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Abstract While warming and eutrophication have

increased the frequency and magnitude of harmful

cyanobacterial blooms globally, the scenario for many

eutrophic tropical freshwaters is a perennial year-

round bloom. Yet, the drivers of persistent blooms are

less understood when conditions such as light,

temperature, and nutrients favor cyanobacteria growth

year-round, and especially in regions facing recurrent

periods of drought. In order to understand the drivers

of cyanobacteria dominance, we assessed the abiotic

conditions related to the abundance and dominance of

the two dominant bloom-forming genera Raphidiopsis

and Microcystis, in six shallow, man-made lakes

located in the semiarid Northeastern region of Brazil

during a prolonged regional drought. Lower water

level corresponded to increased phosphorous and

nitrogen concentration and, consequently, phyto-

plankton biomass. Cyanobacterial biomass was also

proportional to phosphorus concentrations during

year-round blooms. Yet, the two dominant cyanobac-

terial genera, Raphidiopsis and Microcystis, seldom

co-occurred temporally and the switch between them

was driven by water transparency. Our results illus-

trate the effects of drought induced water level

reductions on the biomass and composition of
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cyanobacterial blooms in tropical shallow man-made

lakes. Given the ideal year-round conditions (i.e., high

light and temperature), droughts may be expected to

intensify the risk and multitude of problems associated

with eutrophication.

Keywords Drought � Drylands � Microcystis

aeruginosa � Man-made lakes � Perennial

cyanobacteria dominance � Raphidiopsis raciborskii

Introduction

The link between harmful cyanobacterial blooms and

eutrophication has long been recognized as a critical

threat to freshwater ecosystems (Paerl, 1988).

Cyanobacteria blooms alter energy flux in aquatic

food webs, leading to loss of biodiversity and threat-

ening the sustainability of aquatic ecosystems (Paerl &

Otten, 2013). Eutrophication and high cyanobacteria

biomass affect many ecosystem services, promoting

significant economic losses, including the increase in

water treatment cost for drinking supply, decline of

commercial and subsistence fishing and aquaculture,

and impairment of recreational use of freshwaters

(Aylward et al., 2005; EPA, 2015; Le Moal et al.,

2019). Furthermore, the increase of organic matter

caused via blooms promote trihalomethanes (THM)

formation, when chlorination is applied for disinfec-

tion purposes of drinking supply, which are environ-

mental pollutants and potentially carcinogenic (Rook,

1974; Gallard & Von Gunten, 2002). Moreover, the

production of cyanotoxins poses a potential health

hazard for pets, livestock, wildlife, and also humans,

especially when drinking water supplies are affected

(Carmichael, 1992; Merel et al., 2013; Paerl, 2018).

The observed enhancement of blooms in terms of

distribution, frequency, and magnitude is a conse-

quence of the combined and even interactive effects of

eutrophication and climate change, including warming

(Paerl & Huisman, 2008; Burford et al., 2016; Harke

et al., 2016; Paerl & Otten, 2016; Paerl, 2017; Salmaso

et al., 2018). High dominance and biomass of

cyanobacteria in freshwaters are triggered by com-

bined abiotic and biotic drivers such as anthropogenic

nutrient over-enrichment, namely from excessive

loads of phosphorus and nitrogen, high temperatures

and light intensity, shallow depth, low flushing, high

inorganic turbidity, and weak grazing pressure (Soares

et al., 2009; Moss, 2011; Rigosi et al., 2014; Costa

et al., 2016; Paerl, 2017; Leitão et al., 2018; González-

Madina et al., 2019; Havens et al., 2019; Amorim

et al., 2020). There also is an effect of temperature and

solar irradiance on the susceptibility of shallow lakes

to develop blooms for a given nutrient concentration

(Kosten et al., 2012).

In tropical latitudes, cyanobacterial blooms in

shallow eutrophic waters are more frequent and last

longer when compared to their higher latitude coun-

terparts, where key drivers such as light and temper-

ature fluctuate seasonally (Lind et al., 2016). Indeed,

in the absence of such seasonality, blooms often

persist year-round in eutrophic waters (Figueredo

& Giani, 2009; Figueredo et al., 2016; Batista et al.,

2018; Giani et al., 2020). Yet, factors regulating

cyanobacterial biomass and community composition

during persistent blooms are less understood, which is,

at least partly, because most information on blooms is

from regions where such phenomena are seasonal

(McGregor & Fabbro, 2000; Soares et al., 2009; Muir

& Perissinotto, 2011; Lind et al., 2016; Ma et al., 2016;

Batista et al., 2018).

