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Abstract Efficient management of invasive species

benefits from understanding patterns of persistence

and change over time. In this study, we compare

distribution and abundance of the invasive macro-

phyte parrotfeather (Myriophyllum aquaticum) in an

unregulated river system between the time near its

presumed introduction and 20 years later. Initial

surveys were conducted in 1996–1997, and were

repeated in 2015–2016 using similar methodology.

Moderate increases in the proportion of river kilome-

ters with parrotfeather between the two periods were

observed, but the distribution of sites with low,

medium, and high abundance remained consistent,

with small numbers of sites in either period having

well-established extents of parrotfeather. The distri-

butional extent has moved downstream, with the most

upstream and downstream presences shifted by 17 and

28 river kilometers, respectively; however,

parrotfeather remains sparse in the lower reaches

below the historical downstream extent. Sites with

high abundance and stable presence over time are in

the intermediate segment of the river, indicating

longitudinal and hydrologic controls on distribution.

In contemporary sites, area of parrotfeather cover was

associated with larger, deeper habitats, whereas dom-

inance of parrotfeather occurred in smaller sites

having uniformly shallow depth and low bank slopes.

Sites where both abundance and dominance were low

had dense canopy cover. Our results demonstrate that

landscape and site-level characteristics restrict estab-

lishment and persistence of parrotfeather, and that

hydrologic alterations to stabilize flow regimes and

land use changes should be considered for their

potential to increase presence of parrotfeather and

other invasive aquatic plants in dynamic floodplain

habitats.

Keywords Aquatic invasive species � Spatio-
temporal � Non-native plants � Distribution �
Parrotfeather � Myriophyllum aquaticum

Introduction

Parrotfeather [Myriophyllum aquaticum (Vell.)

Verdc.] is a native macrophyte to South America,

which gained popularity in the aquarium trade over a
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century ago and has since become a problematic

invader in waterways worldwide (Sutton, 1985; Mor-

eira et al., 1999; Hussner et al., 2017). Parrotfeather

establishes and can become abundant in lotic and

slow-moving lentic systems (Hussner & Champion,

2012), and its distribution is likely to be influenced by

changes or stabilizing of the hydrologic regime from

water regulation (Aguiar et al., 2001; Wersal &

Madsen, 2011; Zhang et al., 2021). The ecological

impacts of parrotfeather can be wide ranging, includ-

ing causing reductions in dissolved oxygen, changes in

invertebrate communities, and significant modifica-

tions to availability and complexity of fish habitat

(Hussner, 2009; Kuehne et al., 2016). Parrotfeather

infestations can also interfere with built infrastructure

such as drainage ditches and irrigation canals by

impeding water flow (Guillarmod, 1979; Moreira

et al., 1999). Parrotfeather is notoriously difficult to

control using herbicides or biocontrols (Catarino et al.,

1997; Armellina et al., 1999; Hofstra et al., 2006;

Garner et al., 2013; Kuehne et al., 2018), and has been

shown to be highly tolerant of cold and periods of

extended water drawdown (Moreira et al., 1989, 1999;

Wersal & Madsen, 2013; Hussner et al., 2017). These

attributes underlie studies demonstrating that man-

agement and eradication of parrotfeather requires

long-term and persistent effort over many years (e.g.,

Hofstra et al., 2006), which may unduly tax limited

resources of public and private entities tasked with

control (Pluess et al., 2012).

Management efforts for parrotfeather and other

aquatic invasive species can benefit from understand-

ing how environmental features at landscape or local

levels may promote or constrain populations (i.e.,

environmental filtering) (e.g., Vander Zanden &

Olden, 2008). Such knowledge can make management

efforts more efficient by tailoring resources based on

likelihood of success over shorter or longer time

periods in different areas, and provide important

context to evaluate the success of containment and

treatment. Evaluating the ecological impact of non-

native species requires not only an understanding of

per-capita effects at different spatial and organiza-

tional scales (Cucherousset & Olden, 2011; Kuehne

et al., 2016), but also understanding change in

abundance and distribution over time (Strayer et al.,

2006; Blackburn et al., 2014). Furthermore, under-

standing the role of environmental filtering is critical

to evaluate how distributions of invasive species may

be impacted by changes in land use, hydrologic

alteration, and anthropogenic climate change (Radin-

ger et al., 2019; Li & Shen, 2021). However,

knowledge of the temporal dynamics of invasions is

very limited, in part because the timing of introduction

is often unknown or poorly documented (Strayer et al.,

2006) and surveys may not be conducted until

invaders have become prevalent (Costello & Solow,

2003; Solow & Costello, 2004).

