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Abstract In this study, we investigate the main

ecological interactions between fouling aquatic organ-

isms (both invasive and native) present in the reservoir

of the Governador José Richa hydroelectric plant,

located in southern Brazil, and to identify the most

suitable period for the interruption of machinery

operation for cleaning and maintenance of the

hydraulic systems of this plant. A total of 32 exper-

imental plates were fixed to a metallic structure

positioned close to the plant’s water intake. Three

species of invasive fouling were identified in our

samples (Limnoperna fortunei [Mollusca], Cordy-

lophora sp., and Hydra sp. [Cnidaria]) and six native

taxa belonging to the phyla Protozoa, Ciliophora,

Amoebozoa, and Arthropoda. Spring and summer

were the seasons with the highest fouling rates, as well

as densities of fouling organisms. The highest levels of

diversity were recorded during the colder seasons.

Several interactions between the organisms were

identified, such as mutualism, commensalism, com-

petition, epibiosis, cannibalism, and predation. The

data obtained suggest that, from the biological point of

view, the most suitable period for machine shutdown

destined for the removal of biological fouling in the
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Animal Science, Curitiba, Brazil

e-mail: anabertaopaula@gmail.com

R. V. V. Leite

e-mail: Raisasleite0@hotmail.com

A. Ostrensky

e-mail: ostrensky@ufpr.br

A. P. da Silva Bertão � R. V. V. Leite �
A. Horodesky � A. Ostrensky

Universidade Federal do Paraná - Integrated Group of
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hydraulic systems of the studied plant is between the

end of spring and the beginning of summer.

Keywords Ecological succession � Facilitation �
Freshwater environment � Biofouling � Seasonality

Introduction

Fouling invasive aquatic organisms have caused

severe economic impacts around the world (Morton,

1977; Callow, 1993; Simberloff & Von Holle, 1999;

Pimentel et al., 2001; Ricciardi & MacIsaac, 2008;

Nakano & Strayer, 2014; Simberloff & Vitule, 2014).

There have been records of clogging of pipes in water

collection and treatment stations (Melo & Bott, 1997;

Pu et al., 2009; Rajagopal & van der Velde, 2012).

Industries such as pulp and paper mills are also

frequently impacted by fouling organisms, as these

sectors depend directly on the capture of water from

natural bodies to carry out their production processes

(Coetser & Cloete, 2005; Rajagopal & van der Velde,

2012). In these cases, the damage caused by fouling

organisms is associated with both increased corrosion

rates and clogging of hydraulic structures (Characklis,

1981; Melo & Bott, 1997; Pu et al., 2009; Martin et al.,

2016; Farhat et al., 2019; Singh et al., 2020). However,

the most widely affected sector has been hydroelectric

power generation (Armour et al., 1993; MacIsaac,

1996; Cataldo, 2001; Boltovskoy et al., 2006; Portella

et al., 2009; Boltovskoy & Correa, 2015; Mansur et al.,

2016; Boltovskoy, 2017; Jernelöv, 2017).

In hydroelectric projects affected by fouling, the

frequency of interventions aimed at cleaning and

maintaining hydraulic structures increases due to the

accumulation of biological fouling (e.g., molluscs,

cnidarians, protozoans), with a consequent increase in

operating costs (Flemming & Grohmann, 2008b;

Cloete 2010; Flemming, 2011; Booy et al., 2017;

Nelson, 2019). Each machine stoppage requires

skilled labor to carry out cleaning activities, in

addition to the interruption of energy production

during the entire cleaning period. Frota et al. (2014),

based on the value of the energy priced in the Brazilian

spot market, concluded that the lost profits for the

energy not generated in a single day of maintenance of

a 44 MW Francis turbine would be US$ 180,000. The

associated economic impact is even greater when

considering that machine shutdown for maintenance

and cleaning are always greater than 24 h (Flemming,

2002; Grohmann, 2008a; Pucherelli et al., 2018).

Therefore, identifying the most suitable periods for

machine shutdowns for maintenance and cleaning

would allow the optimization of efforts and costs in the

mid- and long-term, given that it would allow for

maintenance efforts to be more effective and concen-

trated in time, which in turn would minimize control

efforts in the intervening months (Grohmann, 2008c;

Venkatesan & Murthy, 2008; Oreska & Aldridge,

2011; Frota et al., 2014; Boltovskoy et al., 2015b;

Latombe et al., 2017).

