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Abstract We analysed long-term monitoring data

on submerged macrophytes and water chemistry from

666 Danish lakes[ 1 hectare and mean depth\ 3 m,

encompassing a total of 1447 lake years. Our aim was

to describe how plant cover (COV), plant volume

inhabited (PVI) and species richness related to phys-

ical and chemical and environmental variables.

Boosted regression tree (BRT) analyses revealed that

chlorophyll a, Secchi depth and depth were the

strongest predictors of COV and PVI. Chlorophyll

had a strong negative effect up to 50 lg/l, whereas the

changes related to Secchi depth and depth were more

gradual and covered more of the gradient. Macrophyte

species richness was best predicted by lake area and

alkalinity, with chlorophyll a, nutrients and colour

having significant but less marked effects. For chloro-

phyll a, 78% of the observed variance could be

explained by the BRT model, with the most powerful

predictors being both phosphorus and nitrogen, but

with significant additional effects of plant cover and

alkalinity. Our analyses revealed limited direct effect

of nutrients on macrophyte abundance, but an indirect

hierarchical effect of nutrients mediated through

chlorophyll a with additional interactive effects by

plant cover itself, alkalinity, mean depth and colour.

Keywords Macrophyte cover � Species richness �
Boosted regression tree analyses � Chlorophyll a �
Phosphorus � Nutrients

Introduction

For decades, human activities and increased eutroph-

ication have resulted in higher turbidity and a decrease

or even loss of submerged macrophytes in lakes all

over the world (Sayer et al., 2010; Phillips et al., 2016;

Zhang et al., 2017; Stefanidis et al., 2019). Following

external nutrient loading reduction, lake recovery with

re-establishment of submerged macrophytes is a key
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target, particularly in shallow lakes where submerged

macrophytes may help ensure clear-water conditions

due to several positive feedback mechanisms (Schef-

fer et al., 1993; Kosten et al., 2009; Li et al., 2020).

Submerged macrophytes are also important for the

overall biodiversity, as many fish, invertebrates,

attached algae and microorganisms are associated

with the plants (Declerck et al., 2005; Bolduc et al.,

2016). In addition, submerged macrophytes play a

significant role for lake managers, as their sensitivity

to eutrophication makes them useful indicators of

ecological status (Søndergaard et al., 2010; Kolada

et al., 2014; Verhofstad & Bakker, 2019). Accord-

ingly, in EU’s Water Framework Directive macro-

phytes are one of the four biological elements that are

used to define whether measures should be taken to

reduce the external loading of nutrients to lakes in

order to improve their status (Poikane et al., 2018).

Submerged macrophytes represent a diverse group

of organisms, and they contribute to a number of

vegetation-turbidity feedback mechanisms (Jeppesen

et al., 1998; Hilt et al., 2018; Ersoy et al., 2020).

Macrophytes interact with, for instance, fish and

macroinvertebrates (Schultz & Dibble, 2012), water-

birds (Larson et al., 2020), zooplankton (Burks et al.,

2001) and phytoplankton (Sayer et al., 2010), and they

affect the food chain length, ecosystem function

(Ziegler et al., 2015), biogeochemical processes, such

as the redox potential around the sediment–water

interface (Boros et al., 2011), as well as methane

emissions (Sorrell et al., 2002). Thus, besides being

affected by nutrient loading-induced changes in tur-

bidity, submerged macrophytes also respond to and

depend on a number of biological interactions. Spatial

and temporal variability in macrophyte abundance is

often high and large differences in macrophyte

communities occur, even under relatively comparable

environmental conditions (Gillard et al., 2020; Yang

et al., 2020). The mechanisms behind this variability

are not always clear but may, among other factors, be

induced by yearly climatic variations or a delayed

response to changed environmental conditions (Jeppe-

sen et al., 2005; Ejankowski & Lenard, 2015; Sand-

Jensen et al., 2017).

