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Abstract The flood pulse is the main driving force

influencing river floodplain ecosystems. The dominant

role of the flood pulse on the success of non-native

species (NNSs) is what differentiates floodplains from

other ecosystems, in terms of invasion. In this review, I

discuss some patterns related to the performance of

NNSs in response to the flood pulse. First, floods

connect floodplain habitats and spread propagules of

NNSs, causing ‘propagule pulses’ in these ecosys-

tems. After the establishment of NNSs, floodplains

may function as steppingstones for future invasions,

because propagule pulses enhance invasions in nearby

landscapes. Second, the flood pulse changes environ-

mental filters, with consequences for invasion success

and for the coexistence of native and NNSs. Flooding

represents a disturbance that enhances the success of

some NNSs by reducing biotic resistance and chang-

ing resource availability, but diminishes the success of

others. Drought enhances the invasion success mainly

of NNSs that colonize the aquatic-terrestrial transition

zone. Third, impacts caused by river regulation and

global changes alter the flood pulse, which in turn

affects invasion success. There is a great degree of

idiosyncrasy in these patterns, but they pose a broad

perspective that helps to understand andmanage NNSs

in floodplains.

Keywords Alien species � Exotic species � Invasive
species � Non-native species � Disturbance regime �
Biotic resistance hypothesis � Biotic acceptance
hypothesis � Flood pulse

Introduction

Floodplain ecosystems are widespread throughout the

world and have received especial attention from

ecologists and limnologists in recent last decades.

These ecosystems are defined as ‘‘areas that are

periodically inundated by the lateral overflow of rivers

or lakes, and/or by direct precipitation or groundwater;

the resulting physicochemical environment causes the

biota to respond by morphological, anatomical, phys-

iological, phenological, and/or ethological adapta-

tions, and produce characteristic community

structures’’ (Junk et al., 1989). Floodplains have been

severely threatened by human activities, mainly in
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temperate regions (Hudon et al., 2005; Grizzetti et al.,

2017; EEA, 2018). In contrast, South America, Africa

and Asia still have relatively well preserved and even

pristine river-floodplain ecosystems (RFEs), like the

Orinoco, Amazon, Paraguay (Pantanal) and Paraná

RFEs in South America, the Nile, Zambezi, Niger,

Senegal and Congo RFEs in Africa, and the Mekong

RFE in Asia.

The flood pulse (Box 1) is the main driving force of

RFEs and encompasses a predictable hydrological

cycle with extreme environmental conditions during

high water (flooding) and low water (drought) periods

(Junk et al., 1989; Neiff, 1990). Enhanced connectiv-

ity among habitats during flooding occurs with various

components, including water, sediments and organ-

isms (Junk et al., 1989; Fuller & Death, 2018). This

hydrological connectivity related to the flood pulse is a

key factor for maintaining the structure, functioning

and biodiversity in RFEs (Bunn & Arthington, 2002;

Agostinho et al., 2005; Thomaz et al., 2007; Lasnea

et al., 2008; Fernandes et al., 2009; Johnson et al.,

2016; Oliveira et al., 2020). The flood pulse has

ecological features that include the magnitude, fre-

quency, seasonal timing, predictability, duration and

rate of change of flow conditions, to which species are

evolutionarily selected (Lytle & Poff, 2004).

RFEs are highly valuable for conservation of

biodiversity and the multiple ecosystem services they

provide (Ward et al., 1999; Agostinho et al., 2004;

Fernandes et al., 2009). RFEs are among the most

complex and dynamic ecosystems in the world and are

the most biodiverse among aquatic ecosystems, but

they are highly subject to multiple stressors, which

compromise their conservation, including high num-

bers of non-native, invasive species (Box 1) (Tockner

et al., 2010). There is evidence that RFEs and riparian

corridors are considered ‘hotspots of non-native

species’ (NNSs) because they have been invaded by

a myriad of non-native animals and plants (e.g.,

Molina & Paggi, 2008; Sousa, 2011; Petrášová et al.,

2013; Hejda et al., 2015; Pelicice et al., 2017; Tonella

et al., 2018; Williams et al., 2018; Ruaro et al., 2020).

Non-native species are a cause of concern because

they impact biodiversity, ecosystem functioning and

human economy (Simberloff et al., 2013) and their

efficient management is difficult (Simberloff, 2021).

Owing to the broad impacts caused by NNSs that

become invasive in numerous ecosystems, there is

evidence that we are approaching the ‘Exocene’,

which is a ‘‘new functioning era’’ with prominent roles

of invasive species in changing the quality and

functions of ecosystems throughout the planet (e.g.,

Bolpagni, 2021). Thus, knowing the patterns and

causes of invasion by NNSs in RFEs is key to

improving the conservation status of these important

ecosystems and preserving the ecological services

they provide. The study of NNSs in RFEs also

provides a unique opportunity to understand the costs

and benefits of flow-regime adaptations exhibited by

species subject to a gradient of flow regimes (e.g.,

Lytle & Poff, 2004). In this sense, NNSs may be taken

as experimental models that would not be obtained by

other means because of ethical reasons.

In this review, I use concepts from the field of

invasion biology merged with the flood pulse concept

to explore some peculiarities of invasions of RFEs by

NNSs. Although I prioritize RFEswith predictable wa-

ter level oscillations and floods that overflow the

riverbank (the classical RFEs with a flood pulse

described by Junk et al., 1989), I also use examples of

RFEs where floods are less predictable or where

multiple floods occur during the rainy season, and thus

the ideas I develop here apply to these ecosystems as

well. I first state the rationale to explain why the

invasion dynamic in RFEs differs from the invasion

dynamic in other aquatic ecosystems. Then, more

specifically, I seek to answer the following questions:

(i) How are propagule pressure (an important deter-

minant of NNS success) and the flood pulse related?

(ii) How do environmental filters of invasion relate to

the flood pulse? (iii) Do changes promoted by the flood

pulse enhance the chances of coexistence of native and

NNSs? And (iv) what can be expected of NNSs in

current and future scenarios of increasing impacts in

RFEs? These four questions were explored with

empirical evidence obtained by observational inves-

tigations found by a systematic survey of the literature

(see details in Sup. Mat. 1). Because RFEs include

species inhabiting the aquatic-terrestrial transitional

zone (ATTZ, sensu Junk et al., 1989) (Box 1), I use

various examples of organisms which are not obliga-

tory aquatic, along with some examples of riparian

corridors that also experience seasonal flooding. Last

but not least, I emphasize that this paper is not an

extensive review about NNSs in RFEs and, thus,

papers which do not relate invasive success with the

flood pulse are outside its scope.
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Linking invasion biology and the flood-pulse

concept

The success of any NNS in an ecosystem depends on

propagule pressure (Williamson & Fitter, 1996;

Colautti et al., 2006; Duncan, 2011), species inva-

siveness (Rejmánek, 2011; Grotkopp et al., 2002) and

community and ecosystem invasibility (Moyle &

Light, 1996; Fridley, 2011) (Box 1). Using factors

related to propagule pressure (see Box 1) and invasi-

bility helps to explain why ecosystems differ in their

susceptibility to invasion. Taking into consideration

that the flood pulse is the principal driving force

responsible for the structure and ecological dynamics

of RFEs (Junk et al., 1989; Neiff, 1990), it seems

intuitive that it is also one of the most important

driving forces that affect the performance (Box 1) and

success of NNSs in RFEs. The influence of the flood

pulse on NNSs success is indeed shown in a variety of

case studies (see Tables 1 and 2; Sup. Mat. 2, 4 and 5),

although the lack of effects of the flood pulse on NNS

success has also been recorded (e.g., Warren et al.,

2015; Kettenring et al., 2016). The predictable sea-

sonal changes of habitats and communities in response

to the flood pulse and the enhanced connectivity of

habitats during seasonal flooding distinguishes these

ecosystems from aquatic ecosystems where the water

level changes irregularly (e.g., streams, small rivers,

most reservoirs and lakes) and from aquatic ecosys-

tems with small water level oscillations [e.g., large

lakes, some types of wetlands with nearly constant

water levels, such as ombrotrophic bogs (Mitsch &

Grosselink, 2015), and reservoirs where inflow is

similar to outflow]. Thus, the interference that sea-

sonal and predictable flood pulses cause to NNSs

performance (Box 1) makes RFEs unique ecosystems

in terms of invasion dynamics.