Seasonal droughts also play a major role in

cyanobacteria bloom dynamics (Naselli-Flores,

2003; Medeiros et al., 2015; Brasil et al., 2016; Costa

et al., 2019; Tilahun & Kifle, 2019). The lack of

precipitation during droughts reduces lake depth and

subsequently affects multiple physical, chemical, and

biological conditions (Naselli-Flores, 2003; Olds

et al., 2011; Mosley, 2015). The abiotic effects

resulting from droughts have been reported to favor

cyanobacteria dominance (McGregor & Fabbro, 2000;

Bouvy et al., 2003; Brasil et al., 2016). Conversely,

periods of extreme prolonged drought in shallow lakes

may also limit cyanobacteria due to high inorganic

turbidity, in favor of mixotrophic organisms or

diatoms (Costa et al., 2016, 2019; Crossetti et al.,

2019). Hence, while there is little doubt that droughts

result in a general decline in water quality, the impacts

of drought on bloom dynamics are variable and likely

lake-specific. Overall, the role of drought induced

water level reduction on the dynamics of persistent

year-round blooms is poorly understood.

Successful water quality management depends on

identifying the local drivers of the cyanobacterial

assemblage for a given lake (Mantzouki et al., 2016;

Paerl, 2017; Moura et al., 2018; Le Moal et al., 2019).
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Despite several shared traits among genera, cyanobac-

teria are a heterogeneous group responding differently

to environmental conditions and abiotic regulators.

Therefore, understanding the link between key traits

and environmental regulators is essential to develop

specific management actions to improve water quality

(Mantzouki et al., 2016). For instance, toxigenic

colonial Microcystis and filamentous Raphidiopsis

are the main known genera to form blooms in tropical

waters (Soares et al., 2013; Brasil et al., 2016; Tilahun

& Kifle, 2019). These genera produce distinct toxins

with implications for water quality, Microcystis

mostly produces the hepatotoxin microcystin, while

Raphidiopsis may synthesize a diverse array of

neurotoxins such as saxitoxin, neosaxitoxin, and

gonyautoxins in addition to cytotoxic cylindrosper-

mopsin (Sukenik et al., 2012; Cirés et al., 2017).

Higher diversity of potential toxin classes during

Raphidiopsis blooms may increase management costs

(i.e., toxin analysis and water treatment) of this genus

compared to Microcystis (Paerl & Otten, 2016).

Each cyanobacteria genus shows specific ecophys-

iological traits that represent adaptations to distinct

environmental conditions (Dokulil & Teubner, 2000;

Mantzouki et al., 2016). Although both Microcystis

and Raphidiopsis have been associated with eutrophic

waterbodies (Soares et al., 2013), they have different

environmental preferences. Raphidiopsis is a shade-

tolerant species that dominates during dry periods and

under low light availability in warm, mixed, and

shallow environments (Padisák, 1997; Reynolds

et al., 2002; Soares et al., 2009, 2013; Costa et al.,

2019). In contrast, buoyant Microcystis is adapted to

higher light intensity (Paerl et al., 1985; Soares et al.,

2009; Torres et al., 2016), low turbulence (Huisman

et al., 2004), and stratified environments (Soares et al.,

2013). Moreover, Raphidiopsis (potential N2 fixer)

might be expected to dominate when nitrogen is

limiting, while Microcystis (non-N2 fixer) is expected

to dominate when nitrogen is not limiting growth

(Schindler et al., 2008; Paterson et al., 2011; Mowe

et al., 2015). Although eutrophic conditions stimulate

both genera, Raphidiopsis blooms are more common

under higher nutrient concentrations, especially phos-

phorus (Soares et al., 2013; Bonilla et al., 2016). Yet,

few studies have reported on the abiotic regulators of

tropical and truly year-round blooms (Mowe et al.,

2015).

Here, we aimed at identifying environmental fac-

tors related to the temporal variability of phytoplank-

ton abundance, community composition, and

cyanobacterial dominance in six shallow man-made

multi-use lakes in the Brazilian semiarid tropical

region during a prolonged drought. We hypothesized

that (i) low water level will correspond to increased

nutrient, phytoplankton, and cyanobacterial biomass

concentration, and (ii) the composition of year-round

cyanobacterial blooms will change with euphotic

depth. We discuss the implications of the results for

multiple uses of semiarid man-made lakes in tropical

climates with perennial blooms.

Material and methods

Study site

We studied six lakes located in the northeast region of

Brazil (Fig. 1), where the regional climate is tropical

Semiarid (BS’h’, Alvares et al. 2013), characterized

by low annual rainfall (average rainfall of 550 mm/

year), high average annual temperature (* 26.5�C),

and evapotranspiration rates above 1500 mm year-1

(Menezes et al., 2012; Braga et al., 2015). Rainfall is

concentrated in a few months, usually from February

to May (i.e., the rainy season), while the other months

are characterized by negative water balance repre-

senting the drought season (Marengo et al., 2017).

Drought is a natural phenomenon in this region;

however, the intensity and duration of dry periods

have been increasing (Marengo et al., 2020). The most

recent drought lasted from 2012 until mid-2018, and

represented one of the longest droughts in the Brazil-

ian semiarid region in the last decades (Marengo et al.,

2018). This prolonged drought varied from moder-

ately to extremely dry before our sampling, according

to the Standard Precipitation Index (SPI) (Figueiredo

& Becker, 2018; Braga & Becker, 2020; