.),
annual thermal amplitude (°C), catchment area (km?),
mean annual discharge (m?/s), mean annual specific
discharge (m*/s km?), estimated baseline conductivity
(uS/cm), latitude (UTM 30) and longitude (UTM 30),
stream order (according to the Strahler classification),
mean catchment gradient (%), mean annual air tem-
perature (°C), and the fraction of months with non-
flow (%). This last descriptor derives from the SIMPA
model (after its Spanish acronym, Integrated System
for Rainfall-Runoff Modelling, Alvarez et al. 2004).
The area of study has a large spatial heterogeneity
regarding its geomorphological and climatic diver-
sity. River sites included in the study range from high,
middle mountain, and lowland rivers, headwaters and
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Fig.1 Study area and location of reference stream sites in the
continental Spain. Coloured areas represent the three biogeo-
graphic areas present (Alpine ALP, Atlantic ATL, and Medi-
terranean MED), following the classification of the European

large rivers, floodplain rivers, and coastal streams.
These rivers and their basins include the Mediter-
ranean, Atlantic, and Alpine ecoregions in Spain.
Those under Mediterranean climate show a strong
seasonality and interannual rainfall variability (Gasith
& Resh, 1999) and are submitted to low-flow peri-
ods during late spring and summer, and high-flow
periods in late autumn and winter. Headwaters and
middle-order streams in the Mediterranean ecore-
gion often become intermittent or have intermittent
reaches during long periods of the hydrological cycle
(Colls et al., 2019). Rivers in the Cantabrian-Atlan-
tic ecoregion are short in length and receive abun-
dant rainfall, even in summer, due to the dominance
of northern winds, and a narrow yearly temperature
range (Amigo et al., 2017). The climate in the Can-
tabrian-Atlantic region is oceanic, with cool winters
and warm summers, and with a mean annual rainfall

Environment Agency (Codelist for bio-geographical regions,
Europe 2011; www.eea.europa.eu). Sampling sites are labelled
following the new classification of river types (Fig. 2) obtained
in this study

of 1000-1200 mm distributed throughout the year.
Althouh these systems do not dry up, the lowest pre-
cipitation occurs during summer (Gartzia de Bikuna
et al., 2015). The Alpine ecoregion mostly has moun-
tain rivers, with steep gradients along most of the
channel length. These systems experience minimum
temperatures below 0 °C, annual rainfall of above
1000 mm, and heavy snowfall in winter (Wohl, 2010;
Sabater et al., 2022). Although dry periods are char-
acteristic from the Mediterranean ecoregion, drying
events increasingly occur in the humid and temperate
regions. A general decrease in snow cover, along with
an increase in the annual temperature and air pressure
has been observed in the Alpine ecoregion, leading
to a significant decreasing trend in the annual runoff
(Falasco et al., 2018).

We used diatom data from two nation-wide sur-
veys (TRAGSATEC, 2020), complemented with
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others obtained in regional surveys (CHE, 2017;
Tornés et al., 2021). Overall, most of the sites were
sampled more than once, spanning from 2014 to
2020, and providing a total of 603 samples (Supple-
mentary Table S1).

Environmental characterization

The environmental variables of the sites were
extracted from the characterization of Spanish river
types (Toro et al., 2009). The ones selected were
altitude (meters a.s.l.), catchment area (Km?), mean
annual specific discharge (m?/s/km?), estimated base-
line conductivity (pS/cm), mean catchment gradient
(%), months of non-flow (%), and mean annual air
temperature (°C) (Table 1). We did not use annual
thermal amplitude (°C), mean annual discharge
(m%/s), latitude (UTM 30), longitude (UTM 30), and
stream order (Strahler), due to their redundancy with
the other variables.