Box 1: Definition of terms used in this review

Aquatic-terrestrial

transition zone

(ATTZ)

This is the floodplain area that

alternates between the aquatic and

terrestrial environments, also

known as the ‘moving littoral’

(Junk et al., 1989)

Biotic acceptance

hypothesis

This hypothesis predicts that

‘‘natural ecosystems tend to

accommodate the establishment

and coexistence of introduced

species despite the presence and

abundance of native species’’

(Stohlgren et al., 2006; Fridley

et al., 2007; Richardson et al.,

2011). This hypothesis is

synonymous of ‘‘the rich gets

richer’’ concept and it is usually

corroborated at larger spatial

scales, differently from the biotic

resistance hypothesis, usually

corroborated at small spatial scales

(plots with few m2).

Biotic resistance

hypothesis

This hypothesis was first formulated

to Elton (1958) and it is ‘‘the

ability of native species to prevent

an invader from becoming

established by their interactions

with propagules of the invader’’

(Gurevitch, 2011). The resistance

may extend to the post –

establishment survival,

proliferation and spread of the

NNSs (Richardson et al., 2011).

Disturbance It is ‘‘any event that produces a

change in ecosystem structure and

resource availability’’ (Hobbs,

2011). According to Connell

(1978), disturbances are events

(e.g., storms, waves, floods etc.)

that kill or damage organisms.

Flood pulse It is the ‘‘pulsing of the river

discharge’’ (Junk et al., 1989), and

it encompasses the periodical

(seasonal) change in water level

(and river flow), with its typical

phases of low water, rising water,

high water and falling water.

Invasibility This term ‘‘describes the

susceptibility of biological

communities to colonization and

dominance by introduced

organisms’’ (Fridley, 2011).

Invasibility usually refers to

abiotic and biotic features that are

related to invasion success.

Invasiveness This term is related with the species

innate traits and is defined as ‘‘the

degree to which a species is able to

reproduce, spread from its place of

introduction, and establish in new

locations’’ (Rejmánek, 2011).

Invasive species ‘‘A naturalized species that produces

reproductive offspring, often in

very large numbers, and that

spreads over large areas. This

definition is usually used by

ecologists.’’ (Simberloff &

Rejmánek, 2011)

NNS success, invasion

success

A NNS reaches success when there

are evidences that its population

colonizes and establishes in an
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ecosystem, where the species

maintains its population overtime.

NNS performance Performance is related with any

measurement of the population,

like abundance, biomass,

recruitment, cover (for plants) or

dominance.

Non-native species

(NNS)

Any species introduced outside its

native range. Also known as

‘exotic’ or ‘alien’.

Propagule I use the word ‘‘propagule’’ when I

refer to any structure that can

generate a new organism (e.g.,

seeds, eggs, plant fragments,

rhizomes etc.) or even an entire

organism (young or adult) arriving

in a habitat.

Propagule pulse Spread of propagules caused by

seasonal flooding in river

floodplain ecosystems, which

helps NNSs to succeed in these

ecosystems.

Propagule pressure The propagule pressure relates to the

number and sizes of propagules,

and how they arrive considering

the spatial and temporal scales

(Simberloff, 2009; Duncan, 2011).

This term usually has a

connotation related to transport

from native to the invasive range

(e.g., Richardson et al., 2011).

However, I use its broader

meaning which refers also to

release of propagules that helps

subsequent spread of NNSs

throughout the invaded ecosystem

(see Duncan, 2011). Thus, any

release of propagules of a NNS

occurring in the RFE will be

accounted for as an increase in the

propagule pressure.

Traits The functional trait of an organism

can be defined as ‘‘The

characteristics of an organism that

are considered relevant to its

response to the environment and/or

its effects on ecosystem

functioning’’ (Dı́az & Cabido,

2001).

Merging the main hypotheses that explain the inva-

sibility of communities and ecosystems with the flood-

pulse concept allows a glimpse of three general charac-

teristics of RFEs with regard to invasion dynamics. The

first characteristic is that propagule pressure plays a

disproportionate role in explaining NNSs success in

RFEs, because flooding connects habitats and spreads

propagules within these ecosystems very rapidly and in

seasonal pulses. The significant role that flooding plays in

the dispersal of organisms has been widely recognized

for native species (e.g., Padial et al., 2014) and may also

be important for NNSs success (Diez et al., 2012; Fig. 1).

Peaks of propagule dispersal during seasonal flooding in

RFEs can be considered a ‘propagule pulse’. A single,

large and predictable propagule pulse occurs in large

RFEs that experience bank overflow once a year (like the

ones defined by Junk et al., 1989) and thus, these

predictable propagule pulses that repeat annually can be

considered a unique characteristic of this type of RFE.

Moreover, propagule pulses can occur many times per

year in RFEs associated with rivers having multiple

peaks in water level per year, such as the Upper Paraná

RFE (Brazil), for example, where there are from one to

three floods during the rainy season (Agostinho et al.,

2004). In addition to the dispersal of propagules by

flooding, which is typical of RFEs, there are also other

natural and human-driven mechanisms, including the

transport of propagules originating outside the RFE and

from internal sources, that contribute to spreading

propagules throughout the year in these ecosystems.

Thus, hereafter, I will use the term ‘propagule pressure’

when I discuss mechanisms that help the dispersal of

non-native species in RFEs that are not related to

seasonal flooding. I will use ‘propagule pulse’ exclu-

sively to refer to dispersal occurring during seasonal

flooding.

The second characteristic is that the biotic and

abiotic filters that affect NNS success in RFEs change

seasonally and also in a predictable way in response to

the flood pulse. Seasonal changes associated with the

flood pulse influence the abiotic medium (e.g., water

flow, nutrient availability, oxygen levels, pH etc.) of

the local habitats of RFEs and as well as interspecific

relationships (e.g., competition, predation and facili-

tation). Because invasibility depends on biotic and

abiotic filters, these seasonal changes also affect NNS

performance in a unique way, which varies seasonally

in accordance with the hydrodynamic determined by

the flood pulse (Figs. 1b, c and 2).

The third characteristic is related to the second, but

has to do with the fact that populations of native and

NNSs change (in terms of abundance, population size

structure, reproduction, feeding etc.) in response to the

flood pulse (e.g., Junk et al., 1989; Tockner et al.,
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2000; Bunn & Arthington, 2002; Oliveira et al., 2015;

Quirino et al., 2015, 2017). If native and NNSs have

dissimilar seasonal populational dynamics and/or use

different RFE habitats, both types of species may

coexist, even if they have strong negative interactions

(e.g., competition or predation). I will show numerous

examples that this indeed occurs for different groups

of organisms in RFEs.

Finally, both propagule pressure (and propagule

pulse) and the environment in RFEs are affected by

humans, bringing consequences for invasion success

(Fig. 2). Among various impacts, two might be

currently important and may become enhanced in

the future: (i) the flow regulation caused by reservoirs

and other structures, which alters the flood pulse and

water quality and enhances propagule pressure; and

(ii) global changes, which will alter hydrodynamics. I

will briefly discuss their potential effects on invasive

success in the last section of this review.

Propagule pressure and propagule pulse in river-

floodplain ecosystems

Propagule pressure is an important mechanism that

explains invasion success (Colautti et al., 2006;

Simberloff, 2009; Duncan, 2011). The concept of

propagule pressure in invasion biology is analogous to

the concept of the ‘‘mass effect’’ model in a meta-

community (Leibold et al., 2004; Tonkin et al., 2018).

Mass effect is based in the net flow of individuals and/

or propagules associated with populations whose

abundances differ in different patches (Shmida &

Wilson, 1985). Mass effect depends on the existence

of local patches with different environmental charac-

teristics that are sufficiently connected to allow

dispersal from sources to sink populations (Leibold

et al., 2004). RFEs fulfill these conditions because they

have different patches (floodplain lakes, canals,

marshes and a variety of habitats in the ATTZ) that

are colonized to different degrees by populations of

native and NNSs. During flooding, these different

habitats become connected to a maximum degree

(Thomaz et al., 2007), leading to propagule pulses

(Fig. 1a). For plants that colonize the ATTZ and for

macrophytes that colonize all types of permanent

aquatic habitats in the RFE, hydrochory is the main

pathway of arriving and dispersal in riparian corridors

and in other RFE habitats (Burkart, 2001; Wang et al.,

2011; Catford & Jansson, 2014; Chundi et al., 2017;

Mao et al., 2019; Jones et al., 2020; West et al., 2020),

Table 1 Examples taken from a systematic literature review (see Sup. Mat. 1) showing the importance of the propagule pressure

during the flooding (‘propagule pulses’) for the spread of non-native species in river-floodplain ecosystems

Organisms References

Riparian and ATTZ plants (seeds and

other structures)