We had the opportunity to assess changes in the

distribution and abundance of non-native parrotfeather

between a 20-year period in the Chehalis River Basin,

Washington (USA), by comparing a present day and

historical survey that was conducted shortly after

parrotfeather was introduced. Furthermore, the Che-

halis River offers a unique opportunity to evaluate

spatial and temporal shifts in an unregulated and

relatively undeveloped river system, which can help

extend previous research on how hydrology and land

use may influence establishment and persistence of

parrotfeather and other invasive macrophytes (Aguiar

et al., 2001; Demars & Harper, 2005; Ot’ahel’ová

et al., 2007; O’Hare et al., 2011; Demars et al., 2014).

Experimental work has demonstrated that parrot-

feather biomass increases with stable water levels,

warmer temperatures, and light (Wersal et al., 2011;

Wersal & Madsen, 2011, 2013; Zhang et al., 2021).

Field studies have shown that parrotfeather establish-

ment and abundance is associated with areas of low

discharge, shallow depth, and high availability of

light; when these factors are all present parrotfeather

can become dominant or monotypic (Moreira et al.,

1989). These environmental determinants of estab-

lishment and growth suggest that parrotfeather popu-

lations may be limited by or respond to larger

landscape-scale factors such as floodplain extent and

channel morphology, which often vary longitudinally

(O’Hare et al., 2011). Site-level characteristics that

could constrain or promote parrotfeather include

riparian canopy and shading, water depth, and shore-

line length (Hussner, 2009, 2014; Xie et al., 2013).

Both landscape and site-level features may also

interact with flood regime (Aguiar et al., 2001;

Hussner & Lösch, 2005; O’Hare et al., 2011); for

example, the Chehalis River is a rain-dominated

system that is subject to large fall and spring floods,

increasing the likelihood of dramatic water level

fluctuations and winter scouring flows (Reidy Lier-

mann et al., 2012).
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We hypothesized that the contemporary distribu-

tion of parrotfeather would show evidence of down-

stream dispersal since the initial survey in 1996–1997,

with an overall greater number of river kilometers

being occupied, and previously unoccupied down-

stream areas now containing large (i.e., established)

extents of parrotfeather. Because only female plants

are present in North America, dispersal is via

fragmentation only (Aiken, 1981); we anticipated that

the annual flood events that occur in the Chehalis

River would create consistent propagule pressure to

downstream reaches (Honnay et al., 2001), where the

floodplain is widest and there is ample off-channel

wetland habitat (Chehalis Basin Strategy, 2019).

Within sites, we expected that abundance (i.e., extent

or area of plant cover) and dominance of parrotfeather

(i.e., the proportion of the site that was covered) could

be predicted by physical and chemical site character-

istics. Shoreline length, shallow nearshore depth, and

reduced canopy cover were expected to promote

abundance, whereas dominance was expected in sites

with uniformly shallow water and reduced canopy

cover. Both abundance and dominance were expected

to be associated with warmer temperatures and lower

dissolved oxygen. Abundance was distinguished from

dominance due to differences in ecological impacts

that can occur across a gradient of parrotfeather

infestation (Kuehne et al., 2016), as well as the

potential need for differing management and restora-

tion approaches in areas where parrotfeather may be

abundant but not dominant and vice versa.

Efforts to control parrotfeather along the Chehalis

River have been sporadic and in limited areas (Kuehne

et al., 2016, 2018, 2020). This is in contrast to more

systematic efforts to eradicate Brazilian elodea (Ege-

ria densa Planch.) and purple loosestrife (Lythrum

salicaria L., Lythraceae) (Simon & Peoples, 2006).

However, management efforts for these other species

have not included comprehensive and systematic

mapping such as exists for parrotfeather, making the

historical survey a unique opportunity to contrast

differences in distribution and abundance between

time periods. Contrasting the two survey periods and

identifying environmental features that promote or

constrain parrotfeather should help guide future sur-

vey and management by state and county agencies and

private landowners, which are mandated to control

invasive plants within and between their jurisdictions

(Simon & Peoples, 2006).

In this study, we compared the occurrence and

abundance of parrotfeather along ca. 100 km of the

Chehalis River, and quantified changes over a 20-year

period. Importantly, we evaluate the degree to which

longitudinal position along the river is associated with

establishment and persistence over time, and factors

within sites that are associated with parrotfeather

abundance and dominance. In addition to casting light

on rarely studied temporal dynamics of species

invasions, we also demonstrate how understanding

these spatial and temporal trends can be translated into

concrete management recommendations to support

basin-wide planning for aquatic species.