Actual hydrological data in the reference sites
were sought using the QGIS software (version 3.16.0;
QGIS Development Team, 2020). We constructed a
layer with the gauging stations of the region, using
data available from different water authorities (www.
miteco.gob.es;  www.aca.gencat.cat; ~ www.junta
deandalucia.es). We then used the Distance Matrix
algorithm from QGIS Network Analysis Toolbox
(QNEAT3) plugin, to find out the nearest gauging
station to each reference site, using the fluvial sys-
tems as the network layer. QNEAT3 computes the
network route-based cost of Origin—Destination rela-
tions between the points of two layers and calculates
the shortest paths between all the points. We consid-
ered appropriate gauging stations that ones located
upstream of a site and at a distance less than 10 km,
with natural flow regime, and where dams and/or
reservoirs, or tributaries between the gauging station
and the sampling site, did not occur. Results from the
QGIS QNEAT3 plugin indicated that only few sites
fulfilled those criteria. Even cases where the gauging
station existed, data were not available for the period
of the diatom sampling. Then, from the 346 reference
stream sites selected for the analysis, less than 50
accomplished the fixed criteria, representing less than
100 samples (from a total of 603), not evenly distrib-
uted across the river types.

Overall, hydrological data for each river site could
not be used in the subsequent analyses and forced us

@ Springer

to define theoretical values after those of Toro et al.
(2009). For that, we used the extensive dataset of ref-
erence sites in the continental Spain, and applied the
predictions of the Representative Concentration Path-
ways (RCP) 4.5 and 8.5 to the present characteristics
of runoff, temperature, and water conductivity of the
different river types. With these, we defined new val-
ues under the two RCP scenarios based on the IPCC
2013 (CEDEX, 2017). A conductivity-temperature
relationship was applied after Hayashi (2004) to esti-
mate future values of water conductivity in the differ-
ent types.

Diatom sampling and laboratory analyses

Diatom samplings were conducted mostly during
summer, although some of the sites were sampled
in spring and autumn. Sampling periods, therefore,
covered low-flow (summer) and high-flow (spring,
autumn) periods. Sampling followed standard pro-
cedures (Kelly et al., 1998; MAGRAMA, 2013). In
short, diatoms were sampled from riffle sections and
obtained from several colonized cobbles. From each
cobble, the total algal materials were scraped with
a brush into 20 mL of distilled water. A composite
sample was created from the samples of the five cob-
bles from each stream, and each composite sample
was preserved in 4% formaldehyde or ethanol until
analysis. Materials were later cleaned for the organic
material using boiling hydrogen peroxide, and
cleaned frustules were mounted on permanent slides
using Naphrax (r.i. 1.74; Brunel Microscopes Ltd.,
Chippenham,Wiltshire, UK). Up to 400 valves were
counted on each slide by performing random tran-
sects under light microscopy using differential inter-
ference contrast optics at a magnification of x1000.

Diatom assemblages were examined for their
taxonomical composition. Diatoms were identified
using reference floras (Krammer & Lange-Bertalot,
1991a, b, 1997a, b; Cantonati et al., 2017), and com-
plemented through the monographs of “Diatoms of
Europe” and “Bibliotheca Diatomologica”. As dia-
tom data derived from different datasets, they were
checked for their homogeneity in the identification.
Then, last accepted names were validated for each
taxon, and same taxa with different names (synony-
mies) were combined in a single entry. Teratological
forms were summed to the normal forms as they were
not considered in all surveys.
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Fig. 2 Group average
clustering dendrogram of
river types based on their

Euclidean distances using
data from Table 1. The
resulted seven end-groups
are identified. Codes cor-
respond to those of Table 3.
Table 2 and Fig. 3 show the
environmental variables
characterizing each end-
group and their distribution
in an ordination space,
respectively
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Group 1

contributions of rare taxa is an inherent property of
the computation of Bray—Curtis similarities (Capone
& Kushlan, 1991; Hansen & Ramm, 1994). After-
wards, and independently of the environmental vari-
ables, the PCO was linked to the cluster by indicating
membership of each sample to a determined cluster
end-group using symbol factors.