Čuda et al. (2017), Barden 1987), Cunha & Junk (2004), Howell & Benson, (2000),

Lonsdale 1993), Sofkova & David (2016), Tabacchi et al. (2005), Caruso et al. (2013a, b),

West et al. (2020), Pearce & Smith (2001), Chundi et al. (2017), Colleran & Goodall

(2014), Decruyenaere & Holt (2005), Duquette et al. (2016), Juárez-Escario et al. (2016),

Höfle et al. (2014), Mortenson et al. (2012), Nakayama et al. (2007), Nobis et al. (2017),

Parsons & Southwell (2015), Pearce & Smith (2003), Rijal & Cochard (2016), Tabacchi

et al. (2005), Schmiedel & Tackenberg (2013), Thébaud & Debussche 1991), Thomas

et al. (2005, 2006), Wang et al. (2011), and Watterson & Jones (2006)

Macrophytes (entire plants and

fragments)

Barrat-Segretain (2001), Chundi et al. (2017), Merrin et al. (2005)

Invertebrates Ernandes-Silva et al. (2016, 2017), Iketani et al. (2016), Oliveira et al. (2006), Ondračková

et al. (2019), Ooue et al. (2018), Simões et al. (2009), and Amo et al. (2021)

Fish (larvae and adults) Barko et al. (2006), Clavero et al. (2015), Cruz et al. (2020), DeGrandchamp et al. (2008),

Dı́ez-del-Molino et al., (2016), Esselman et al. (2013), Feyrer et al. (2004), Fobert et al.

(2013), Górski et al. (2014), Hutchinson & Armstrong 1993), Jones & Stuart (2009; Jordan

et al. (1998), King et al. (2003), Koehn et al. (2018), Maiztegui et al. (2019), Nico et al.

(2007), Resende et al. (2008), Reshetnikova & Chibilev (2009), Stoffels et al. (2014),

Sullivan et al. (2018), Williams et al. (2018), and Wu et al. (2013)

Amphibians Sepulveda et al. (2015)

For details about each specific example, including the potential factors involved with the NNSs dynamics, see Supplementary

Material 2
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Table 2 Examples taken from a systematic literature review (see Sup. Mat. 1) of responses of NNSs attributes to extreme phases of

the flood pulse in RFEs

Organisms Responses measured References

Flooding stimulates invasion success

Riparian and

ATTZ

plants:

Flooding increases seed banks, seed germination,

abundance of trees, grass dominance, plant

colonization, plant growth, plant establishment, plant

expansion, plant dominance, plant richness

Andrew et al. (2012), Barden 1987), Birken & Cooper

(2006), Chundi et al. (2017), Čuda et al. (2017), Cunha

& Junk (2004), De Jager et al. (2013), Dyakov &

Zhelev (2013), Hood & Naiman (2000), Howell &

Benson (2000), Juárez-Escario et al. (2016), Košir

et al., (2013), Lewerentza et al. (2019), Nobis et al.

(2017), Parsons & Southwell (2015), Petrášová et al.

(2013), Tabacchi & Planty-Tabacchi (2005; Tabacchi

et al. (2005), Schmiedel & Tackenberg (2013),

Thébaud & Debussche 1991), Toth (2015), Wang et al.

(2011), and Watterson & Jones (2006)

Aquatic

macrophytes

Flooding increases abundance, biomass and species

richness

Barrat-Segretain (2001), Chundi et al. (2017), and Sharip

et al. (2014)

Fish Flooding provides habitat similar to native range,

facilitates spawning, increases recruitment, increases

abundance of larvae and adults

Agostinho et al. (2015), Barko et al. (2006), Beesley

et al. (2012), Bino et al. (2018), Crain et al. (2004),

Gibson-Reinemer et al. (2017), Jones & Stuart (2009),

Macdonald & Crook (2014), Maiztegui et al. (2019),

Rayner et al. (2015), and Sullivan et al. (2018)

Flooding reduces invasion success

Riparian and

ATTZ

plants

Flooding reduces colonization, abundance of propagules

and adults, plant frequency, dominance, seed density,

plant richness, increase mortality and survival

Bhattacharjee et al. (2009), Boever et al. (2017), Boyd

et al. (2005), Caruso et al. (2013a, b), Dawson et al.

(2017a, b), Descombes et al. (2016), Dixon et al.

(2015), Dong et al. (2019), Ho & Richardson (2013),

Johnson et al. (2016), Lunt et al. (2012), Hughes &

Cass 1997), Predick & Turner (2008), Price et al.

(2010, 2011b), Pyle 1995), Sprenger et al. (2001),

Stokes et al. (2010)

Aquatic

macrophytes

Flooding reduces colonization, growth and abundance Sharip et al. (2014) and Sousa et al. (2010)

Invertebrates Flooding increases mortality, Oliveira et al. (2006, 2010a, b)

Fish Flooding reduces abundance Lasnea et al. (2008) and Puckridge et al. (2000)

Amphibious Flooding reduces colonization and abundance Sepulveda (2018)

Drought stimulates invasion success

Riparian and

ATTZ

plants

Drought increases abundance and frequency Catford et al. (2011, 2014), Greet et al. (2013a, b, 2015),

McShane et al. (2015), and Stokes et al. (2010)

Aquatic

macrophytes

Drought increases propagation, dominance and biomass Hudon et al. (2005), Rajakaruna et al. (2017), and Sousa

et al. (2010)

Fish Drought increases abundance of larvae and adults, and

richness

Crain et al. (2004), DeGrandchamp et al. (2008), Lasnea

et al. (2008), and Stoffels et al. (2017)
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although there are other mechanisms involved (see

below).

Because propagule pressure is a key mechanism

that contributes to invasion success, it has to be taken

into account when explaining the reasons why

ecosystems differ in their susceptibility to invasion

(Colautti et al., 2006; Simberloff, 2009). For example,

local habitats that receive a great number of propag-

ules may be successfully invaded even if their abiotic

characteristics are unsuitable (Leibold et al., 2004;

Sepulveda, 2018; Tonkin et al., 2018; Amo et al.,

2021) or if biotic resistance (Box 1) is maintained

constant (Louback-Franco et al., 2020). In addition,

when propagules are released repeatedly (as occurs

over the years with seasonal propagule pulses during

flooding in RFEs), there is an increased chance that the

population finds favourable conditions to establish

(Duncan, 2011). However, it is difficult to accurately

predict the performance of NNSs using only models

applied to their spread because RFEs are highly

heterogeneous and the success of any invader will also

depend on habitat characteristics (Merrin et al., 2005;

see Fig. 1b, c and ‘‘Abiotic and biotic filters of

invasion in river-floodplain ecosystems’’ below).

A NNS usually arrives at an ecosystem by a

propagule pulse originating from propagules carried

by the main river during flooding (Fig. 1a). Once this

NNS establishes in the RFE, propagule pulses also

originate from local sources, and the spread of NNSs

no longer depends only on propagules carried from

outside the ecosystem by the main river channel

(Fig. 1d). Thus, after a NNSs is successfully estab-

lished in a RFE, propagule pulses enhance its main-

tenance in the ecosystem. In addition, after

establishment in a RFE, propagules of NNSs can go

back to the river channel during flood recession (e.g.,

Pearce & Smith, 2001; Thomas et al., 2005, 2006;

Watterson & Jones, 2006; Catford & Jansson, 2014;

Bennett et al., 2015; Kropf et al., 2017; Lewerentza

et al., 2019 for plants; Pegg et al., 2002; Pollux &

Korosi, 2006; Stuart & Jones, 2006; Dı́ez-del-Molino

et al., 2016; Reshetnikova et al., 2017; Koehn et al.,

2018 for fish; Collas et al.,2017 for snails), enhancing

propagule pressure downstream and upstream, in the

case of some animals (see Jones & Stuart, 2009;

Macdonald & Crook, 2014; Norman & Whitledge,

2015 for fish). Taking into consideration this enhance-

ment of propagules generated in RFEs and the

possibility of their spread by flooding (evidenced by

the above references), it can be said that RFEs

facilitate regional invasions. Within this context,

spread by river flow after flooding constitutes an

‘‘unaided pathway’’ because it enhances the natural

spread of NNSs in new regions (Hulme, 2009).