In South America, three fouling invasive aquatic

species have been reported to cause significant oper-

ational and economic losses to companies in the

hydroelectric sector: the Asian clam, Corbicula

fluminea (OF Müller, 1774), the cnidarian Cordy-

lophora caspia (Pallas, 1771), and the golden mussel

Limnoperna fortunei (Dunker, 1857). Corbicula flu-

minea obstructs heat exchangers of plants due to the

accumulation of their shells (Karatayev et al., 2005;

Ludwig et al., 2014; Mansur et al., 2016). Cordy-

lophora caspia affects hydraulic pipes, filters, and

protective grids (Danrigran & De Drago, 2000;

Portella et al., 2009; Sylvester et al., 2011; Nakano

& Strayer, 2014). Finally, L. fortunei causes damage to

the protection grids (Darrigran, 2002), filters, gener-

ators, floodgates (Boltovskoy et al., 2006), pipes, and

heat exchangers (Cataldo et al., 2003; Darrigran &

Damborenea, 2011; Uliano-Silva et al., 2013).

In addition to the economic impacts, fouling

aquatic organisms have generated several negative

impacts on the ecosystem in freshwater environments,

interfering on the food webs of native species (David

et al., 2017; Emery-Butcher et al., 2020). There are

relatively well-documented cases of competition

between these organisms and incumbent species for

food and/or space, as well as shifts of nutrient cycling,

among other environmental disturbances (Ricciardi &

MacIsaac, 2011; David et al., 2017). Invasive species

often interact with each other and often act as

‘‘facilitators’’ (a term that refers to those species that

have direct positive effects on other species) (Hacker

& Gaines, 1997). This interaction can favor the

increase in density or biomass of at least one of the

involved species, which can facilitate the bioinvasion

process (Ricciardi & MacIsaac, 2000; Rodriguez,

2006; Velde & Rajagopal, 2006; Silknetter et al.,
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2019). Thus, this type of interaction would contribute

to the increase in the number of establishment or

spread of species in aquatic environments into aquatic

environments (Simberloff & Von Holle, 1999). The

impacts of facilitating species are more frequent when

they favor or provide a limiting resource, increasing

the complexity of the habitat, functionally replacing a

native species or competing for resources and ecolog-

ical niche (Ricciardi et al., 1996; Simberloff & Von

Holle, 1999; Ricciardi, 2001; Simberloff, 2006; Kéfi

et al., 2016). The present study aimed to investigate

the main ecological interactions between the invasive

fouling aquatic species and the native species present

in the reservoir of a hydroelectric plant located in the

southern region of Brazil and to evaluate the most

suitable period for machine shutdown for cleaning and

maintenance of the hydraulic systems of this plant.

Methods

Study design

The experiment was carried out between September

2018 and December 2019, at the HPP Governador José

Richa reservoir (25� 320 34.9900 S, 53� 290 45.8200 W),

located in the Lower Iguaçu River section, in the

border between the municipalities of Capitão Leôni-

das Marques and Nova Prata do Iguaçu, state of

Paraná, Brazil. Samples were obtained using poly-

styrene experimental settlement plates (15 9 15 cm),

fixed with nylon clamps to a metallic structure of 0.58

m2. This structure was positioned one meter below the

surface and was fixed by ropes to the log boom located

near the dam of the HPP. For five seasons (Spring/

2018: October, November, and December; Summer/

2019: January, February, and March; Autumn/2019:

April, May, and June; Winter/2019: July, August, and

September; Spring /2019: October, November, and

December), a total of 32 experimental plates were

sequentially installed, six plates (two replicas/month)

in each season, and two more test plates that were

installed in the first month (September 2018) and

removed only in the last month (December 2019).

Each month, two experimental plates were removed,

so that at the end of the season, all six seasonal plates

had been removed (two plates/month). At the begin-

ning of the next season, the procedure was repeated

(Fig. 1).