Methods

Study area

The Chehalis River is a low-gradient, rain-dominated

system that flows 200 km and drains a 2700-km2

watershed in southwestern Washington State. Parrot-

feather has persisted here since 1994 when it was first

discovered by the Lewis County Noxious Weed Board

growing in backwater areas near Centralia (Wamsley

& Hupp, 1997). The Chehalis River is Washington’s

second largest basin, and is currently unregulated with

the exception of a single headwater dam; it is typified

by many semi- and partially connected habitats

(oxbow lakes, seasonal wetlands). Land cover in the

watershed is predominantly forested, with smaller

percentages of developed, wetland, and agricultural

areas (Chehalis Basin Strategy, 2019). As part of

comprehensive planning for aquatic restoration and

flood control, ecological regions with distinct geologic

and hydrologic processes have been identified (Che-

halis Basin Strategy, 2019). This study was conducted

in the three ecological regions that encompass the

mainstem river (upstream to downstream): Middle

Chehalis River, Lower Chehalis River, and Chehalis

River Tidal. The Middle Chehalis region is character-

ized by a deeply incised channel and disconnected off-

channel habitat, whereas the Lower Chehalis has

a more extensive and connected floodplain; the Che-

halis River Tidal region is very low gradient alluvial

valley, but with substantial tidal influence.

123

Hydrobiologia (2022) 849:899–911 901



Historical longitudinal survey

Shortly after the initial detection of non-native

parrotfeather in the Chehalis River, a comprehensive

survey was conducted by Lewis County in 1996–1997

to establish the early extent and impact (Wamsley &

Hupp, 1997; Wamsley, 1998). We reconstructed these

longitudinal surveys to compare distribution and

prevalence (i.e., sites with low, medium, and high

abundance of parrotfeather) with the contemporary

period. The initial survey of 105 river kilometers

(RKM) between Chehalis (RKM 125) and Montesano

(RKM 21) occurred in June–July 1996. The upstream

half of the survey (from Chehalis to Oakville) was

conducted by canoe, and downstream areas (below

Oakville) were done using an airboat. Locations with

parrotfeather were georeferenced, and the extent of

parrotfeather in sites was estimated using either a

3-category area estimate (\ 100 ft2; 100 ft2-1 acre;[
1 acre) or a density rating (1–4) that described extent

and likelihood of persistence in the site (Resource

Management, Inc., 1997; Wamsley & Hupp, 1997).

The following year, a large majority of the same river

extent was resurveyed in the first week of July, with

remaining sections surveyed in August–September.

Only four new locations with parrotfeather (some very

small) were identified in 1997 that were not noted in

1996. Not all of the locations reported from the

combined 1996–1997 surveys were identifiable based

on the GPS coordinates, maps, or site descriptions.

However, these exceptions were few, with only 5 of 47

historical survey records excluded due to lack of

confidence in georeferencing.

Contemporary longitudinal survey

To establish the contemporary distribution for con-

trast with the historical survey, we mapped presence

and abundance of non-native parrotfeather along the

mainstem Chehalis River in July of 2015 and 2016.

The 2015 survey started at Centralia (RKM 108); in

2016 the survey began in Chehalis (RKM 125) to

match the historical survey. The downstream extent in

both years was in Montesano (RKM 21). In both years,

the river was surveyed by canoe, and observers used

binoculars to identify and map even small or isolated

plants as well as patches and large extents of

parrotfeather. Surveyors inspected all incoming creeks

and tributaries, backwaters, and groundwater sloughs;

at each of these points, surveyors inspected the area by

walking a distance of 50 m from the mainstem river

along the incoming waterway.

In both 2015 and 2016, the location and area of

parrotfeather patches were mapped using a handheld

GPS (Garmin GPSMAP 64sc, accuracy 3 m). Parrot-

feather patches that were larger than 3 m2 were

mapped by walking or wading the perimeter (or

paddling a float tube in deeper sites) with the GPS to

create a tracklog (1 waypoint second-1). Tracklogs

were subsequently imported into ArcGIS and con-

verted to polygons to calculate the area (m2). The area

of patches that were smaller than 3 m2 were visually

estimated; the majority of these small patches con-

sisted of single plants approximately 1 m2 in area. The

area of patches from polygons and waypoints with

visually estimated areas formed a combined georefer-

enced dataset that was then summarized by river

kilometer or site.

Environmental and site characteristics associated

with parrotfeather abundance and dominance

To evaluate how environmental features at the site

level promote or constrain parrotfeather abundance

and dominance, in the contemporary survey we

measured characteristics of stable sites along the river

where parrotfeather was present in both years of the

contemporary survey. Parrotfeather was patchily dis-

tributed along the river, and found in greatest abun-

dance and densities in semi- or fully enclosed areas

such as well-defined backwaters, sloughs, and beaver-

dammed areas. During the first contemporary survey

in 2015, we identified 24 of these sites with parrot-

feather patches that were likely to persist and/or

expand in the following year (i.e., ‘‘fixed sites’’),

allowing comparison of parrotfeather extent and

environmental characteristics in both years. [Note:

approximately half of these sites were treated partially

or wholly with herbicides in 2015, but change in

parrotfeather biomass between the 2 years due to

herbicide treatment was negligible (Kuehne et al.,

2018, 2020)].

Within these fixed sites, environmental data were

collected at cross-sectional transects every 10 m to

evaluate the role of site-level characteristics in

predicting abundance (i.e., total area) and dominance

(i.e., proportional area of cover) of parrotfeather.

Metrics were selected to reflect and characterize
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physical site characteristics expected to promote or

hinder establishment of parrotfeather (i.e., water

depth, shading, potential for scouring flows). At each

transect, the following physical metrics were mea-

sured or visually estimated: bankfull width (m), mid-

channel depth (m), half-channel (i.e., nearshore) depth

(m), density of the canopy cover (0–100%) and the

bank slope (0�–90�). Water quality parameters can

also promote (or be influenced by) presence or

prevalence of aquatic macrophytes; abundance and

dominance of parrotfeather might be expected to

correspond with warmer temperatures (Wersal et al.,

2011) and lower dissolved oxygen (Hussner, 2009;

Kuehne et al., 2016). Temperature (�C), dissolved

oxygen (mg L-1), and conductivity (S m-1) were

measured at every transect having sufficient depth

(C 20 cm) using a handheld YSI meter (Model Pro

2030).

Data summary and analysis

All data summaries and statistical analyses were

conducted in the R Statistical Programming Environ-

ment (R Core Team, 2019). Parrotfeather occupancy

in historical and contemporary periods was compared

for the 105 river kilometers between Chehalis and

Montesano. Historical and contemporary parrot-

feather points were snapped to the mainstem Chehalis

River flowline according to the U.S. National Hydrog-

raphy Dataset (U.S. Geological Survey, 2019), and

distance calculated from the mouth of the river.

Occurrence data were binned to create historical and

contemporary datasets of occupied and unoccupied

RKM. Occupancy and longitudinal abundance in the

two contemporary years (2015 and 2016) was com-

pared; however, the historical period was contrasted

with contemporary data from 2016 only, as this was

the year where the upstream survey extent matched

that of the historical period. The number of occupied

and unoccupied RKM in historical and contemporary

surveys was contrasted using a Chi-squared test for

paired samples, and occupied RKM in each period

were plotted to evaluate changes in the longitudinal

distribution of parrotfeather over time.

To compare the proportion of sites between histor-

ical and contemporary periods having low to high

parrotfeather abundance, we first aggregated the

waypoints and tracklogs from the contemporary

survey into discrete sites. Twenty-four fixed sites

were identified in the field (see above); for dispersed

parrotfeather points outside of these areas (i.e.,

individual waypoints or tracklogs along the river),

we used a threshold of 100 m to consolidate points that

were close to one another, using the central point as the

site location. The total area of parrotfeather cover (m2)

was summed for each site, which were then catego-

rized into density ratings (1–4) using the criteria from

the historical survey protocol (Resource Management,

Inc., 1997). To statistically contrast the distribution of

sites with low (density rating = 1) to high (density

rating = 4) abundance of parrotfeather, we used a test

of equal densities implemented in the sm package

(Bowman & Azzalini, 2018) on the distributions of

parrotfeather ratings for sites in each period.

To relate patterns of parrotfeather abundance and

dominance with physical and chemical characteristics

in the 24 fixed sites, we used non-metric multidimen-

sional scaling (NMDS) to first establish multivariate

relationships among the environmental variables. The

variables included the following derived from transect

data: shoreline length (i.e., mean bankfull width x site

length), the standard deviation of mid-channel depths,

mean half-channel depth, mean percent canopy, mean

bank slope, mean temperature, mean conductivity, and

mean dissolved oxygen. We also included a variable

for year to account for inter-annual differences in

environmental variables. The NMDS was performed

on the ln(x ? 1) transformed variables with Bray–

Curtis distance, and data were initially tested for

univariate and multivariate normality (MVN package,

web version 1.6).

The ability of the ordination to explain parrot-

feather abundance and dominance was evaluated by

fitting separate Generalized Additive Models (GAMs)

to the first two NMDS axes using the ordisurf function

in R. GAMs allow identification and testing of non-

linear relationships, and create fitted contours between

the ordination of environmental variables and

response metrics. Parrotfeather abundance was the

summed area of parrotfeather cover for the site, and

parrotfeather dominance was calculated as the pro-

portion of the total site area with parrotfeather cover

present; both metrics were log-transformed prior to

analysis. The NMDS and ordisurf GAMs were imple-

mented and the significance and model fit assessed

using the vegan and mgcv packages in R (Wood et al.,

2016; Oksanen et al., 2019).
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Results

The longitudinal distribution of parrotfeather shifted

downstream between the historical and contemporary

periods (Fig. 1), while the proportion of RKM occu-

pied by parrotfeather increased between the two

periods, demonstrating marginal significance, v2 (1,

N = 105) = 3.4, P = 0.07. Parrotfeather was present

in 24 of the 105 RKM (23%) surveyed in the historical

period, and 36 of the RKM (34%) in the contemporary

period, representing a doubling of river kilometers

where parrotfeather was documented (Fig. 2).

Although the percentage of occupied RKM was

higher, parrotfeather recorded in the upstream reaches

of the river ([RKM 100) during historical surveys

was rarely detected in contemporary surveys, and the

uppermost contemporary occurrence was 17 RKM

downstream from that of the historical period (Figs. 1–

2). The opposite trend was observed in lower reaches,

where parrotfeather was undetected in historical

surveys but was present in contemporary surveys,

and the furthest downstream occurrence was 28 RKM

below that of the historical period. Nine of the 10

RKM where parrotfeather was detected in both

historical and contemporary surveys were in the

intermediate segment of the river (between RKMs

57 and 75). Longitudinal abundance or total area of

parrotfeather cover in 2016 corresponded with areas of

persistence, where RKMwith highest abundance were

the same or highly proximate to those where parrot-

feather was detected in both periods (Fig. 2). In the

two contemporary survey years, the number of RKM

with parrotfeather was greater in 2016 than in 2015;

area of parrotfeather cover by RKM was strongly

correlated between the 2 years (Pearson’s r = 0.95,

P\ 0.001) and was more abundant in the 2nd year.

The proportion of sites having low, medium, and

high abundance density ratings did not change signif-

icantly between the two time periods (P = 0.59)

(Fig. 3). More than half of the sites in both periods

(57–58%) had the lowest density rating of 1 (\ 100

ft2). Sites with density ratings of 3 ([ 1000 ft2 and\ 1

acre) and 4 ([ 1 acre) comprised the smallest propor-

tion of sites in both survey periods.

Aberdeen

Centralia

Oakville

Montesano

Chehalis

1

2

3

20 km
N

WA

OR

ID

46.4°N

46.6°N

46.8°N

47°N

47.2°N

47.4°N

124°W 123.5°W 123°W 122.5°W

Fig. 1 Distribution of non-

native parrotfeather along

the mainstem Chehalis

River between the cities of

Chehalis (RKM = 125) and

Montesano (RKM = 21) as

documented during surveys

in 1996–1997 (blue circles)

and 2016 (orange circles).

Numbered segments show

the upstream points of the

Middle Chehalis (1), Lower

Chehalis (2), and Chehalis

River Tidal (3) ecological

regions, which were defined

as part of basin-wide

restoration planning

(Chehalis Basin Strategy

2019). Inset shows the

location of the Chehalis

River watershed (grey

shading) in southwestern

Washington State, USA
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In the 24 fixed sites where environmental transect

data were collected in 2015 and 2016, parrotfeather

abundance and dominance were significantly corre-

lated with each other (R2 = 0.71, P\ 0.01) but have

different non-linear relationships with the ordination

of environmental variables (Fig. 4). Six variables

contributed strongly (P\ 0.05) to the ordination:

shoreline length, standard deviation of mid-channel

depth, half-channel depth, bank slope, canopy, and

dissolved oxygen. GAM fitting demonstrated that the

gradient of parrotfeather abundance was strongly and

significantly explained by the ordination (Adj.

R2 = 0.61, P\ 0.01). Abundance was positively

associated with greater shoreline length, nearshore

depths, and variability in mid-channel depth, and was

negatively associated with increased riparian canopy

and dissolved oxygen (Fig. 4a). Dominance of parrot-

feather was significantly but less strongly explained by

the ordination (Adj. R2 = 0.32, P\ 0.01), and was

associated with more intermediate environmental

conditions than abundance. Dominance was associ-

ated with reduced shoreline length, nearshore depths,

and depth variation; it was also more strongly

associated with low riparian canopy cover, bank

slopes, and dissolved oxygen than was abundance

(Fig. 4b).

Discussion

This study documented change in the distribution of an

invasive aquatic plant in a large unregulated river

system with a 20-year interval between survey peri-

ods. Importantly, the initial survey is likely to have

occurred within a relatively short period (i.e., within

5–10 years) following introduction and detection,

meaning that we are able to document differences

between early and more mature stages of the invasion

process (Strayer et al., 2006). Previous work on spatio-

temporal changes in the distribution and abundance of

invasive species in rivers has largely focused on fish

and invertebrates, which differ in mobility and
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Fig. 2 River kilometers (RKM) between Chehalis (RKM =

125) and Montesano (RKM = 21) where parrotfeather was

present in historical (‘‘H’’, blue circles) and contemporary (‘‘C’’,

orange circles) surveys, and the summed area of parrotfeather

cover (black solid line) as surveyed in 2016. Grey shading

indicates RKM where parrotfeather was present in both periods

0.0

0.2

0.4

1 2 3 4
Abundance rating

D
en

si
ty

Fig. 3 Comparison of kernel density estimates of the distribu-

tion of parrotfeather ratings (1–4, lowest to highest abundance)

at sites along the Chehalis River in historical (blue dashed line)

and contemporary (orange dashed line) periods. 95% confidence

intervals (grey shading) indicate that the distributions are

statistically equal between the two periods
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mechanisms of dispersal. When plants have been

studied, the focus has been on riparian areas and

species (Tickner et al., 2001; Renöfält et al., 2005;

Catford et al., 2014). Furthermore, the opportunity to

survey invasion dynamics in an unregulated river

system is increasingly rare, but one of the best

opportunities to understand how longitudinal position,

hydrology and other abiotic conditions relate to

establishment and persistence of aquatic plants

(Nilsson & Jansson, 1995; Demars & Harper, 2005;

Ot’ahel’ová et al., 2007; O’Hare et al., 2011).

In line with our hypotheses, the proportion of river

kilometers where parrotfeather is present has

increased since the initial survey in the mid-1990s;

however, the increase was only marginally significant.

Because of methodological differences between the

two time periods, we believe that these results are in

fact conservative (i.e., the increase may be slightly

overestimated). In the contemporary surveys, every

plant or patch encountered was documented, whereas

historical survey points were more likely to be

collected as an aggregated site point. This process

would tend to overestimate contemporary occupied

RKM compared to historical surveys. Due to uncer-

tainty in coordinates or site descriptions a small

number of historical locations could not be georefer-

enced with confidence, which additions may have

increased the number of unique sites. Lastly, surveyors

noted that the winter of 1996 (pre-survey) had record

flooding, and suggested that smaller plant populations

in the mainstem river may have been scoured out

(Resource Management, Inc., 1997). Corresponding

with the relatively small increase in occupied RKM,

we found that the proportion of sites with low to high

parrotfeather abundance or density has not changed

significantly since the historical survey period. The

majority of locations with parrotfeather during both

time periods were small (\ 100 ft2) infestations, with

low numbers of sites supporting extensive areas of

parrotfeather. Collectively, the historical-contempo-

rary contrast indicates that parrotfeather is slowly

expanding its distribution along the river, but that it

becomes abundant and/or dominant in a minority of

newly established sites.

River conditions seemed to favor parrotfeather

establishment and growth between 2015 and 2016, a

further indication that 2016 provided a conservative

year for comparison with the historical survey.

Previous studies have shown that annual species

turnover for macrophytes in lowland rivers can be

substantial over 1–5 years (Demars et al., 2014), and

the measurable increase in occupancy and abundance

between the contemporary years raises the question as

to how well surveys conducted over short periods (i.e.,

2 years) can capture variability that ultimately underlie

long-term invasion dynamics. We believe that climate

and hydrologic conditions during the contemporary

survey period were likely to promote parrotfeather and

other emergent macrophytes that benefit from reduced

or moderate flow conditions (O’Hare et al., 2011). In

2015 there was a severe drought, with warmer

temperatures and reduced summer flows relative to

historical conditions and to 2016, and both years had
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relatively stable winter flows (Thurston County,

2017). An alternative or complementary explanation

could reside in more stable spring (i.e., May) flows in

2016 compared with 2015, which may also have

helped parrotfeather establish or expand. Notably, the

Chehalis River is subject to very large winter floods

that may periodically suppress populations, and a

study that encompasses more years and a broader

range of hydrologic conditions could help determine

relationships between interannual variation in parrot-

feather abundance and streamflows (Demars et al.,

2014).