We finally used the indicator value method (Ind-
Val; Dufréne & Legendre, 1997) to identify the indi-
cator species of the resulted groups of types in cluster
dendrogram. IndVal is a simple and useful method to
identify indicator species and species assemblages
in groups of samples (Dufréne & Legendre, 1997).
The relevance of this method lies in the way it com-
bines information on the specificity and the fidelity of
occurrence of a species in a group. It produces indica-
tor values for each species in each group expressed as
the product of the specificity and fidelity. Therefore,
indicator species are defined as the most character-
istic species in each group. Taxa which were mostly
observed in only one type of stream were nominated
as type-specific. The statistical significance of the
species indicator values is evaluated using a randomi-
zation procedure. The indicator value of a species i
is the largest value of IndValy observed amongst all
groups j. The indicator value is at its maximum when
all individuals of a species are found in a single group
of sites (high specificity) and when the species occurs
in all sites of that group (high fidelity) (Dufréne &
Legendre, 1997).

Cluster analysis, PCA, PCO, and PERMANOVA
(999 permutations) were performed with PRIMER-E
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Group 2

Group 3 Group4  Group 5 Group 6 Group 7

6 v.6.1.11 and PERMANOVA +v.1.0.1 (PRIMER-
E Ltd.,, Plymouth, UK). Analyses were carried
out with square-root-transformed diatom data fur-
ther converted into a resemblance matrix using
Bray—Curtis similarity. Environmental data (except
those expressed as ranked variables) were logarith-
mically transformed (x+ 1) before analyses to reduce
skewed distributions. IndVal analysis was conducted
using R package “labdsv” (version 4.0.3; R Core
Team, 2020).

Results

The stream sites we used in this study derive from
a larger group of sites previously validated as refer-
ences by the corresponding water authorities (CHE,
2017; ACA, 2020; TRAGSATEC, 2020). The
selected sites accomplished the reference conditions
defined by the WFD REFCON guidelines (European
Commission, 2003). Setting the high ecological status
required for the reference conditions, in terms of bio-
logical, hydromorphological, and physical and chemi-
cal quality elements, may be difficult in the Medi-
terranean region, due to the long history of human
presence and the strong human exploitation of water
resources (Feio et al., 2013). This is a general prob-
lem in European Mediterranean rivers, where almost
all river types have experienced hydromorphological
changes of anthropological origin (Feio et al., 2013;
Almeida et al., 2014). Our reference sites adjusted
to minimally disturbed conditions (i.e. absence of
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significant human disturbance), or least disturbed
conditions (i.e. sites with the lowest signs of human
disturbance in areas with extensive human distur-
bance), following the categories defined by Stoddard
et al. (2006). Reference conditions could be attributed
to each of the river types considered in the classifi-
cation of Toro et al. (2009). However, reference sites
could not be nominated in large areas of some river
basins (Fig. 1). In particular, the northern and south-
ern parts of the Central Plateau, and the Ebro Depres-
sion, have large areas onto which prevail disturbed
conditions (Sabater et al., 2022). The absence of ref-
erence sites was the most notorious in the main axes
of rivers flowing through these areas.

The cluster analysis lead to the definition of 7
end-group river types (Fig. 2). The groups were
significantly different (PERMANOVA; pseudo-
Fg5=13.548, P=0.001). The physiographic and
hydrological characteristics of each of the 7 end-
groups are detailed in Table 2. Cluster group 1 (4
national river types) consisted of siliceous lowland
rivers. A second cluster group (6 national river types)
included mineralized rivers of low altitude. Cluster
group 3 (4 national river types) accounted for min-
eralized rivers having low specific discharge. The
fourth cluster group (4 national river types) encom-
passed both Mediterranean and Mediterranean-conti-
nental axes. Cluster group 5 (3 national river types)
included rivers with the smallest catchment area and
the lowest mineralization. Groups 1 to 5 were situated
in the Mediterranean biogeographic region (Fig. 1).
The sixth group (3 national river types) consisted of
mountain rivers, with the highest altitude and high
specific discharge. This group was mostly located in
the Alpine and the Atlantic regions. Finally, cluster
group 7 (8 national river types) included the Canta-
brian-Atlantic rivers, with streams short in length
and high specific discharge. Group 7 was only found
in the Atlantic biogeographic region. A Principal
Components Analysis (PCA) based on the available
environmental variables of the groups of types in the
cluster dendrogram (Fig. 3), stressed the prevailing
environmental characteristics for the different cluster
groups.