The experimental settlement plates removed from

the floating structures were packed in plastic bags. The

biological material was fixed in 6% formaldehyde and

preserved in 70% ethanol. Automated hourly mea-

surement of the reservoir water temperature during the

15 months of the study was carried out and the data

made available by Companhia Paranaense de Energia.

Analysis of experimental plates

In the laboratory, all experimental settlement plates

were photographed, both with a digital camera (Nikon,

Coolpix B500 Brindes, Japan) and in a stereoscopic

microscope (Zeiss, Stereo Discovery.V8 Crisp, Ger-

many), in order to organize an image database for

visual analysis of the fouling process. The images

were analyzed using the ImageJ software (version

1.52a) (Schneider et al., 2012) to identify the recruit-

ment pattern and the degree of occupation of the

experimental plates. The calculation of the coverage

area in each experimental plate was performed using

the Watershed plugin, a tool that calculates based on

the intensity or gray level of the pixels present

(Papadopulos et al., 2007). The values were then

transformed into the percentage of the fouled area in

relation to the total area of the plate. After measuring

the area occupied by fouling organisms, macroscopic

individuals ([ 1 cm) were removed from the exper-

imental plates, with the aid of surgical instruments,

fixed in 4% formaldehyde buffer, preserved in 70%

alcohol, identified to the lowest possible taxonomic

level, and quantified. The mollusks were also weighed

to obtain the wet total weight (tissue and shell), on a

scale (Bell Engineering, S2202h—2200 g, Italy),

making it possible to calculate the relative biomass

(g/cm2).

For the identification and quantification of micro-

scopic organisms (\ 1 cm), two methodological pro-

cedures were established. When the incrusted area was

greater than 30% of the total area of the experimental

settlement plate (as observed in Fig. 2a), subsampling

was performed to quantify the organisms. For this

purpose, a standardized grid was used, containing 225

squares (1 9 1 cm), of which 20 (8.8% of the total

area) were analyzed. The selection of the squares was

carried out randomly over the entire plate, including

non-fouled surfaces (Fig. 2b), following the method-

ology proposed by Borges (2013). After this proce-

dure, the biological material embedded in these
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selected cells was removed with the aid of a scalpel,

stained with cane rose, and identified using a stereo-

scopic microscope (Pinto-Coelho, 2004).

Alternatively, if the fouling area covered 30% or less

of the experimental settlement plates, they were

scrapped, the material stained with a cane rose and

Fig. 1 Schematic representation of the supporting structure of

the experimental settlement plates and the methodological

procedures adopted: at the beginning of each season, the

structure had eight experimental plates; at the end of each

month, two of them were removed for analysis of incrustations

and two remaining plates (‘‘fixed’’) were removed after

15 months of monitoring; A Spring-2018, B Summer-2019,

C Autumn-2019, D Winter-2019, and E Springer-2019

Fig. 2 Auxiliary structure for analyzing recruitment patterns of

fouling and native invasive aquatic groups. a Grid with 225

squares (1 9 1 cm) showing the pattern of visualization of the

incrustation on the experimental settlement plate, below the

grid; b experimental settlement plate after taking samples in the

20 random squares
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analyzed in a stereomicroscope. The relative density

of each taxon on each plate was directly calculated for

Amoebidae, Daphniidae, Calocalanidae, Chironomi-

dae, Vaginicolidae, Centropyxidae, and Mytilidae.

However, obtaining reliable counts for Cnidaria is

made dificult by the frequent presence of fragmented

individuals in the samples, mainly in the case of

Cordylophoridae. Therefore, the analysis of Cordy-

lophoridae and Hydridae was done qualitatively,

considering the number of hydrorrhizae (filaments)

or hydrae present in each sample. The recruitment

patterns, as well as interactions between the groups

found, were based on direct observations under a

stereoscopic microscope. The observational data were

supplemented with bibliographic information about

the reproductive biology, behavior, and ecological

relationships between individuals invading limnic

environments, as well as between invasive and native

species.