Because RFEs may facilitate regional invasions, they

can be considered ‘steppingstones’ for dispersal of

NNSs in the surrounding landscapes (Fig. 1d), in the

same fashion as reservoirs (Havel et al., 2005; Johnson

et al., 2008; Gois et al., 2015). One example of the

steppingstone role of RFEs is the rapid increase

Table 2 continued

Organisms Responses measured References

Drought reduces invasion success

Parasites Drought reduces fish infection Welicky et al. (2017)

Invertebrates Drought increases predation Clavero et al. (2015)

Amphibians Drought reduces abundance Sepulveda (2018)

For more details about the rationale to separate the extreme phases of the flood pulse, see Supplementary Material 3. For each specific

example, including the potential factors involved with the NNSs dynamics, see Supplementary Material 4

Note that stimulation of invasive success by inundation is not the same as its opposite (suppression by droughts). For example,

authors of a specific investigation may have identified factors that facilitated NNSs by flooding but not identified factors related with

droughts. The same rationale serves for species that are stimulated by droughts, but that are not necessarily hampered by inundations.

Thus, I based these examples in what authors conclude about their data. For example, one study may evidence increases of a given

non-native species by flooding but do not refer if the species is hampered or non-impacted by drought (when this is identified, both

are shown in the table). In addition, factors others than features associated with the flooding and drought phases are identified by

authors, but I did not include them here because my objective was to search only factors linked to these two extreme phases of the

flood pulse
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observed in the frequency of Hydrilla verticillata L.f.

Royle in the Itaipu Reservoir (Brazil/Paraguay) after

this macrophyte invaded a RFE upstream from the

reservoir (Thomaz et al., 2009).

The importance of propagule pulses for the success

of NNSs, however, differs among different groups of

organisms, because the regulation of dispersal in river

networks (including RFEs) depends on the life-history

and dispersal traits of species (Box 1) (Padial et al.,

2014; Tonkin et al., 2018). In terms of life history, for

example, some NNSs that are more adapted to

terrestrial habitats may not benefit from dispersal by

flooding (Catford et al., 2011). In regard to dispersal

traits, a study employing metacommunity theory

a b c d

X

X
X

X

X

BA

P

BA

P

B

P
A

BA

P

Fig. 1 Conceptual model of the relationship between flood

dynamic (flood pulse—upper panels) and invasion success in

RFEs. Flooding promotes rapid dispersal of invasive propagules

throughout floodplain habitats (‘propagule pulses’), leading to

enhanced propagule pressure, which is initially associated with

propagules arriving in the main channel of the river (a). Right
after arriving during high water, some NNSs fail to colonize

certain habitats (b). Environmental filters also influence

invasion success during low water (e.g., drought) (c). Once
the species is stablished in a given RFE, it again disperses during

flooding and the propagules are dispersed back to the river,

enhancing even more the role of propagule pressure for the

success of the species (d). After the establishment of a NNS in

the RFE, this ecosystem may work as steppingstone for

invasions in nearby landscapes (see propagules going back to

the river channel in d). The figures of the upper panel were taken
from Castello et al. (2015). Dark blue is the main channel of the

river, light blue circles are floodplain lakes and red circles the

invasive organisms. X represents the habitats where the

propagules arrived but did not colonize or establish because of

biotic and/or abiotic filters. A, B and P inside the circles indicate

abiotic filters, biotic filters and propagule pressures, respec-

tively, and their sizes are proportional to their hypothetical

relative roles in non-native species success (see Fig. 2 for

additional details). Arrows in the top figure show the corre-

sponding water phase shown in the figures below
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showed that larger organisms (e.g., macrophytes and

fish) are more dependent on dispersal to succeed,

while smaller organisms (e.g., microalgae and zoo-

plankton) are more dependent on environmental

characteristics, because the former have lower disper-

sal ability than the latter (Padial et al., 2014). Using a

general perspective, and disregarding other important

details that influence establishment (e.g., reproduction

form), NNSs may follow this same logic, and thus I

expect that large-sized NNSs would depend more on

propagule pulses (in terms of number of propagules) to

succeed in RFEs than small-sized organisms. In

contrast, the success of small-sized organisms would

depend more on abiotic and biotic filters (discussed in

the next section).

Propagule pulses also depend on flood characteris-

tics. Water level dynamics change between years,

especially in RFEs whose rivers are regulated by dams

(Gehrke &Harris, 2001; Agostinho et al., 2004). In the

Upper Paraná River floodplain, for example, less

intense flooding does not overflow the riverbank,

while other more intense flooding caused by the El

Niño phenomenon does and connects all habitats to a

greater extent (Fernandes et al., 2009; Souza-Filho,

2009; Simões et al., 2013). Another example occurs in

RFEs in Wisconsin, where bank overflow helps NNSs

of plants to succeed (Johnson et al., 2016). It follows

from these examples that propagule pulses are prob-

ably more important for the success of NNSs during

inundations that overflow the riverbank than during

less intense flooding. Nevertheless, in addition to

flooding that overflows the riverbank, one cannot

disregard the important role of other less intense

inundations for the dispersal of NNSs in RFEs, as is

the case of flow pulses (inundations without bank

overflow; Tockner et al., 2000). Despite lacking the

high degree of connectivity with the main river as

occurs during bank overflow, flooding during flow

pulses also connects different habitats within the RFE,

helping the spread of NNSs inside the ecosystem.

Empirical evidence about the important role of

propagule pulses in RFEs abound in the literature

(Table 1; Sup. Mat. 2). Effective dispersal of NNSs by

flooding occurs in a variety of RFEs distributed in all

continents, and for different groups of organisms, from

increases in seed banks and plants (e.g., Andrew et al.,

2012) to the efficient spread of fish (e.g., DeGrand-

champ et al., 2008; Wu et al., 2013). The importance

P

AB

I

Disproportionate
importance of the
propagule pressure
(‘propagule pulses’) 
during flooding

Abiotic filters 
respond to the 
flood pulse

H

HH

Biotic filters 
respond to 
the flood 
pulse

Fig. 2 Merging concepts from the field of invasion biology

with the flood pulse concept indicates that there exist some

peculiarities to the process of invasion of RFEs. The success of

invasive species is related to propagule pressure (P) and biotic

(B) and abiotic (A) filters, along with their interactions

(I; hatched). Propagule pressure has a disproportionate role on

RFEs because flooding disperses propagules to local habitats

within the floodplain (‘propagule pulses’). Human influences

(H) may enhance propagule pressure and change abiotic and

biotic filters. Different from other ecosystems, environmental

filters related to the abiotic and biotic medium change according

to water level oscillations, which, in turn, also affects invasion

success. The figure is inspired in Catford et al. (2009)
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of propagules for NNS success in RFEs is also

demonstrated by some examples where NNS success

correlates positively with the degree of connectivity of

the local habitats. For example, the number of NNSs of

invertebrates increases with the degree of hydrological

connectivity in the Rhone RFE in France (Paillex

et al., 2017), and in the Upper Paraná RFE in Brazil

(Amo et al., 2021), indicating that connection by

flooding is an important mechanism for NNS success

in these RFEs.

Although I emphasize the role of flooding on

propagule pulses, one cannot disregard other natural

and human mediated dispersal pathways of NNSs in

RFEs. Examples of natural dispersers include fish

(ichthyochory; Cantanhêde et al., 2008; Catford &

Jansson, 2014; Jones et al., 2020) and wild terrestrial

animals (Oliveira et al., 2006; Mworia et al., 2011).

For example, propagule pulses may be enhanced if

NNSs use other species as hosts (e.g., non-native

parasites) or if they are used as prey. This is the case

for the invasive bivalves Limnoperna fortunei Dunker,

1856 and Corbicula fluminea O. F. Müller, 1774,

which are eaten by the fish Pterodoras granulosus

Valenciennes, 1821 (Cantanhêde et al., 2008). The

movement of these fish during high water increases

propagule pressure in RFE habitats.

Dispersal of NNSs also occurs during low water

phases for aquatic and terrestrial species. The spread

of aquatic NNSs (propagule pressure) continues to

occur during low water, but this pathway predomi-

nates in habitats that remain connected. For example,

propagules of the macrophyte Hydrilla verticillata

abound in lakes connected to the Paraná RFE (Brazil)

during low water periods (personal observation).

Finally, there are RFEs where flooding (an indication

of seed vector) is not related to the presence of NNSs

in specific habitats. This occurs, for example, for long-

established NNSs (decades to centuries), which are no

longer dispersal limited (Warren et al., 2015).