Here, we used a dataset from 666 Danish lakes

covering a large gradient in morphological and

chemical characteristics and including data on sub-

merged macrophyte composition and abundance. The

lakes comprise lowland, temperate, shallow and meso-

to hypertrophic lakes where submerged macrophytes

can be both very abundant and very sparse. Our aim

was to examine how the direct and indirect effects of

lake morphometry and nutrients shape three central

aspects of submerged macrophytes—cover, plant

volume inhabited and species number—with the aim

to better identify the factors structuring the submerged

macrophyte community in shallow lakes along a

gradient of morphological and chemical factors.

Methods and data

Sampling and lake characteristics

Chemical and biological data were collected by

regional and national authorities as part of the

nationwide Danish monitoring program on the aquatic

environment, NOVANA, running since 1989 with the

inclusion of macrophytes in 1993. According to the

program, physical and chemical variables are sampled

using well-defined and comparable techniques and

analytical procedures (Svendsen et al., 2005). The

physical data include lake area, mean water depth and

Secchi depth, and the chemical data encompass total

nitrogen (TN), total phosphorus (TP), total alkalinity

(TA) and chlorophyll a (Chla). Each lake is sampled

from one location from the deepest part of the lake at

least four times during summer, and mean summer (1

May to 30 September) concentrations are calculated.

See Søndergaard et al. (2005) for more detailed

descriptions.

A total of 666 lakes with an area[ 1 ha and a mean

depth\ 3 m were included in the data analyses. About

half of these lakes (338 lakes) were visited twice or

several times during the monitoring period (25 years),

which increased the total dataset to 1447 lake years.

Most of the lakes sampled multiple times were visited

with an interval of at least three years, but some of the

lakes were included in a more comprehensive sam-

pling program, and nine lakes were, thus, visited

10–22 times with an interval of 1–3 years. In the

analyses and presentations, we used data from all lake

years (hereafter mainly referred to as ‘‘lakes’’).

Submerged macrophytes were monitored during

their maximum abundance between 1 July and 15

August. In each lake, 30–375 observation points

located along a number of transects in each lake

where numbers were lake size dependent. All lakes[
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5 ha had at least 150 sampling points. The transects

covered the whole lake area and all depth zones which

potentially could sustain the growth of macrophytes.

The number of transects were adjusted according to

the shape of the lake in order to give an overall

description of the whole lake area. At each sampling

point, water depth, species presence, total coverage of

submerged species, and mean plant height were

estimated using either a water glass or a rake.

Macrophyte coverage was estimated using a scale

from 0 to 6 representing: 0% (no plants), 0–5%,

6–25%, 26–50%, 51–75%, 76–95%, and 96–100%:

For each lake year, mean macrophyte coverage (COV,

%) was calculated based on how large a depth zone

and area each sampling point represented relative to

the whole lake area. The proportionate mean plant

volume inhabited (PVI, %) at each sampling point was

calculated as follows: PVI = COV*mean plant height/

water depth. The calculation of COV and PVI did not

include filamentous algae or floating-leaved species. A

total taxa list and taxa number were obtained from

transect observations supplemented with additional

observations of extra taxa in selected areas. Macro-

phyte taxa included floating-leaved species of which

submerged forms were observed.

The lakes cover large gradients in morphological

and chemical characteristics, but most are small

(median area = 15 ha), shallow (median mean

depth = 1.1 m), non-humic (median colour = 38 mg

Pt/l), freshwater (median conductivity = 42 mS/m)

and eutrophic (median Chla = 40 lg/l and median

TP = 0.112 mg/l) (Table 1). Median COV was 11%,

median PVI 3% and median taxa number five.

Submerged macrophytes were absent in 11.6% of the

lakes and in 13.2% of the observed lake years.