Data analysis

We used the Shannon–Wiener diversity index to

characterize the diversity of organisms by sampling

period (Pielou, 1966). Normality and homogeneity of

the variances of density, biomass, diversity, and

temperature data were analyzed by the Levene and

Cochran tests; the homoscedasticity was analyzed

using the residuals of variance. The Kruskal–Wallis

analysis was used to determine the significant differ-

ences between the variables tested, always at the 95%

confidence level. Spearman’s correlation coefficient

was applied to assess the degree of association

between dependent variables (coverage area, density,

biomass, diversity) and water temperature (indepen-

dent variable). The analyses were performed using the

software Statistica 10.0 (StatSoft�).

Results

Environmental conditions

The highest average water temperatures in the reser-

voir were recorded in January 2019 and the lowest in

August 2019. When temperatures are compared across

seasons, they were similar (P[ 0.05) in spring (2018

Fig. 3 Temporal variation (average values and standard error)

of the water temperature in the reservoir of the HPP José Richa,

from October 2018 to December 2019. Similar capital letters

indicate statistical significance between the seasons and the

lower letters between the months of the year

123

Hydrobiologia (2021) 848:5169–5185 5173



and 2019) and in autumn (2019), but higher in summer

and lower in winter (Fig. 3).

Identification of the recorded taxa

Macro and microinvertebrate organisms present in the

analyzed samples were identified, and three of them

(Limnoperna fortunei, Cordylophora sp. and Hydra

sp.) are considered fouling invasive species belonging

to the phyla Mollusca and Cnidaria (Table 1).

Recruitment pattern of identified taxa

The plates kept submerged for 15 consecutive months

had, on average, 79.3% of their area occupied by

colonizing organisms. The highest colonization rate

was recorded in the spring of 2018 (56.0%) of the

occupied area by colonizing organisms. In relation to

the seasons, the highest occupations involved plates

obtained during the spring of 2018, which showed

56.0% of their occupied area at the end of three

months. The values quantified in these periods were

significantly higher than those observed in other

seasons (Fig. 4a). The average density of organisms

present in the test experimental settlement plates was

higher in the spring 2018 and the summer 2019

(Fig. 4b). The highest rates of seasonal diversity were

recorded in the winter and autumn of 2019, with lower

diversities observed on the test experimental settle-

ment plates kept submerged for 15 months and in the

spring of 2019 (Fig. 4c). The period considered most

critical regarding the presence of fouling invasive

organisms took place between late spring and early

summer. In the following seasons, the relative density

of these organisms was significantly reduced. Partic-

ularly in the case of specimens (plates) kept sub-

merged for 15 months, the density was close to the

values found in early summer, with the difference that

in this case, there were practically only one encrusted

species (L. fortunei) (Fig. 4d).

The average density of organisms was 10.4 indi-

viduals/cm2 during the spring 2018, 6.3 in the summer

2019, 0.3 in the spring 2019, 0.2 in the autumn 2019,

and 0.1 in the winter 2019. Limnoperna fortunei was

the predominant invasive organism throughout the

analyzed period. The average density of L. fortunei

was higher in the spring 2018 and the summer 2019.

This species also completely dominated the experi-

mental settlement plates kept submerged for 15

consecutive months (Fig. 5). The largest biomass of

L. fortunei was recorded in the experimental settle-

ment plates kept submerged for 15 months in the

reservoir. The highest seasonal biomasses were

recorded in winter (Table 2). There was a significant

(P\ 0.05) but low correlation (r = - 0.39) between

the biomass of L. fortunei and water temperature.

Ecological interactions between the families

of the identified organisms

The ecological interactions between the main groups

identified in the experimental settlement plates were

classified as positive and direct (mutualism), positive

and indirect (commensalism), negative and direct

(competition), negative and indirect (epibiosis, canni-

balism, and predation) (Fig. 6). Mutualism was

Table 1 Taxonomic classification of families identified in the experimental settlement plates in the reservoir of the HPP Gov. José