We performed the ordination of the diatom assem-
blages by means of a Principal Coordinates Analysis
(PCO) and labelled them according to the different
groups of sites (Fig. 4). Even though the compari-
son of the two analyses has inherent limitations, the
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ordination of the diatom assemblages is largely coher-
ent with that of the cluster groups. The subsequent
IndVal analysis revealed that all cluster end-groups
had significant indicator diatom taxa (Supplemen-
tary Table S2), and nearly all type groups had species
with IndVals higher than 25% (Dufréne & Legendre,
1997). Higher IndVals mostly occurred in groups 1,
4, and 6. Planothidium frequentissimum (Lange-Ber-
talot) Lange-Bertalot var. frequentissimum showed
a high IndVal (48%) in the siliceous lowland rivers
(Group 1). Sellaphora nigri (De Not.) C.E. Wetzel et
Ector comb. nov. emend., Melosira varians Agardh,
Nitzschia palea (Kiitzing) W. Smith, Cocconeis eug-
lypta Ehrenberg, and Navicula cryptocephala Kiitz-
ing showed an indication between 20 and 35%. The
species with the highest indicator value in Group
2 were Halamphora tenerrima (Aleem & Hustedt)
Levkov, Nitzschia inconspicua Grunow, Halamphora
coffeaeformis (Agardh) Levkov, and Brachysira apo-
nina Kiitzing, characteristic in mineralized lowland
rivers. The highest IndVals for mineralized mid-
altitude rivers with low specific discharge (Group
3) corresponded to Encyonopsis microcephala
(Grunow) Krammer and Encyonopsis minuta Kram-
mer & Reichardt. Aerophilic taxa such as Sellaphora
stroemii (Hustedt) Kobayasi in Mayama Idei Osada
& Nagumo, Luticola mutica (Kiitzing) D.G. Mann,
Humidophila contenta (Grunow) Lowe, Kociolek,
Johansen, Van de Vijver, Lange-Bertalot & Kopal-
ova, and Halamphora montana (Krasske) Levkov
emerged as indicator species in Group 3. These taxa
had low IndVals (<11%) but showed a high speci-
ficity to this group. Diatoma vulgaris Bory var. vul-
garis, Navicula cryptotenella Lange-Bertalot, Cym-
bella affinis Kiitzing, Diatoma moniliformis Kiitzing,
Achnanthidium druartii Rimet & Couté in Rimet &
al., Pantocsekiella costei (Druart et F. Straub) K.T.
Kiss et Acs, and Nitzschia dissipata subsp. dissipata
(Kiitzing) Grunow var. dissipata were indicator spe-
cies in Mediterranean and Mediterranean-continental
main axes (Group 4), with an indication between 21
and 38%. The best indicators for Group 5 (poorly
mineralized rivers) were Gomphonema rhombi-
cum M. Schmidt, Cocconeis pseudolineata (Geitler)
Lange-Bertalot, and Encyonema minutum (Hilse in
Rabh.) D.G. Mann in Round Crawford & Mann. The
species with the highest indicator value in Mountain
rivers (Group 6) were Gomphonema angustivalva E.
Reichardt, Achnanthidium lineare W. Smith, Diatoma
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Fig. 4 Principal coordinates analysis (PCO) performed with
the diatom assemblages of the 603 samples available. Inde-
pendent to this ordination, the membership of each sample to
one of the cluster end-groups of Fig. 2 was indicated with sym-
bol factors