Data analyses

Analyses were performed using boosted regression

tree analysis (BRT) (Elith et al., 2008; Beaulieu et al.,

2020; Jarvis et al., 2020), which is a machine learning

technique that tests for relationships between predic-

tors (in this case, physical and chemical variables, see

Table 1) and response variables (here three macro-

phyte indicators in shallow lakes and Chla) in a

dataset. The principle is that a second model is

‘‘boosted’’ from the previous one by minimising its

errors in order to achieve the best new model derived

through a model simplification process, where each

predictor is left out sequentially and the reduction in

the predictive power is used to determine if it should

stay in or not. The method can deal with highly

collinear data and provides a good estimate of the

relative influence of each predictor and the shape of

the relationship between predictor and response vari-

able. The outcome of the BRT analyses is presented as

partial dependency plots that show the pattern between

the predictor and the response independent of all the

other predictors. The predictive power is represented

by the total variance explained together with the

relative importance of the most important explanatory

variables. In this study, BRT analyses were used to test

the influence of environmental factors on three main

macrophyte indicators: COV, PVI and taxa number.

A BRT analysis was also conducted for Chla because

of its strong impact on all macrophyte indicators (see

for example Søndergaard et al., 2010). A few extreme

outliers with Chla above 1000 lg/l and TA above

10 meq/l were removed prior to the analyses. The

analyses were conducted on the whole data set as well

as a subset of lakes with TP\ 2 mg/l (when analysing

Chla) and Chla\ 200 lg/l (when analysing COV) in

order to avoid extreme high values of TP and Chla.

The BRT analysis was carried out following the

guidelines of Elith et al. (2008); tree complexity and

learning rate were set so as to ensure at least 5000 trees

in the analysis. Tree complexity was set at three with a

learning rate of 0.005 and with the bag fraction set at

0.75, and only results from the simplified trees are

presented. A cost-complexity measure was used to

eliminate non-influential predictors by sequentially

dropping the least important each variable and

assessing the loss in predictive power, no more

predictors were dropped if there was a loss in

predictive power larger than a standard error of the

original model. The predictors that are retained in the

simplified model can, therefore, be thought of as

significant predictors. Partial dependence plots of

fitted function versus observed values for variables

significantly predicting the response variables were

prepared; these seek to present the influence uniquely

attributable to a single predictor. BRT analysis was

carried out using gbm package (Greenwell et al., 2018)

with additional code from Elith et al. (2008), and

standard regression trees were constructed using the

rpart package (Therneau et al., 2019), using R v. 4.0.2

(R Core Team, 2020).
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We also conducted multiple regression analyses

between taxa number, COV and PVI as dependent

variables and log10 of the variables mentioned in

Table 1 using SAS PROC REG with forward selection

and p value correction. The multiple regression was

first run on all the variables shown in Table 1 and then,

in a second step, conducted only for the variables

where the partial R2 was[ 0.01.

As phosphorus regulation often is used by lake

managers to improve lake water quality, sometimes as

the only measure (e.g. in Denmark), we also specif-

ically addressed the relationship between TP and

COV. The frequency distribution of lakes with

COV[ 1% and lakes with COV[ 20% was ordered

along a TP gradient. Lakes with COV\ 1% were used

to represent lakes with no or very low macrophyte

cover, lakes with COV[ 1% to represent lakes with

the presence macrophytes and lakes with COV[ 20%

to represent shallow lakes where submerged macro-

phytes are abundant and considered to have a signif-

icant impact on the overall biological structure in

Danish lakes (Søndergaard et al., 2016). In lakes with

high TP ([ 0.2 mg/l), differences in environmental

factors in lakes with high COV ([ 20%) or low COV

(\ 1%) were tested using the SAS PROC TTEST.

Results

BRT and regression analyses

The total variance explained by the BRT analyses for

the three macrophyte indicators relevant for shallow

lakes ranged from 50% for PVI, 62% for COV to 76%

for taxa number (Fig. 1). The relative importance of

the predictor variables differed, Chla was most

important for COV (36%) and PVI (34%), while lake

area was most important for taxa number (32%). For

COV and in particular PVI, Secchi depth and mean

depth were almost as important as Chla, while the

second-most important predictor for species richness

was alkalinity (24%). For Chla, 78% of the variance

was explained using the predictors in Table 1 (not

including the three macrophyte indicators). TP was the

most important predictor with a relative importance of

38%, followed by TN with 30% and COV with 14%.

Restricting the analyses to TP\ 2 mg/l for Chla and

to Chla\ 200 lg/l for COV increased the total

variance explained to 63% and 80%, respectively

(Fig. 2).

The BRT plots also illustrate the changes in

importance along a gradient of the different predictors

(Figs. 1 and 2). For taxa number, lake area was

Table 1 Morphometric and chemical characteristics and macrophyte data on the lakes (lake years) included in this study represented

by mean, minimum, 10% percentile, 25% percentile, median, 75% percentile, 90% percentile and maximum values

Variable Number of lake years Mean Min 10% 25% Median 75% 90% Max

Area (ha) 1447 55.3 1.0 3.0 6.4 14.7 43.8 134 1713

Mean depth (m) 1446 1.2 0.03 0.38 0.66 1.1 1.7 2.3 3.0

Max depth (m) 1447 2.7 0.04 0.90 1.40 2.1 3.5 5.5 10.1

TA (meq/l) 1438 2.24 -0.07 0.14 1.15 2.24 3.19 4.00 10.1

Colour (mg Pt/l) 1293 60 0 17 25 38 61 117 1001

Conductivity (mS/

m)

1324 266 0.7 15 27 42 72 945 7568

Secchi depth (m) 1431 1.03 0.08 0.37 0.56 0.84 1.29 1.85 6.13

TP (mg/l) 1352 0.224 0.004 0.034 0.061 0.112 0.220 0.461 6.31

TN (mg/l) 1353 1.73 0.27 0.70 0.94 1.38 2.00 3.09 51.0

Chla (lg/l) 1442 63 0.0 7.2 15.6 40.1 83.4 141 1199

COV (%) 1447 22.0 0 0 0.6 10.7 37.9 62.7 97.5

PVI (%) 1327 10.6 0 0 0.1 2.9 14.5 34.0 89.3

Taxa no 1336 7.4 0 0 2 5 11 17 53

TA total alkalinity, TP total phosphorus, TN total nitrogen, Chla chlorophyll a, COV coverage of submerged macrophytes, PVI plant

volume inhabited
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Fig. 1 Partial dependence plots of the boosted regression tree

analyses for the four most influential predictor variables. The

analyses were conducted for lakes with a mean depth\ 3 m and

included the three macrophyte indicators shown from above:

taxa numbers, COV and PVI and Chla (the lower figure). The

plots show the fitted function (solid line) and the smooth

function (dashed line) relative to the predictor variables, all

other predictor variables being averaged out. The left part of the

figure shows the total variance explained and the relative

influence of the predictor
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especially important up to ca. 100 ha, but above

500 ha, there was no further effect of area. For TA, the

second-most important predictor for taxa number, an

optimum appeared around an alkalinity of 1 meq/l.

For COV, there was a strong effect of Chla up to about

50 lg/l but none at higher concentrations, while the

effect of Secchi depth continued up to 4 m. For PVI,

the response to increasing Chla was similar to that of

COV. A sharp decline in the fitted function for mean

depth was seen up to ca. 1.5 m. For Chla, the fitted

function increased up to a TP of ca.\ 0.2 mg/l, with a

relatively short range up to 0.1 mg/l being the most

important, whereas TN had a more gradual impact up

to about 7 mg/l. COV was the third-most important

predictor with a relative importance of 13%, and the

fitted function particularly decreased up to a COV of

30–40%, after which higher COV had little effect on

the fitted function.

In the multiple regressions using the three macro-

phyte indicators as dependent variables and log10

transformed environmental variables from Table 1 as

predictors, the highest model R2 was obtained for taxa

number (R2 = 0.36) and the lowest for PVI

(R2 = 0.22) (Table 2). For COV and PVI, the highest

partial R2 was obtained for Chla, while area had the

highest partial R2 for taxa number and Secchi depth.

The parameter estimate for Chla was negative for all

macrophyte indicators, whereas area and Secchi depth

were positive. Only for taxa number, partial R2 was

[ 0.01 for TP or TN.

Frequency distribution of low and high COV

at increasing TP

The number of lakes with COV above 1% or 20%

decreased with increasing TP (Fig. 3). The reduction

in lakes with COV[ 20% occurred particularly when

TP increased from \ 10 to 40–50 lg/l, where the

percentage with high COV decreased from 100 to

50%. Even at TP[ 200 lg/l, 20–40% (average 26%)

of the lakes still had a COV[ 20% and, on average,

54% a COV[ 1%. Submerged macrophytes were

present (COV[ 1%) in all lakes with TP\ 20 lg/l

and in 94% of the lakes with TP\ 50 lg/l. Sub-

merged macrophytes were still found in about 50% of

the shallow lakes at TP[ 400 lg/l. At TP

Fig. 2 As Fig. 1 but shows the analyses of COV including only data with Chla\ 200 lg/l and the analyses of Chla including only data

with TP\ 2 mg/l
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concentrations[ 0.2 mg/l, lakes with COV\ 1% as

a mean had a significantly lower area, higher mean and

maximum depths, higher conductivity, lower Secchi

depth and higher Chla than lakes with COV[ 20%

(Table 3). TP and TN did not differ significantly

between lakes with high and low COV at high TP.

Discussion

Our results underline the significant negative impact

that eutrophication has on submerged macrophytes in

shallow lakes (Phillips et al., 2016). At increasing Chla

and decreased Secchi depth, the two abundance

indicators, COV and PVI, both decreased. The

response to eutrophication was hierarchical—nutri-

ents impacted Chla, and Chla causes turbidity and

thereby COV and PVI. The direct effect of nutrients on

macrophyte abundance was nearly absent and

Table 2 Multiple regressions between taxa number, COV and PVI as dependent variables and log10 of the variables mentioned in

Table 1

Dependent variable N Intercept Variable entered Parameter estimate Partial R-square Model R-square

Taxa no 1182 8.39 Log10 area 6.11 0.17 0.17

Log10 Chla - 4.52 0.14 0.31

Log10 colour 3.99 0.03 0.34

Log10 TP - 3.67 0.03 0.36

COV 1424 42.4 Log10 Chla - 15.6 0.26 0.26

Log10 mean depth - 31.3 0.02 0.28

Log10 Secchi depth 32.1 0.04 0.32

Log10 area 4.77 0.01 0.34

PVI 1279 22.9 Log10 Chla - 7.97 0.12 0.12

Log10 mean depth - 19.2 0.08 0.20

Log10 Secchi depth 10.8 0.01 0.21

Log10 alkalinity 2.92 0.01 0.22

In all regressions and for all variables, P was\ 0.0001. Only variables where partial R-square[ 0.01 are shown

Fig. 3 Percentage of lake year observations with COV above 1% (blue line) and above 20% (yellow line) at increasing TP

concentrations. Number of lake years = 1351. The blue line with COV[ 1% also includes lake years with COV[ 20% (yellow line)
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mediated through water clarity (Chla/Secchi depth)

with additional interactive effects of alkalinity, mean

depth and colour. Chla, on the other hand, was

predicted to a high degree by nutrient concentrations,

where nitrogen was almost as important as phosphorus

and with some effects of COV and alkalinity. The high

importance of nitrogen on Chla and then subsequently

on macrophyte abundance suggests that lake managers

should not only focus on phosphorus-loading reduc-

tions, but also nitrogen loading in order to improve the

ecological quality of lakes and their biodiversity, as

also concluded in other studies (e.g. Barker et al.,

2008; Olsen et al., 2015; Søndergaard et al., 2017a, b).