Richa

Phylum Class Order Family Species Category

Protozoa Lobosa Amoebida Amoebidae NI* Native

Arthropoda Branchiopoda Cladocera Daphniidae NI Native

Arthropoda Maxillopoda Calanoida Calocalanidae NI Native

Arthropoda Insecta Diptera Chironomidae NI Native

Ciliophora Oligohymenophorea Sessilida Vaginicolidae NI Native

Amoebozoa Tubulinea Tubulunida Centropyxidae NI Native

Mollusca Bivalvia Mytilida Mytilidae Limnoperna fortunei Invasive

Cnidaria Hydrozoa Anthoathecata Cordylophoridae Cordylophora sp. Invasive

Cnidaria Hydrozoa Anthoathecata Hydridae Hydra sp. Invasive

*NI - Taxa that could not be identified at the species level
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observed between adult and juvenile individuals of the

family Mytilidae, as well as between individuals of the

families Cordylophoridae and Mytilidae. Commen-

salism occurred between Mytilidae and insect larvae

of the Chironomidae family. Competition for food and

space was observed among fouling invaders (Cordy-

lophoridae, Mytilidae, and Hydridae), especially when

the space available for fouling on the substrate was

more limited. Competition was observed between

invasive and native organisms (Daphniidae, Calo-

calanidae, Chironomidae, Vaginicolidae, and Cen-

tropyxidae). Cannibalism was identified only in adult

individuals of Mytilidae, which can feed on larvae of

the same species. Epibiosis was characterized by the

use of organisms from certain groups, such as

basibionts. For example, individuals from Hydridae

were used as substrate by Cordylophoridae, Mytilidae,

and Centropyxidae. Cordylophoridae, on the other

hand, were recorded hosting Hydridae, Centropyxi-

dae, and Mytilidae. Among the organisms involved in

epibiosis, the relationship between Cordylophoridae

and Mytilidae was the most evident and recorded on

several occasions. Predation was observed, with

Hydridae preying on Chironomidae, Daphniidae, and

Calocalanidae. Cordylophoridae can feed on larvae of

Mytilidae, as observed in the study by Molina et al.

(2015), as well as individuals from the family

Daphniidae and Calocalanidae in the juvenile and

adult phases. Mytilidae can prey on protozoa including

Vaginicolidae and Centropyxidae, and

Fig. 4 a The area occupied by invasive and native organisms.

b Seasonal variation in the total density of identified organisms.

c Seasonal variation of the Shannon–Wiener diversity index.

d Monthly density and the recommended period for the

maintenance and cleaning of the hydraulic installations (Month:

2- November; 3-December; and 4- January) of the Governador

José Richa hydroelectric power plant
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microcrustaceans in the juvenile stage like Daphniidae

and Calocalanidae.

Discussion

In subtropical aquatic environments, higher tempera-

tures tend to have positive effects on the rates of

fouling and colonization of aquatic communities

(Rodrigues et al., 2015; Lansac-Tôha et al., 2019),

especially on the density of micro- and macro-

invertebrates (Belz et al., 2010; Borges, 2014; Borges

et al., 2017). Temperature interferes with reproductive

cycles, the supply of recruits, and the trophic condi-

tions of aquatic environments (McPherson et al., 1984;

Patil & Anil, 2005; Cifuentes et al., 2010; Chen et al.,

2019; Mieczan & Rudyk-Leuska, 2019). In the present

study, water temperature did not positively influence

the composition or abundance of most identified

communities. Temperature correlated only with the

biomass of L. fortunei, with a weak, negative corre-

lation (r = - 0.39). On the other hand, the highest

rates of fouling and density of organisms in the

experimental settlement plates were recorded during

spring and summer. The density of organisms present

on the plates installed during spring 2018 and spring

2019 did not follow the same pattern of fouling or

maximum achieved densities. This seasonal and

interannual variation underscores the high degree of

complexity of fouling processes by invasive aquatic

organisms, which has also been reported in other

studies (Underwood & Anderson, 1994; Berntsson &

Jonsson, 2003; Dehmordi et al., 2011; Fortunato et al.,

2017). It is possible, therefore, to postulate that other

environmental factors may have contributed to the

results, even those that were not individually moni-

tored here, but were observed in other studies. Among

these factors, we can highlight the availability of

nutrients and food, precipitation patterns, incidence of

sunlight (Melo & Bott, 1997; Pamplin et al., 2006;

Fernandez & Navarrete, 2015; Masi et al., 2016;

Navarrete et al., 2019), or related to the physical

characteristics of the reservoir, such as hydrodynamics

or its depth (Albano & Obenat, 2019), which might

have contributed to the results obtained.