Also consistent with our hypotheses, we found

evidence for downstream dispersal and establishment

of parrotfeather, with a 28 RKM downstream shift

from the historical period. Downstream dispersal and

colonization of plant fragments can be expected in

river ecosystems, particularly when frequent flooding

and lack of natural or manmade barriers allows

transport of propagules in a consistent way (Honnay

et al., 2001). Less expected was that presence and

abundance were relatively sparse in these lowest river

reaches, with few well-established (i.e., large) parrot-

feather sites below the historical downstream extent

(RKM 57); this supports the conclusion that landscape

or environmental features are limiting establishment

or persistence in that segment of the river. During the

historical surveys, surveyors noted the unexpected and

complete absence of parrotfeather in lower river

reaches (below the Satsop River, RKM 32) despite

an abundance of apparently suitable wetland habitat,

and suggested that tidal influence may have restricted

establishment (Resource Management, Inc., 1997).

Based on experimental work, it is plausible that

parrotfeather would be limited in areas that are tidally

influenced due to increased salinity of water and soil

(Haller et al., 1974; Thouvenot et al., 2012) and

consistent fluctuations in water level (Cao et al., 2012;

Hussner & Champion, 2012; Zhang et al., 2021). We

also find support for the observed sparseness in

downstream reaches in work by O’Hare et al. 2011,

which found reliable patterns of macrophyte distribu-

tion along a longitudinal gradient that was represented

most strongly by specific stream power and associated

factors of altitude, bed slope, bankfull width, and flood

discharge. Furthermore, these relationships differed

with plant morphology, with ‘linear emergent’ and

‘branched emergent’ species (i.e., the most likely

classifications of parrotfeather) associated primarily

with intermediate specific stream power, and dimin-

ishing downstream with high flood discharge and large

bankfull width.

Consequently, the observed reduction of parrot-

feather from upstream river reaches (which must be

due to natural extirpation over time or control efforts)

corresponds with the same longitudinal gradient,

where emergent species were also diminished in

upstream areas associated with altitude and increased

bed slopes (O’Hare et al., 2011). The river segment

where we observed parrotfeather was strongly reduced

(from the urban centers of Chehalis to just downstream

of Centralia) is closely aligned with the Middle

Chehalis River ecological region (Fig. 1), which is

characterized by an incised channel, resulting in low

connectivity with the floodplain and stronger instream

flows (Chehalis Basin Strategy, 2019). Bank stabi-

lization practices have further reduced channel migra-

tion and creation of new wetlands in this area. We

speculate that the initial introduction of parrotfeather

occurred in this segment, near the town of Chehalis,

but that populations disappeared over time due to

winter scouring floods, channel migration and move-

ment, or wetland succession, and that colonization of

new suitable areas was minimal. Although control

efforts were implemented between 1995 and 1997

(Wamsley & Hupp, 1997), we do not believe they

contributed substantially to the observed contempo-

rary distribution; parrotfeather requires many years to

successfully eradicate and is likely to rebound in

suitable areas (Moreira et al., 1999; Hussner et al.,

2017). However, though our information is anecdotal,

we suggest that the role of wetland succession in the

disappearance of parrotfeather populations should not

be discounted, and potentially warrants further study.

As river channels migrate and riverine wetlands fill

and shift toward riparian plant communities (Shank-

man, 1993), parrotfeather will disappear from those

areas; if colonization of new areas nearby does not

occur (or they are managed or extirpated rapidly), this

could result in large-scale disappearance over time.

In contrast with low abundance and reductions in

the Chehalis River Tidal and Middle Chehalis River

regions (respectively), parrotfeather persisted over

time and had the greatest contemporary abundance in

the intermediate Lower Chehalis River ecological

region. Persistence in this river segment, which is

distinguished by an extensive floodplain and ‘‘diverse

off-channel habitats’’ (Chehalis Basin Strategy, 2019),
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accords with the site-level characteristics that were

observed to promote abundance and dominance of

parrotfeather. We found that abundance or total area of

parrotfeather cover was reliably associated with length

of site shoreline, deeper water, and more variable

water depth, all of which are characteristics of larger

sites. However, dominance of parrotfeather—meaning

the tendency to become monotypic and invade the

entire water column—occurred in habitats with more

uniformly shallow depths, and low bank slopes; these

features were more prevalent in smaller sites with less

shoreline length. Both abundance and dominance were

limited in sites with denser riparian canopy cover. Our

results agree with experimental and field studies where

dominance and persistence of parrotfeather are asso-

ciated with areas of shallow (\ 0.8 m) water (Moreira

et al., 1989; Sytsma & Anderson, 1993; Wersal &

Madsen, 2011) and availability of light (Hussner,

2009; Xie et al., 2013). It should be noted that steep

bank slopes reduce availability of light, but could also

indicate areas with stronger winter (i.e., scouring)

flows, which would also be expected to limit growth of

parrotfeather (Moreira et al., 1999; Hussner & Lösch,

2005). Finally, we found that parrotfeather domi-

nance was associated with low dissolved oxygen.

Although we must consider that oxygen levels can be

influenced by flow conditions and diurnal variation,

previous testing has demonstrated that dissolved

oxygen was reduced in quadrats where parrotfeather

was dominant (Kuehne et al., 2016), and the current

study supports that this is also observable at the site

level.

Our work has multiple implications for manage-

ment and control of parrotfeather, including illustrat-

ing value in understanding how environmental

filtering can promote or constrain invasive aquatic

plant populations. These results demonstrate that

parrotfeather abundance and persistence is longitudi-

nally associated with intermediate river reaches with

extensive off-channel habitats, but seems less likely to

establish or persist in areas where the channel is

constrained and has higher water velocities (upstream)

or where water depths and fluctuations become more

extreme (downstream). The contemporary pattern of

low occurrence and abundance of parrotfeather in the

upper and lower segments of the river (above RKM 75

and below RKM 57) suggests that control efforts are

more likely to be successful here, with less chance of

new successful establishments and recolonizations.

Conversely, containment may be the most feasible

strategy in the intermediate segment, where parrot-

feather has persisted over time and remains abundant.

Management in this segment of the river could focus

on stopping establishment in new areas, with an

emphasis on early eradication in sites having features

associated with parrotfeather dominance (shallow

depth, low bank slope, and sparse canopy). In our

own work surveying and experimentally treating

parrotfeather over multiple years, we have seen large

changes in abundance (both increases and dramatic

reductions, including disappearance) that seem to

result from regular processes of channel migration and

wetland succession. A strategy that includes monitor-

ing natural progression, stopping establishment in new

areas, and focusing treatment in high-priority sites is

likely to represent the most efficient use of manage-

ment resources and the best likelihood of reducing

occurrence over time.

Our results also demonstrate that parrotfeather

distribution and abundance are related to landscape

characteristics and site-level features that can be

influenced by humans, namely through hydrologic

alteration and land use practices; this includes restora-

tion activities such as increasing riparian shading and

restoring connectivity of off-channel areas. Although

our methods and dataset did not allow evaluation of

flow conditions, the strong association of parrotfeather

with an extensive floodplain and areas of low flow

such as backwaters, channels, and sloughs in this and

other studies is consistent with minimal tolerance of

high flow conditions (Moreira et al., 1989, 1999;

Hussner & Lösch, 2005; Hussner, 2014). Areas where

parrotfeather is prevalent and persistent are likely to be

ongoing sources of secondary spread downstream as

well as through lateral movement via flooding and

transport by wildlife (i.e., nutria, beaver, birds).

Consequently, we recommend that hydrologic alter-

ation that stabilizes the natural flood regime and

reduces winter scouring flows, such as those associ-

ated with new dam construction, should be carefully

considered for its potential to increase distribution of

parrotfeather, Brazilian elodea (Egeria densa) and

other invasive macrophytes as has been found across

diverse riverine systems (Ot’ahel’ová et al., 2007;

Aguiar & Ferreira, 2013; Martins et al., 2013; Demars

et al., 2014; Vivian et al., 2014). Our results are also

consistent with other studies showing that parrot-

feather is sensitive to shading (Wersal & Madsen,

123

908 Hydrobiologia (2022) 849:899–911



2013) and that reducing canopy cover in riparian areas

can promote establishment and persistence of parrot-

feather (Xie et al., 2013).

We note that this analysis was only possible

because mapping and surveys for parrotfeather existed

for more than one time period; other non-native plants

present in the basin have been the focus of consistent

control efforts (i.e., E. densa), but without similar

systematic surveys that allow examination of longitu-

dinal or landscape patterns. Evaluation of invasive

plant management and control efforts are the excep-

tion rather than the norm, and understandable given

that resources to control non-native plants invariably

outstrip demand (Pluess et al., 2012). However, there

is then little guidance as to whether current control

methods are a good investment of resources, and how

environmental filtering could enhance or optimize

management. We hope that this study helps incen-

tivize systematic surveys and analysis of landscape

and hydrologic factors to inform management of

invasive plants, which can result in ecological damage

to aquatic habitats (Thomaz & Cunha, 2010) and high

management costs (Hussner et al., 2017). Understand-

ing the environmental factors that facilitate and

promote establishment and growth of parrotfeather

and other invasive macrophytes should also be a

critical feature in planning large and small-scale

restoration of aquatic habitats (Chehalis Basin Strat-

egy, 2019), including the preservation and restora-

tion of natural hydrologic regimes (Tonkin et al.,

2018).
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