The multiple regression analyses also suggest that

turbidity- and eutrophication-related factors, Chla and

Secchi depth, were important factors having the

highest explanatory power for the submerged macro-

phyte community in shallow lakes. For all three

macrophyte indicators, however, lake area and/or

depth were also important. The empirical relationship

using Chla, Secchi depth and mean depth as the three

main predictors of COV, as found by the BRT

analyses, however, only explained 32% of the vari-

ability in COV. Use of the regression models to

estimate target concentrations of Chla and nutrients to

obtain a certain COV and ecological quality is,

therefore, more uncertain than the BRT models.

For most predictors, their effect on macrophyte

abundance changed considerably and often non-

linearly along an eutrophication gradient in the BRT

analyses, for Chla and TP particularly at low concen-

trations. For example, the effects of Chla on COV and

PVI were marked at Chla below ca. 50 lg/l, after

which a further increase in Chla did not affect the fitted

function. Similarly, Chla was particularly affected at

TP up to ca. 0.2 mg/l, whereas a gradual response was

found for TN, supporting the general perception that

both phosphorus and nitrogen can be important

limiting factors for phytoplankton growth (Seip,

1994; Barker et al., 2008; Olsen et al., 2015; Liang

et al., 2020) and that the individual importance of the

two nutrients varies with concentration levels and

seasons (Søndergaard et al., 2017a). The inadequacy

of phosphorus as a predictor of macrophyte abun-

dance, particularly at high TP as seen in the BRT

analyses, was also illustrated by the presence of

macrophytes in almost half of the shallow lakes with

TP[ 0.2 mg TP/l and the fact that COV even

exceeded 20% as an average in 26% of these lakes.

The BRT analyses also revealed a unique cover effect

on Chla up to a COV of about 40%, where COV was

the third-most important predictor after TP and TN.

This allows quantification of the relative importance

of plant-related feedback effects of cover in reducing

Chla independent of nutrients. Thereby, it feeds into

the discussion of at which level of COV, a major

impact on the overall biological structure in shallow

lakes, including Chla, can be anticipated (Canfield

1983; Wang et al., 2014; Gao et al., 2020). The effect

of increasing COV on Chla was gradual up to 40%

COV, and the existence of a COV threshold, as

indicated earlier, is, therefore, not supported (Sønder-

gaard et al., 2016). Any increase in COV up to 30–40%

could be a target for lake managers in order to create

more clear water in shallow lakes, whereas a higher

COV would not have any further impact on Chla. High

Table 3 Mean physical

and chemical values for

lakes with summer mean

TP[ 0.2 mg/l shown for

lakes with COV B 1% and

lakes with COV[ 20%

Significant differences (t-

test) between the two means

are shown in the right

column with significance

levels: *P\ 0.05,

**P\ 0.01,

***P\ 0.001, – = not

significant

Variable COV B 1% COV[ 20% Difference

Mean N Mean N

Area (ha) 20.4 181 97.1 102 ***

Mean depth (m) 1.15 180 0.73 102 ***

Max depth (m) 2.35 181 1.59 102 ***

TA (meq/l) 3.23 180 3.17 102 –

Colour (mg Pt/l) 62.5 160 72.3 93 –

Conductivity (mS/m) 274 157 645 99 **

Secchi depth (m) 0.62 181 0.78 101 **

TP (mg/l) 0.65 181 0.50 102 –

TN (mg/l) 2.92 181 2.29 102 –

Chla (lg/l) 149 181 66.7 102 ***
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COV in shallow lakes has been associated with

reduced conditions close to the sediment which can

impact the biogeochemical nutrient cycling and lead to

increased internal phosphorus release (Stephen et al.,

1997; Boros et al. 2011; Waters & Webster-Brown,

2020).