Both the density and the area occupied in the

experimental plates by invading organisms were to

those related to native organisms. It is known that the

behavior of invasive species is associated with their

biological characteristics (such as high growth rates,

the existence of successful reproduction strategies,

and ease of dispersal) and, mainly, reproductive (early

sexual maturity and high fertility), which facilitate the

bioinvasion process. Such characteristics are present

in Cordylophota sp. (Folino-Rorem, 2000; Folino-

Rorem et al., 2006; Nakano & Strayer, 2014), Hydra

sp. (Hobmayer et al., 2012; Rodrigues et al., 2016;

Deserti et al., 2017), and L. fortunei (Darrigran, 2002;

Boltovskoy, 2015a, b; Boltovskoy & Correa, 2015;

Boltovskoy et al., 2015a).

The settlement periods of the studied groups were

well defined, mainly for L. fortunei, in all monitored

seasons. This observation coincides with Damborenea

& Penchaszadeh (2006), which concluded that L.

fortunei could produce sperm and oocytes continu-

ously throughout the year. Boltovskoy & Correa

(2015) showed that in about 80% of the time series

studied in South American reservoirs, researchers had

identified a density of at least 10 larvae/m3 of golden

mussel in the analyzed samples. In the present study,

the highest occurrence of L. fortunei settlement

occurred in spring 2018 and summer 2019 coinciding

with the reproduction peaks already reported in

several other studies (Magara et al., 2001; Canzi

et al., 2005; Darrigran & Damborenea, 2006; Bol-

tovskoy et al., 2009).

The biomass of L. fortunei was higher in those

experimental settlement plates maintained throughout

the study period. On these plates, the individuals

present were predominantly adults. In adulthood, L.

fortunei generally shows greater adaptation to ecolog-

ical ranges and to stressful environmental factors (Liu

et al., 2020). The smallest golden mussel biomass was

observed in autumn 2019. This period was character-

ized by intermediate temperatures, which tend to limit

the growth rates of individuals and interfere with the

quality and availability of food (Boltovskoy et al.,

cFig. 5 Schematic representation of the ecological succession

observed in the experimental settlement plates in the reservoir of

the Governador José Richa HPP, indicating the groups of

dominant organisms throughout the seasons: Spring 2018;

Summer 2019; Autumn 2019; Winter 2019; Spring 2019. The

experimental settlement plates kept submerged for 15 months

(‘‘Fixed’’ treatments are those that will remain for the entire

15 months). The values presented graphically represent the

average density of the organisms. a Cordylophoridae, b Hydri-

dae, c Mytilidae, d Vaginicolidae, e Centropyxidae, f Chirono-

midae, g Calocalanidae, and h Daphniidae
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2009; Nakano et al., 2011; Boltovskoy & Correa,

2015; Oliveira et al., 2015).

Over the course of ecological succession, the

supporting organisms are the first to establish them-

selves (microorganisms, filamentous algae, diatoms,

protozoa, and others) (Martı́n-Rodrı́guez et al., 2015;

Silknetter et al., 2019), followed by macroinverte-

brates (mollusks, insects, and cnidarians) (Abarzua &

Jakubowski, 1995). Cordylophora sp. and L. fortunei

were predominant in this process. The cnidarian has

hydrorrhizae, a filamentous structure responsible for

adhesion and incrustation on different substrates.

These filaments end up serving as the preferred

substrate for the settlement of L. fortunei larvae,

which use them to adhere, protect themselves from

local hydrodynamics, and develop during the first

stages of life. Similar behavior has also been reported

between Cordylophora caspia and Dreissena poly-

morpha (Pallas, 1771) in North America (Ackerman

et al., 1994; Folino-Rorem et al., 2006; Pucherelli

et al., 2016).

The trophic position and the capacity that each

group has to occupy the substrate changes in the

structuring of these communities over time. Some

individuals end up dominating the substrates and

making them more homogeneous (Ricciardi &

MacIsaac, 2011; Simberloff & Ricciardi, 2020). In

the present case, the highest levels of diversity

occurred in a period of lower rates of incrustation of

the experimental plates. As L. fortunei was the

dominant species in almost all seasons, when it was

less abundant, there was a greater opportunity for the

colonization of the experimental plates by other

organisms, which increased the diversity indexes.