Humans also enhance disturbances (Box 1) and the

spread of aquatic species in RFEs (e.g., Hudon et al.,

2005; Chipps et al., 2006; Oliveira et al., 2006; Dı́ez-

del-Molino et al., 2016; Johnson et al., 2016; Reshet-

nikova et al., 2017). Cattle, for example, help to spread

NNSs of plants in a RFE in Kenya (Mworia et al.,

2011). In an RFE in the USA, the practice of rafting

increases the success of NNSs of plants (Pearce &

Smith, 2003) and in another RFE, modification of

aquatic habitats and public access are associated with

the invasion success of the bullfrog Lithobates cates-

beianus Shaw, 1802 (Sepulveda et al., 2015; Sepul-

veda, 2018). In the Elbe RFE (Czech Republic),

expansion of the Prussian carp Carassius auratus

gibelio (Bloch) is explained by escapes from aquacul-

ture activities (Slavı́k & Bartoš, 2004). In Australian

RFEs, the spread of invasive plants is enhanced by

human interference during low water (Catford et al.,

2011). These dispersal mechanisms, which are unre-

lated to propagule pulses, enhance even more the

spread and success of NNSs in RFEs.

In summary, the propagule pulses and other

dispersal mechanisms that enhance propagule pressure

should be taken into account when explaining the

success of NNSs in RFEs. The spread of NNSs can be

reduced with flow manipulations (see ‘‘Human

impacts on hydrodynamics and their effects on non-

native species in river-floodplain ecosystems’’ later in

this review) and other methods of management that

reduce disturbances and the spread of NNSs during

low water periods.

Abiotic and biotic filters of invasion in river-

floodplain ecosystems

Life history and pre-adaptation to the flood pulse

Invasion success depends on the interaction between

propagule pressure and other driving forces (Fig. 2).

The flood pulse seasonally changes the physical and

chemical environment, and the abundance of native

populations in RFEs, which in turn may stimulate

those NNSs that have a life history associated with

RFEs (or with similar ecosystems) in their native

ranges and which have pre-adaptations to the flood

pulse. For example, the life history of Cyprinus carpio

Linnaeus, 1758, is associated with spring flooding,

which partially explains its success in unstable habitats

subjected to variations in water level, including RFEs

(King et al., 2003; Jones & Stuart, 2009; Bajer &

Sorensen, 2010; Maiztegui et al. 2019). Another

example occurs in the Upper Paraná River floodplain

(Brazil), where 10 NNSs of fish successfully became

established (Espı́nola et al., 2015; Agostinho et al.,

2015; Gois et al., 2015; Tonella et al., 2018). The

majority of these NNSs of fish are pre-adapted to the

flood pulse because they are native to the RFEs of the

Pantanal and Amazon, which may have helped their
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success in the Upper Paraná RFE. Similarly, the fish

Misgurnus anguillicaudatus Cantor, 1842, invades

seasonally inundated Mediterranean rice fields

(Spain), where the flood regime is similar to the one

reported in the native ranges of this species in Japan

(Clavero et al., 2015).

There are species that did not evolved in RFEs but

succeed in these ecosystems anyway. For plants, traits

responsible for resilience to water level fluctuations

are found in species adapted to episodic disturbances

other than the flood pulse, making these disturbance-

adapted plants potential colonizers of RFEs and

riparian corridors (Catford & Jansson, 2014). Accord-

ing to these authors, few NNSs that invade riparian

corridors are specifically adapted to the abiotic

conditions of these ecosystems. Other examples

showing that pre-adaptation to the flood pulse is not

a prerequisite to invade RFEs are the macrophyte

Hydrilla verticillata and the mussels Limnoperna

fortunei and Corbicula fluminea, which colonize RFEs

on many continents (e.g., Drago et al., 2004; Oliveira

et al., 2006, 2010a, b; Sardina et al., 2011; Sousa,

2011; Paillex et al., 2013, 2017; Zilli, 2013; Besacier-

Monbertrand et al., 2014; Pander et al., 2016; Souza

et al., 2017). These three species are found in

ecosystems other than RFEs in their native ranges

(Wei et al., 2013; Zhang et al., 2014; Li et al., 2017;

Williams et al., 2018), indicating that their evolution-

ary histories were not exclusively associated with

environments that experience flood pulses. High

reproduction and growth rates associated with broad

tolerance to environmental conditions, high plasticity,

opportunistic traits and generalist habits (e.g., Barko

et al., 2006; Simões et al., 2009; Budde et al., 2011;

Sousa, 2011; Fobert et al., 2013; Ho et al., 2013;

Paolucci et al., 2014; Agostinho et al., 2015; Crespo

et al., 2015; Flanagan et al., 2015; Dı́ez-del-Molino

et al., 2016; Pander et al., 2016; Cuda et al., 2017;

Tonella et al., 2018; Lewerentza et al., 2019), pre-

dispose these three species and other NNSs to

tolerance of the water level oscillations and associated

environmental changes in RFEs.

Species with life histories associated with RFEs in

their native ranges do not necessarily succeed in RFEs

in introduced ranges. The peacock bass Cichla ocel-

laris Bloch & Schneider, 1801, for example, is native

to Amazonian RFEs, but this species took c. 10 years

to become a successful invader in the Upper Paraná

River floodplain in Brazil (Agostinho et al., 2007;

Espı́nola et al., 2015; Ortega et al., 2020). According

to these authors, the species (which is a visual

predator) only succeeded after water transparency

was enhanced following dam construction upstream

from the RFE.

It is important to highlight that numerous species

that successfully colonize and establish in RFEs with

natural flood pulses may be even more successful (in

terms of invasion) when hydrodynamics are changed

by human interference. For example, despite having

traits which are favoured to some degree by flooding,

C. carpio (and other species) (see Table 2) attains

higher invasion success and impacts in RFEs where

flow is regulated, i.e., where natural flooding has been

reduced or prevented (Bunn & Arthington, 2002).

Similarly, the Amazonian fish Cichla kelbery Kullan-

der & Ferreira, 2006, invades other RFEs outside its

native range (e.g., Agostinho et al., 2007), but is found

at much higher abundances in reservoirs (Ortega et al.,

2015; Pelicice et al., 2015). These examples point out

that alterations to river flow may be key to explaining

invasions in RFEs (see ‘‘Human impacts on hydrody-

namics and their effects on non-native species in river-

floodplain ecosystems’’).

The role of disturbance for invasion success

in RFEs

According to Tockner et al. (2010), RFEs are distur-

bance-dominated ecosystems. Flood pulses character-

ized by seasonal flooding and drought may be

considered natural disturbances since they change

communities, ecosystem structure and resources

availability. A variety of native species colonizing

RFEs were selected by seasonal disturbance deter-

mined by hydrodynamics (Luz-Agostinho et al., 2009;

Davis et al., 2018), and their abundances change

seasonally in response to the flood pulses (Junk et al.,

1989; Tonella et al., 2019). In the context of invasion

biology, disturbance is considered a key factor for

explaining invasion success because disturbances

create ‘invasion windows’ by reducing densities of

native species temporarily and/or by altering the

supply of resources (Davis et al., 2000; Hershner &

Havens, 2008; Hobbs, 2011). Reduced populations of

native species facilitates the success of NNSs because

it diminishes biotic resistance (Levine 2000), while

increased resources directly enhances the chances of

invasion because invasive species can take advantage
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of these ‘invasion windows’ (Davis et al., 2000;

Hobbs, 2011). For example, flooding causes distur-

bances in riparian communities, enhances nutrients

and makes habitats less shaded than adjacent uplands,

thus resulting in greater invasion than in adjacent areas

(Fridley, 2011; Table 2; Sup. Mat. 4). Another exam-

ple comes from a large survey conducted in European

and Japanese RFEs, which found that annual and

perennial NNSs of plants (which colonize the ATTZ)

are the most species rich, followed by invasive woody

plants and macrophytes (Müller & Okuda, 1998). The

same pattern is observed in riparian zones, which

experience high degrees of invasion by NNSs (Catford

& Jansson, 2014). However, the effects of flooding on

NNSs are not always positive, and there are examples

where flooding disturbance prevents invasions

(Table 2; Sup. Mat. 4). Within this context, the change

of the natural disturbance regime, instead of the

natural disturbance itself, can be considered the main

driver of NNSs success (Catford et al., 2011; 2014; see

‘‘Human impacts on hydrodynamics and their effects

on non-native species in river-floodplain ecosystems’’

below). In addition, drought also opens ‘invasion

windows’ for NNSs, mainly those that do well in the

ATTZ (Table 2; Sup. Mat. 4).

Reductions in the abundances of native species

caused by disturbances also increases the success of

NNSs indirectly through enhanced resource availabil-

ity (i.e., part of the resources that were used by native

species becomes available for NNSs). This positive

feedback may enhance even more the success of

NNSs, because reduced abundances of native species

(implying less biotic resistance) enhance resources

surplus. However, these opportunities only contribute

to the success of NNSs if the disturbances are followed

by enhanced propagule pressure or, in RFEs, by

propagule pulses (see ‘‘Propagule pressure and

propagule pulse in river-floodplain ecosystems’’).