Species richness (taxa number) depends on differ-

ent factors in different regions of the world (Alahuhta

et al., 2017), but here we found that area was the most

important, with effects mainly up to around 100 ha.

The inclusion of lakes down to 1 ha in this study

probably amplifies the area effect on species richness

compared to other studies analysing large lakes only.

Alkalinity was the second-most important factor with

a maximum effect on species richness around 1 meq/l

and with a decreasing effect up to around 4 meq/l.

This optimum may reflect that species richness is

higher in lakes with high than low alkalinity and that

intermediate alkalinity from ca. 0.2 to 1 meq/l allows

co-occurrence of elodeids and isoetids (Vestergaard &

Sand-Jensen, 2000; Søndergaard et al., 2020). The

eutrophication indicators, Chla, TP and Secchi depth,

also added significantly to the total variance of taxa

number explained, but they contributed much less than

area and alkalinity. Our analyses could, therefore, not

confirm that vertical expansion was higher than

horizontal expansion and thereby that high Secchi

depth increased specifies richness more than lake area

(Vestergaard & Sand-Jensen, 2000). Colour had only a

minor effect on species richness, but the number of

highly coloured lakes in our study was small, implying

that potential colour effects and shading by dissolved

organic carbon on macrophyte communities cannot be

ruled out (Reitsema et al., 2020).

There are several potential caveats in our study.

First, we focused on physical and chemical factors for

predicting macrophyte communities despite the

numerous interactions with other biological compo-

nents. As effects of chlorophyll and the cover feedback

on chlorophyll are included in the analyses, and as the

BRTs explain a large amount of variance, we do not

expect that these caveats have great importance for the

overall picture. Second, we do not know to which

extent the lakes included in the analyses represent

lakes in equilibrium. Some of them may still be in

recovery after changed environmental conditions

(Kozak & Goldyn, 2016; Søndergaard et al., 2017b)

or the expansion of macrophytes may not immediately

follow changes in abiotic conditions, as also the

occurrence of propagules, herbivory and plant com-

petition may play a role (Bakker et al., 2012).

Moreover, for macrophytes, there may be a carryover

effect from previous years as opposed to phytoplank-

ton biomass for which there is little ‘‘memory’’ from

year to year (Rooney & Kalff, 2000; Cobbaert et al.,

2014). Third, in the search for nutrient–macrophyte

interactions, it may be difficult to discriminate

between causes and consequences, since the presence

of submerged macrophytes has significant effects on

the internal nutrient cycling (Dai et al., 2015; Sønder-

gaard et al., 2017b; Li et al., 2020). These effects may

differ depending on which species dominate; meadow-

forming species have strong effects on turbidity and

reduce nutrient concentrations, whereas canopy-form-

ing species are less significant in controlling the

internal nutrient cycling (Gao et al., 2020). Finally,

differences in the winter survival of macrophytes,

timing of the spring clear-water phase, local weather

conditions during winter and spring, and a number of

biological interactions are all factors that can add to

the variability in macrophyte abundance (Jeppesen

et al., 1998; Mämets et al., 2006; Phillips et al., 2016),

but data were not available in this study to further

evaluate their importance. Again, the large predictive

power of the BRT analyses suggests that this is not a

serious problem for the general conclusions.

Overall, the effect of eutrophication on the macro-

phyte indicators was hierarchical and primarily

depended on water clarity (Chla/Secchi depth) inter-

acting with alkalinity, depth and area. In contrast, TP

and TN were not good predictors, because their effects

were mediated through water clarity with interactions

of area, mean depth, colour and alkalinity. The Chla

concentration was highly predictable based on nutrient

concentrations but limited to a rather short TP range

(up to 0.2 mg/l), whereas the TN effect was much

more stable across the length of the gradient. For lake

managers, the gradual changes in impact of different

nutrients and environmental factors may be used to

develop lake-specific management plans.
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Papastergiadou, K. Stefanidis, M. Šorf, M. Søndergaard, C.
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