Spaccesi & Rodrigues (2012) also recorded lower

rates of diversity in substrates dominated by L.

fortunei in the La Plata River. The authors also report

that diversity was also lower in periods of low

temperatures (autumn and winter).

Experimental studies carried out in South American

reservoirs that assess ecological interactions, includ-

ing fouling and native invasive groups, are still

relatively limited (Nakano et al., 2011; Boltovskoy

& Correa, 2015). In the present case, it was possible to

identify interactions with positive effects (mutualism

and commensalism) and indirect negative effects

(competition, cannibalism, epibiosis, and predation).

The substrate used for the settlement can be a limiting

resource in certain environments and, when mutual-

istic interactions occurred, in the present case, they

involved the sharing of substrates by L. fortunei and

Cordylophora sp. Portella et al. (2009) evaluated

biological fouling in the same reservoir of HPP José

Richa and reported the presence of these two invaders

in coexistence, that contribute to operational and

economic impacts to the plant. According to Sim-

berloff & Von Holle (1999) and Gallardo & Aldridge

(2018), mutualistic relationships between freshwater

invaders are poorly studied in the literature. However,

understanding the role of each group involved in

mutualism is of great importance, given that the

effects of both species individually, in addition to their

ecological interactions, often lead to severe negative

economic impacts (Green et al., 2011; Rolla et al.,

2019; Wegner et al., 2019). This mutualistic relation-

ship can also contribute to establishing and magnify

the spread of secondary invaders at different levels of

the ecosystem (Ricciardi & Reiswig, 1994; Ricciardi,

2001, 2015; Green et al., 2011).

Table 2 Variation of the mean biomass of Limnoperna fortunei in the experimental settlement plates kept in the reservoir of

Governador José Richa HPP. Different letters indicate statistical significance (p\ 0.05) among seasons

Season/Year The average number of specimens Biomass (mg/cm2) of Limnoperna fortunei
Mean SE

Spring, 2018 30 0.9abc 0.13

Summer, 2019 78 0.5c 0.04

Autumn, 2019 46 0.5c 0.07

Winter, 2019 40 1.1a 0.12

Spring, 2019 40 0.9abc 0.14

2018–2019 (15 months) 175 293.8a 87.50
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Invaders also modify the habitats of native species

and contribute to making these environments more

homogeneous (Ricciardi & MacIsaac, 2011; Sim-

berloff & Ricciardi, 2020). For example, L. fortunei

may favor an increase in the number of macroinver-

tebrates in the Chironomidae family. This happens due

to the accumulation of shells of the golden mussel

clusters, which end up increasing the physical com-

plexity of the substrate (Gutiérrez et al., 2003;

Burlakova et al., 2012), as well as enriching these

environments with the increase of stool bio-deposits

and pseudofeces (Darrigran et al., 1998; Sardiña et al.,

2008). This enrichment causes changes in the density

of benthic fauna, as well as leading to the biological

imbalance of these environments (Karatayev et al.,

2007; Darrigran & Damborenea, 2011). Burlakova

et al. (2012) evaluated the composition of communi-

ties in locations with the presence and absence of two

ecosystem engineers: L. fortunei and D. polymorpha.

Where the species were present, the authors observed

an increase in the richness and density of native

macroinvertebrates (Burlakova et al., 2012). However,

over time, native communities tend to become more

homogeneous (Stewart et al., 1998; Ricciardi, 2001;

Fig. 6 Schematic representation of the ecological interactions recorded between the families of the fouling and native invader groups

present in the experimental settlement plates positioned in the reservoir of the Governador José Richa HPP
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Ricciardi & MacIsaac, 2011; Simberloff & Ricciardi,

2020).

Among the potential interactions, competition was

the most prevalent, as in other (Jackson; Kuebbing &

Nuñez, 2015). This relationship can happen for several

reasons, including competition for territories, sub-

strates, and food (Jones et al., 2012). Limnoperna

fortunei and Cordylophora sp. compete for substrate,

especially when they are scarce. These organisms are

fixed in common structures (both species can be found

in the same type of substrate), which makes them close

at different times or stages of life during the bioinva-

sion process. Competition for substrates is also

reported between C. caspia and D. polymorpha

(Folino-Rorem et al., 2006; Pucherelli et al., 2016).