ehrenbergii  Kiitzing, Achnanthidium pyrenaicum
(Hustedt) Kobayasi, and Gomphonema pumilum
(Grunow) Reichardt & Lange-Bertalot. The high-
est IndVals for Cantabrian-Atlantic rivers (Group
7) were for Navicula angusta Grunow, Surirella
roba Leclercq, and Achnanthidium subatomus (Hus-
tedt) Lange-Bertalot. Some terrestrial (Humidophila

laevissima (P.T.Cleve) Lowe, Kociolek, Johansen,
Van de Vijver, Lange-Bertalot & Kopalovd) and
aerophilic (Eunotia minor (Kiitzing) Grunow in Van
Heurck, and Nitzschia hantzschiana Rabenhorst var.
hantzschiana) taxa also appeared as indicators for this
group, having a low IndVals (6, 15, and 5%, respec-
tively) but high specificity.

Discussion

There is general agreement that future climate change
will cause higher variability in water regimes and fur-
ther reduction in water flow over large areas of the
planet (Messager et al., 2021). Low water flow peri-
ods may become longer (D6ll & Zhang 2010), and
rivers will experience lentification, i.e. a progressive
conversion towards slower flowing condition (Sabater,
2008). In many cases, streams may be driven towards
desiccation for long periods (Stubbington et al., 2017)
and even become terrestrialized. Under lower-than-
normal dilution conditions, concentrations of nutri-
ents and other dissolved materials increase (Petrovic
et al., 2011), water warms up, and the mobility of
materials and organisms becomes compromised (Liu
et al.,, 2013; Cafiedo-Argiielles et al., 2015; Death
et al., 2015; Dong et al., 2016). These are conditions
for significant changes in biological communities. In
the case of diatom assemblages, climate change might
favour taxa less sensitive to warmer and lentic con-
ditions while affect those preferring colder and fast-
moving waters (Tornés et al., 2021).

There is a clear prediction of strong runoff reduc-
tions in river ecosystems of the Iberian Peninsula
under the worst climate change scenarios (IPCC,
2021). These models contemplate a 20% of runoff
reduction, accompanied with an increase in temper-
ature and conductivity for most river types. We pre-
sent the associated variations in runoff, air tempera-
ture, and conductivity under the two climate change
scenarios. While the predictions for the RCP 4.5 in
the period 2070-2100 are moderate (Table 3), those
under the RCP 8.5 scenario show significant changes
to the main physiographic characteristics of many
river types. Runoff (19 to 36% decrease), air tem-
perature (increase of 4-5.3 C), and water conductivity
(increase between 10 and 13%) changes will be strik-
ing at the 2070-2100 horizon. The outputs from the
RCP 8.5 simulation led to the worst-case situation in
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Runoff reduction

Temperature increase
Conductivity increase

Fig. 5 Simulated displacement of end-group types of refer-
ence sites, based on the projected physiographic values of the
national river types of Table 3 for the impact period 2070-
2100. Displacements are indicated with dotted-lined boxes and
red arrows

the southern part of the Peninsula, with runoff reduc-
tions reaching nearly 40% in the river types of the
Southeast. The hydrological alterations under this
scenario may lead to longer low-flow periods and
drastic changes in water chemistry, particularly in the
mineralized river types of Groups 2, 3, and 4.

Since hydrological data were not available for most
of the sites, and therefore, they could not be used for
modelling, the future effects of runoff reduction had
to rely on the autecology of the diatom taxa. That is,
we used the current environmental attribution of dia-
tom taxa to define which changes would occur in the
diatom assemblages in the event of the environmental
changes predicted under the RCP 8.5. Then, using the
projected physiographic values of the national river
types in Table 3, we propose a new configuration of
end-group types, which contemplates a displacement
in the inter-group classification (Fig. 5).

This simulation (Fig. 5) shows that differences
between the diatom assemblages in the Northern and
Southern Spain, and between siliceous and calcareous
regions (roughly corresponding to the Western and
Eastern parts, respectively; Sabater et al., 2022), will
become more pronounced. In this new arrangement,
Groups 2, 3, and 4 become more alike to each other
than presently are. Mediterranean and Mediterranean-
continental axes (Group 4), and mineralized riv-
ers (Groups 2 and 3), account for the highest impact

@ Springer

(Table 3), and will become similar under future cli-
mate change conditions. In this future, scenario terres-
trial and aerophilic diatoms will be the best adapted
taxa to the harsh conditions imposed by runoff reduc-
tion. Also, brackish diatoms will be more frequent
due to the increase in water mineralization. As such,
the presence of aerophilic taxa such as S. stroemii, L.
mutica, H. contenta, and H. montana (Delgado et al.,
2013; Novais et al., 2014; Falasco et al., 2016; Tornés
et al., 2021) and brackish taxa such as H. tenerrima,
N. inconspicua, H. coffeaeformis, and B. aponina
(Ros et al., 2009; Heudre et al., 2020), might become
more prevalent. On the other hand, sensitive freshwa-
ter species to warmer and lentic conditions such as
A. pyrenaicum, G. angustivalva, and D. vulgaris may
become less common (Centis et al., 2010; Cantonati
et al., 2012; Falasco et al., 2020).

In the new arrangement derived from the RCP 8.5
scenario, mountain rivers (Group 6) may become
closer to small and poorly mineralized mid-altitude
rivers (Group 5), then becoming more distinct than
the present Cantabrian-Atlantic rivers (Group 7).
The river types in the Atlantic biogeographic region
(Group 7) and those of Group 1 which assemble
poorly mineralized lowland streams in the Mediter-
ranean region, will likely become apart from all other
groups. Such a singularity is under the assumption
that these river types will be the least affected under
the RCP 8.5 conditions. However, even in the Canta-
brian-Atlantic rivers, presently the wettest parts of the
Iberian Peninsula, terrestrial, and aerophilic diatoms
are already present, with a high group specificity.
This may indicate a potential risk if the lentification
of these systems is progressing, which needs to be
confirmed by future investigations. In these systems,
lentic (planktic) species might be also abundant,
replacing large-sized taxa in presently lotic areas
(B-Béres et al., 2019).

Overall, our predictions may be summarized by
saying that climate change may likely act by reduc-
ing the differences between river types, and caus-
ing that diatom assemblages could simplify their
composition towards higher homogenization. Biotic
homogenization has been described as one of the
most likely effects promoted by climate change (e.g.
Tornés & Ruhi, 2013; Petsch, 2016; Falasco et al.,
2021), with likely implications for loss of resistance
and resilience of biological communities, and alter-
ation of related ecosystem functions.
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Finally, the limitation of hydrological data on the
reference sites leads to a general concern. The scar-
city of hydrological data in our study highlights a
global problem, especially in the case of non-per-
ennial rivers and streams (Messager et al., 2021).
Hydrological characterization of reference condi-
tions is limited in many river networks, due to their
poor instrumentation in many tributaries. In fact,
most gauging stations are installed on large, peren-
nial rivers worldwide (Zimmer et al., 2020), while
headwaters are underrepresented. A temporal bias
is added to this spatial constraint, since in some
monitoring schemes, gauging stations may change
location or data frequency over time. Advancing on
effects of climate change on water flow and biologi-
cal communities in reference sites requires shifting
from the current scarcity of primary hydrological
data to a planned, long-term monitoring including
hydrological and biological data (Zimmer et al.,
2020; Messager et al., 2021). These are essential
requisites to produce reliable predictions on the
effects of climate change in riverine biota.
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