The influence of different flood-pulse phases

on the success of non-native species

The flood pulse represents a temporal gradient of

conditions that change from low to high water levels,

and vice versa, to which environmental features and

organisms respond continuously. However, research-

ers working with floodplain ecology usually identify

responses of environmental characteristics and organ-

isms to extreme water levels represented by flooding

(high water) and drought (low water) conditions. The

emphasis on responses of the environment and organ-

isms to extreme conditions is probably because these

responses are easier to identify. Taking this into

account, below I use empirical evidence to discuss

four general possibilities about the driving forces that

determine the performance and success of NNSs

during different flood-pulse phases (see Table 2 and

details about them in Sup. Mat. 4). In general, at least

for aquatic organisms, the abiotic medium (e.g., depth,

oxygen, underwater light) probably has a major role

during the high-water period, when its features may

become unfavourable for many species, while biotic

features (e.g., biotic resistance) may play a major role

during low water periods because biotic interactions

act more intensively in aquatic environments during

this phase (Thomaz et al., 2007; Quirino et al., 2015;

see Fig. 1b, c).

It is important to highlight, however, that the

driving factors identified in any investigation are not

static, since one species may have some traits

enhanced during flooding and other traits enhanced

during drought. For example, the NNS Tamarix

chinensis Lour. is out-competed by native plants when

the hydrological regime is restored, indicating that its

competitive ability is negatively affected by flooding

(Bhattacharjee et al., 2009); however, recruitment for

the species is triggered by large annual flooding

(Birken & Cooper, 2006), indicating a positive effect

of flooding for the ‘reproduction trait’. Another

example occurs with plant communities in the

Moolayember Creek floodplain (Australia), where

the seed bank of NNSs decreases but their abundance

increases in response to flooding (Osunkoya et al.,

2014). These examples were able to identify opposite

effects of flooding for different traits of NNSs.

Another complication to separating the effects of

the flood pulse using only extremes (flooding versus

drought) is that both extremes might negatively impact

specific traits of a species, as is the case of the bullfrog

Lithobates catesbeianus in the Yellowstone RFE in the

USA (Sepulveda, 2018). In this case, the species

probably recovers in the floodplain during periods of

intermediate water level (e.g., rising or decreasing

water) or has other (not measured) traits affected

positively during these extremes.

Despite these difficulties in analysing the effects of

the flood pulse on NNS success, I use here a systematic

survey (see Sup. Mat. 1) to search for how the
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performance of NNSs is related to flooding (high

water conditions) and drought (low water conditions)

in RFEs. This means that an investigation may identify

factors related to species success in a specific water

level phase but not in another. In this case, it does not

mean that the other phase does not have a role for the

studied NNS, but just that the effect was not clearly

stated by the authors. More detailed and specific

statements about the rationale behind the choice of

separating the flood pulse into extremes (low versus

high water) are provided in Supplementary Material 3.

There are examples showing enhanced perfor-

mance for numerous NNSs with flooding, which

contributes to their colonization, establishment,

spread and/or impacts in RFEs. These examples fit

classical theory predicting that invasion success is

facilitated by disturbances (see ‘‘Propagule pressure

and propagule pulse in river-floodplain ecosystems’’).

For example, the disturbance associated with flooding

can determine the dominance of graminoids (includ-

ing NNSs) by increasing germination after removing

herbaceous litter (Andrew et al., 2012) and can

determine the dominance of grasses that invade stream

sides where floods scour native vegetation (Barden,

1987). The success of NNSs of plants following high-

amplitude flood-pulses may be explained by increases

in resources and relaxed competition with native

species after flooding (Toth, 2015). Invasion windows

that benefit NNSs of plants can also open during

flooding by litter removal, the scouring of native

vegetation (which reduces biotic resistance) and the

formation of gaps (which enhances resources avail-

ability) (Cunha & Junk, 2004; De Jager et al., 2013). In

general, plant species with fast life cycles are favoured

by flooding. This is evidenced in riparian corridors,

where the number of NNSs of macrophytes and herbs

with annual life cycles is large (Chundi et al., 2017)

and the number of NNSs with annual cycles can be

even higher than the number of native species (Catford

et al., 2011; Catford & Jansson, 2014). An aquatic

animal example is the fish C. carpio, whose successful

invasion of RFEs is at least in part related to flooding,

which increases resource availability (food), decreases

biotic resistance and changes abiotic filters (Barko

et al., 2006; Jones & Stuart, 2009; Beesley et al., 2012)

(Table 2; Sup. Mat. 4).

In contrast to the above examples, there are

investigations showing that NNSs are hampered or

have their performance negatively impacted by

flooding (Table 2; Sup. Mat. 4). These species are

supposedly those whose life-history is not associated

with the flood pulse. Plant species that do not grow and

complete their life cycle rapidly (e.g., k-strategy

plants) are also usually negatively affected by flooding

(e.g., Johnson et al., 2016; Boever et al., 2017). There

is also evidence that sometimes the negative effects of

flooding, those that make habitats less suitable, are

compensated by positive effects that promote propag-

ule pulses (see Sousa et al., 2010 for an example with

macrophytes and Chapman &Warburton, 2006 for an

example with fish). Finally, it is worth noting that

despite the negative effects that flooding has on some

NNSs, the high heterogeneity of RFEs enhances the

number and types of refugia (e.g., lateral channels,

abandoned meanders and floodplain lakes), from

which recolonization occurs after inundations

(DeGrandchamp et al., 2008; Dı́ez-del-Molino et al.,

2016; Fuller & Death, 2018).

There are NNSs whose performance is enhanced

during drought (Table 2; Sup. Mat. 4). This occurs

mainly with species that are more adapted to terrestrial

habitats, species that develop in the ATTZ and in

riparian zones, and some aquatic macrophytes that

prefer nearly constant water levels (Catford et al.,

2011, 2014). A combination of shade and drought

stress may also enhance the biomass of NNSs of plants

(González-Muñoz et al., 2014). In these cases, inva-

sive success was associated with a reduction in biotic

resistance by native species and changes in environ-

mental filters caused by terrestrialization. Although

terrestrial and ATTZ NNSs of plants are the ones that

are more benefited by droughts, aquatic NNSs may

also take some advantage of this condition. In the

Loire River floodplain (France), the number of NNSs

of fish increased with isolation, indicating that drought

enhances invasion success (Lasnea et al., 2008).

Similarly, floating-leaved macrophytes may invade

water bodies where floods have been reduced by river

regulation (Rajakaruna et al., 2017).

Finally, there are studies showing that the perfor-

mance of NNSs is negatively related to droughts

(Table 2; Sup. Mat. 4), but I found far less cases

showing this possibility. One example is found in the

Phongolo RFE (South Africa – Mozambique border),

where none of the Mozambique tilapia Oreochromis

massambicus Peters, 1852, collected during the

drought were parasitized by the invasive Lernaea

cyprinaceae Linnaeus, 1758, while fish collected
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during the flood period were infected (Welicky et al.,

2017). This decline in infection during drought

occurred because the water became hypersaline during

this period, which represents an abiotic filter for this

invasive freshwater parasite.

In summary, there are plenty of examples showing

that NNSs may be benefited by flooding while others

are hampered. Similarly, there are NNSs that benefit

from drought, and a few others that are hampered. The

most important conclusion, nevertheless, is that this

collection of empirical evidence clearly shows that the

success of NNSs depends on the flood pulse and on its

consequences for the abiotic and biotic filters in RFEs.

However, these examples also show that the responses

of NNSs to the flood pulse are highly idiosyncratic.

When the flood pulse allows the coexistence

of native and non-native species

Coexistence of individual native and non-native

species

A general theory about species interactions, which

applies to invasion biology, predicts that the possibil-

ity of coexistence between two species is enhanced

with reduced niche overlap and increased species

fitness (Chesson & Kuang, 2008; Rejmánek, 2011).

The seasonal alterations to chemical and physical

characteristics, community composition and resource

availability caused by the flood pulse interfere with

niche overlap and species fitness, with consequences

for the coexistence of native and NNSs. For example,

if native and NNSs change their feeding habits during

the flood period, as observed for a variety of groups

(e.g., Abujanra et al., 2009; Quirino et al., 2015; 2017),

their niche overlap would be reduced during this

period, enhancing the possibility of coexistence over

longer periods. Similarly, native species that enhance

recruitment following seasonal floods (e.g., Oliveira

et al., 2020) may have an advantage over NNSs that

are not adapted to the flood pulse, which may also

enhance the possibility of coexistence.

Coexistence of native and NNSs has been docu-

mented in RFEs, but in the majority of cases the

explanations are not related to the flood pulse. For

example, the invasive macrophyte H. verticillata co-

occurs with native submerged macrophytes in the

Paraná RFE in Brazil, but coexistence can be

explained by habitat segregation independently of

the flood pulse (Sousa et al., 2010). In this same

ecosystem, trophic and habitat segregation and differ-

ent traits explain the coexistence of native and NNSs

of fish (Pereira et al., 2007; Zaia Alves et al., 2017;

Rodrigues et al., 2018). However, what is of interest in

the context of the present review is whether (and how)

the coexistence of native and NNSs is mediated by

alterations associated with the flood pulse.

There are indirect examples that suggest that the

coexistence of native and NNSs can indeed be related

to environmental changes caused by the flood pulse.

Although the authors of some of these investigations

do not explicitly associate their findings with the

coexistence of native and NNSs, one can infer from

them that the possibility of coexistence is at least

enhanced by inter-specific differences mediated by the

flood pulse. For example, in an Australian RFE the

dominance of one native and one NNS of plant shifts

in response to the flood pulse (Price et al., 2010;

2011a), which probably allows the coexistence of

these species throughout the hydrological cycle.

For fish, different movements of native and NNSs

in response to the flood pulse (Williams & Gregory,

2018; Williams et al., 2018) may help coexistence.

Coexistence between native and non-native fish may

also be enhanced if they colonize different sites during

the flood pulse (Ho et al., 2013), which can be

associated with changes in recruitment rates and

resource use of both types of species. Changes in

feeding habits may also be involved in co-existence, as

suggested for juveniles of C. carpio and of the native

fish Hypseleotris sp., whose diet and trophic levels

become more different during high water (Mazumder

et al., 2012). In this case, one can speculate that such

differences that occur, at least during high water, may

alleviate competition and enhance the chances of

coexistence throughout the year. There is also evi-

dence that native and NNSs of fish do not reproduce at

the same time, and that native species use different

habitats than NNSs, which give the native species an

additional competitive edge over the NNSs (Sommer

et al., 2014).

In addition to these examples of empirical evidence

is a modelling study that suggests that the flood pulse

may also mediate the coexistence of amphibians.

Doubledee et al. (2003) found that the occurrence of

winter floods increases the mortality of the non-native

bullfrog Rana catesbeiana Shaw, 1802, but does not
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affect the native Rana aurora draytoniBaird &Girard,

1852. These different effects of flooding diminish the

probability of extinction of native species, thus

enhancing the chances for coexistence.

Coexistence of native and non-native species

at the assemblage level

There is indirect evidence suggesting that a high

number of species (assemblages) of native and of

NNSs can coexist, at least in some RFEs. This

evidence comes from studies conducted with different

groups of organisms showing that there are positive

relationships between native and NNSs richness in

RFEs. For example, positive correlations between the

richness of native and NNSs of plants have been found

in a variety of riparian corridors and RFEs (Tabacchi

& Planty-Tabacchi, 2005; Tabacchi et al., 2005;

Uowolo et al., 2005; Stokes et al., 2010; Petrášová

et al., 2013). In the Paraná RFE in Brazil, the richness

of native and NNSs of fish correlate positively

independent of the spatial scale analyzed (Santos

et al., 2018). Another example of coexistence is with

invertebrates in the Rhône River (France), where the

highest functional diversity of native and NNSs occurs

at sites with intermediate connection with the river

channel (Paillex et al., 2013). According to these

authors, niche filtering and competitive exclusion are

low at these sites. Thus, in this case, one can conclude

that the flood pulse (which allows connection among

sites) helps coexistence.

Positive relationships between native and NNSs

richness usually occur at larger spatial scales and

opposes the idea of biotic resistance found at smaller

scales (see Fridley et al., 2007). These positive

correlations are in accordance with the ‘biotic accep-

tance hypothesis’ (Box 1), which predicts that the

‘‘rich get richer’’ or good sites for native species are

also good for NNSs (e.g., Stohlgren et al., 2006;

Fridley et al., 2007; Richardson et al., 2011). Thus,

these results obtained for RFEs indicate that where a

positive correlation occurs between native and NNSs,

habitats that support more native species are also

prone to be more invaded and that more species can

coexist in these sites. The factors explaining this

pattern in RFEs are not well understood, but distur-

bances, habitat heterogeneity and resource availability

(Uowolo et al., 2005; Santos et al., 2018), which are

typical features of RFEs, might be involved.

Other factors allowing positive correlations

between native and NNSs are environmental suitabil-

ity and propagule supply (Stokes et al., 2010). Because

these features are related to the flood pulse in RFEs,

one can suppose that the flood pulse has at least some

role in explaining the support of the acceptance

hypothesis in RFEs with positive correlations between

native and NNSs richness.

Human impacts on hydrodynamics and their

effects on non-native species in river-floodplain

ecosystems

The natural hydrodynamics of some RFEs (along with

their physical and chemical features), including the

natural flood pulse, have changed in response to

numerous human activities, such as irrigation, water

supply and hydroelectricity production (Gehrke &

Harris, 2001; Lytle & Poff, 2004; Fernandes et al.,

2009; Agostinho et al., 2013; Johnson et al., 2016;

Winemiller et al., 2016). Alterations in hydrodynam-

ics (i.e., the disturbance regime), along with physical

and chemical water features, in turn, may help NNSs

to thrive in RFEs (Poff et al., 1997; Müller & Okuda,

1998; Bunn & Arthington, 2002; Lytle & Poff, 2004;

Simões et al., 2009; McShane et al., 2015). These

alterations are related to a variety of aspects of the

natural flood pulse, such as flooding and drought

frequencies, amplitudes and seasonality. It is impor-

tant to state that changes to disturbance dynamics

related to the flood pulse (rather than the disturbance

per se) enhance invasion by (a) reducing the abun-

dance of native species (less biotic resistance) and

(b) providing hydrological conditions that favor

certain NNSs that are adapted to them (Catford et al.

2011, 2014).

Despite the examples showing that NNSs succeed

with flooding or drought events, there are numerous

other examples showing that the success of NNSs of

macrophytes, terrestrial plants and fish increases even

more in response to alterations to natural hydrody-

namics (natural food pulse) (Table 3; Sup. Mat. 5).

Flow regulation enhances the terrestrialization of

RFEs (see below) and when it diminishes flooding

intensity it also decreases connectivity in RFEs

(Thomaz et al., 2007), with consequences for native

and NNSs that depend on flooding for dispersal (see

‘‘Propagule pressure and propagule pulse in river-
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floodplain ecosystems’’). Flow supplementation that

causes permanence in floodplain lake water may

enhance the invasion of NNSs of macrophytes,

including the water hyacinth Eichhornia crassipes

Mart. (Solms) (Tibby et al., 2019). Increases in

temporal variability is another type of flow alteration

that may increase the number of NNSs, which is in line

with the fact that NNSs are usually more adapted to

disturbances (Brummer et al., 2016).

In view of these examples showing that flow

alteration affects the success of NNSs in RFEs,

management that re-stablishes natural flood pulses in

regulated rivers is a possibility for reducing the

success of NNSs (e.g., Catford et al. 2011, 2014).

‘Designed disturbance’, which drives particular pro-

cesses and stimulates particular native species assem-

blages, is a technique that helps conservation and

restoration (Hobbs, 2011). For example, simulating

historic flood pulses has the potential to reduce the

success of NNSs of plants (Hobbs, 2011; Dawson

et al., 2017a, b; Dong et al., 2019) and benefit native

plants (Glenn & Nagler, 2005; Nagler et al., 2005;

Bhattacharjee et al., 2009; Stokes et al., 2010; Dixon

et al., 2015; Price et al., 2011a) and native fish (Barko

et al., 2006). Even if NNSs of plants are ruderal with

high growth rates, their increment during droughts is

hampered by regular floods, which reduces their

dominance (Stokes et al., 2010; Lunt et al., 2012).

Despite massive evidence that flow rehabilitation

may enhance native relative to NNSs in RFEs and

riparian corridors, there are cases where flow regula-

tion does not affect the success of NNSs and where the

use of flow rehabilitation does (and will probably) not

control NNSs in river corridors and RFEs (Birken &

Cooper, 2006; Mortenson et al., 2012). In addition, the

restoration of environmental flowmay benefit NNSs in

some RFEs (Howell & Benson, 2000; Taylor & Ganf,

2005; Toth, 2010; Paillex et al., 2013; 2015; Stoffels

et al., 2014). These examples show that management

aiming at reducing NNS success and restoring native

diversity in RFEs is not an easy task. It is possible that

managing the flow regime to reduce the abundances of

NNSs would not necessarily benefit native species

because these two groups respond differently to flow

regimes (Brummer et al., 2016). Owing to the

idiosyncrasies found in RFEs, the rehabilitation of

river flow with the aim of NNSs control has to be

evaluated for each individual case.

Global changes may also impact the success of

NNSs in RFEs. A first, direct effect is related to

temperature itself (e.g., Paillex et al., 2017). However,

the greatest long-term impacts on NNS success may be

related to extreme climatic events (ECE) associated

with global changes (Diez et al., 2012). ECEs include

changes in natural hydrodynamics, which will be

altered because rainfall is predicted to increase in

some river basins and decrease in others (Aldous et al.,

2011; Marengo et al., 2012; Hoegh-Guldberg et al.,

2018), and thus change the natural flood pulse. An

increase in the number of large flooding events will

probably occur in some river basins, with conse-

quences for the geomorphology and biota of RFEs

(Death et al., 2014 and references therein). The

fragmentation, spread, colonization and growth of

NNSs of plants may be facilitated by large and more

frequent floods (Merrin et al., 2005; Truscott et al.,

2006; Fobert et al., 2013; Gibson-Reinemer et al.,

2017). Increases of NNSs in response to these ECEs

Table 3 Examples taken from a systematic literature review (see Sup. Mat. 1) showing that NNSs success is positively related with

flow regulation and with other alterations of the natural flood pulse in river-floodplain ecosystems

Organisms Responses measured References

Riparian and

ATTZ plants

Increase of abundance, dominance and richness of NNSs

of plants in the ATTZ and riparian corridors

Caruso et al. (2013a), Castro-Dı́ez et al. (2014), Greet

et al. (Greet et al. 2013a, b, 2015), Kopéc et al. (2014),

Mumba & Tompson (2005), Predick & Turner (2008),

and Rood et al. (2007)

Macrophytes Increase of abundance and dominance of NNSs Baart et al. (2013), Sousa (2011), Sousa et al. (2010),

Rajakaruna et al., (2017), and van Geest et al. (2005)

Fish Increase of abundance and dominance of NNSs Cruz et al. (2020), Espı́nola et al. (2015), Gehrke &

Harris (2001), Ho et al. (2013), Stuart & Jones (2006),

and Gois et al. (2015)
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occur, in part, because these disturbances open

‘invasion windows’ by killing and/or stressing resi-

dent organisms, and by enhancing resource availabil-

ity (Davis et al., 2000; Diez et al., 2012). In contrast,

changes in the natural flood pulse in regions where

rainfall will decrease may cause more frequent and

intense droughts (i.e., ‘terrestrialization’ of RFEs),

which will probably facilitate the success of NNSs that

colonize the ATTZ and riparian corridors, as exem-

plified by a variety of examples where this has already

happened (see also Kopéc et al., 2014; McShane et al.,

2015; Table 2 and Sup. Mat. 4).

Finally, there are other anthropogenic disturbances

(e.g., raising cattle and agriculture) which contribute

to enhancing invasion success in RFEs. For example,

livestock grazing impacts native more than non-native

annual plants in the Barmah-Millewa RFE in Australia

(Lunt et al., 2012). Land use together with reservoir

flooding were found to enhance the presence of NNSs

of plants in riparian corridors in China (Chundi et al.,

2017) and disturbances associated with recreational

use enhance the number and frequency of NNSs of

plants in the Potamic RFE in the USA (Pyle, 1995).

Human disturbances in RFEs can be even more

important to the enhancement of invasion by herba-

ceous plants than the natural flood disturbance (An-

drew et al., 2012). In addition, human disturbances

may extend impacts over time. For example, land use

legacies have been shown to be important in this

regard (Dawson et al., 2017a, b), evidencing that past

disturbances may influence NNSs success long after

they have cessed.

Conclusions

This survey showed that despite restrictions imposed

by the flood pulse to NNSs whose life history is not

related to seasonal fluctuations in water level in their

native ranges, numerous species successfully invade

RFEs all over the world. Their ruderal characteristics,

high plasticity and fast spread, facilitated by the flood

pulse, may be some of the factors that predispose these

NNSs to invade RFEs. Studying species traits related

to these characteristics may enhance our ability to

predict which NNSs will succeed in RFEs.

This review also shows that alterations of the flood

pulse impact RFEs and affect the success of NNSs, and

that this is currently accepted as fact by scientists and

managers. However, this literature survey also evi-

denced that it is very difficult to predict and quantify

responses of NNSs to altered flow regimes (see also

Bunn & Arthington, 2002).

Despite idiosyncrasies, invasions of RFEs are

mainly related to factors associated with the distur-

bance regime, represented by the flood pulse in these

ecosystems. Within this context, and according to the

examples I found in this review, at least two cases can

be identified within the context of ‘‘invasion syn-

drome’’, a theory that unifies pathways, species traits

and characteristics of the recipient ecosystem to

enhance predictability of invasion success and impacts

(Novoa et al., 2020). One possibility includes aquatic

species with traits adapted to the flood pulse, which are

usually introduced through aquaculture or ballast

water (pathway) and are dispersed by water through

hydrochory during annual flooding (a unique feature

of RFEs). Examples of this possibility are the grass

carp and golden mussel. A second possibility also

considers transport of propagules by water (hydro-

chory), but includes NNSs with traits adapted to drier

sites (riparian corridors and the AATZ) and whose

means of introduction are associated with feedstock

and horticulture. These last species are predicted to

invade more successfully RFEs that suffer terrestrial-

ization, and numerous species of grasses (see Novoa

et al., 2020) are good examples. Thus, knowing which

type of effect a given alteration will cause to the flood

pulse, and how NNSs respond to it, is key to

understanding, predicting and proposing management

strategies aimed at avoiding the spread and impacts of

NNSs in RFEs.
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Duquette, M. C., A. Compérot, L. F. Hayes, C. Pagola, F. Bel-
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habitats of invasive plants: are they similar to invaded

range habitats and do they differ according to the geo-

graphical direction of invasion? Diversity and Distribu-

tions 21: 312–321.

Hershner, C. & K. J. Havens, 2008. Managing invasive aquatic

plants in a changing system: strategic consideration of

ecosystem services. Conservation Biology 22: 544–550.

Ho, M. & C. J. Richardson, 2013. A five year study of floristic

succession in a restored urban wetland. Ecological Engi-

neering 61: 511–518.

Ho, S. S., N. R. Bond & R. M. Thompson, 2013. Does seasonal

flooding give a native species an edge over a global inva-

der? Freshwater Biology 58: 159–170.

Hobbs, R. J., 2011. Disturbance. In Simberloff, D. & M.
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Moodley, H. Müller-Schärer, J. G. Packer, J. Pergl, T.

B. Robinson, W.-C. Saul, R. T. Shackleton, V. Visser, O.

L. F. Weyl, F. A. Yannelli & J. R. U. Wilson, 2020.

Invasion syndromes: a systematic approach for predicting

biological invasions and facilitating effective management.

Biological Invasions 22: 1801–1820.

Nunes da Cunha, C. &W. J. Junk, 2004. Year-to-year changes in

water level drive the invasion of Vochysia divergens in

Pantanal grasslands. Applied Vegetation Science 7:

103–110.

Oliveira, M. D., A. M. Takeda, L. F. de Barros, D. S. Barbosa &

E. K. de Resende. 2006. Invasion by Limnoperna for-
tunei(Dunker, 1857) (Bivalvia, Mytilidae) of the Pantanal

wetland, Brazil. Biological Invasions 8: 97–104. https://

doi.org/10.1007/s10530-005-0331-0

Oliveira, A. G., H. I. Suzuki, L. C. Gomes & A. A. Agostinho,

2015. Interspecific variation in migratory fish recruitment
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412–423.

Tabacchi, E., A.-M. Planty-Tabacchi, L. Roques & E. Nadal,

2005. Seed inputs in riparian zones: implications for plant

invasion. River Research and Applications 21: 299–313.

Taylor, B. & G. G. Ganf, 2005. Comparative ecology of two co-

occurring floodplain plants: the native Sporobolus
mitchellii and the exotic Phyla canescens. Marine and

Freshwater Research 56: 431–440.
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