Cannibalism was recorded among adults and larvae

of L. fortunei. Adult mollusks can feed on particles

ranging in size from 4 to 1000 lm in length, which

includes their own larvae (Molina et al., 2015). In

studies with D. polymorpha, cannibalism was respon-

sible for mortality rates of up to 70% (Maclsaac et al.,

1991). In epibiosis, Cordylophora sp. and Hydra sp.

can serve as a substrate for other groups, such as L.

fortunei and individuals of the family Centropyxidae.

The relationship between Cordylophora sp. and L.

fortunei is the most evident and involves several stages

during the fouling process. However, it is more

noticeable when L. fortunei is in its settlement phase,

when they prefer to settle in places protected from

turbulent currents (Cataldo & Boltovskoy, 1999;

Sylvester et al., 2007).

Simultaneously with epibiosis, the facilitation

relationship can occur between these same invaders

(L. fortunei and Cordylophora sp.). The colonies of

Cordylophora sp. have a three-dimensional structure,

which initially favors the settlement of L. fortunei.

After settling on Cordylophora sp. colonies, the

mussels develop a preference for harder substrates

and to continue their development they start to

colonize these hard substrates originally occupied by

Cordylophora sp., compromising the survival of the

organisms of this species. Epibiosis between zebra

mussels and other different groups of fouling invaders

is well studied, especially the sponges Ephydatia

fluviatilis (Linnaeus, 1759) (Ricciardi et al., 1996;

Gaino, 2005; Ricciardi, 2005), Eunapius fragilis

(Leidy, 1851) (Molloy et al., 1997; Ricciardi, 2005);

the bryozoans Pectinatella magnifica (Leidy, 1851),

Plumatella fungosa (Pallas, 1768) (Ricciardi &

Reiswig, 1994), Lophopodella carteri Hyatt, 1866

(Lauer et al., 1999; Cummings & Graf, 2010); and also

with the cnidarian Cordylophora caspia (Pucherelli

et al., 2016).

Predation has also been described for several

groups in this study, for example, between Cordy-

lophora sp. and larvae of L. fortunei. This cnidarian

can also use juvenile and adult golden mussel shells as

substrate (Olenin & Leppäkoski, 1999; Folino-Rorem

et al., 2006). Limnoperna fortunei can prey on juvenile

micro crustaceans, such as Daphniidae and Calo-

calanidae, as well as protozoa Vaginicolidae and

Centropyxidae. Micro-crustaceans are among the

favorite foods of the golden mussel, as they have a

larger size and even greater biomass compared to

phytoplankton (Molina et al., 2015).

It is recommended that maintenance and cleaning

of hydraulic structures to remove biofouling should be

carried out preferentially in late spring or early

summer. This recommendation is based on abundance

values, recruitment patterns, ecological succession,

and the interactions observed between dominant

groups in the José Richa HPP. This is the most critical

period in terms of recruitment of young forms of

fouling organisms and, in particular, L. fortunei, which

is the species that most causes problems with the

clogging of filters, grids, and pipes. In autumn and

winter, biological fouling rates naturally fall by up to

80%, reducing the operational and economic risks of

the machine shutdowns and cleaning. This conclusion

is also supported by other studies, which reported

decreased fouling levels and speed during colder

seasons, which would be related to the heterothermia

of invertebrates and their consequent dependence on

temperature for regulating metabolic processes (Pört-

ner, 2002; Poloczanska et al., 2010); (Underwood &

Anderson, 1994; Berntsson & Jonsson, 2003; Deh-

mordi et al., 2011; Fortunato et al., 2017). Therefore,

by promoting the shutdown of machines and cleaning

of hydraulic systems in the most critical period of this

process, there would be less time for the establishment

of colonies during the peak of spring and clean

structures during the beginning of peak summer

colonization, ensuring operating conditions.
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uso de larvas na caracterização do perfil genético de
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Kuebbing, S. E. & M. A. Nuñez, 2015. Negative, neutral, and

positive interactions among nonnative plants: patterns,

processes, and management implications. Global Change

Biology 21(2):926-934.
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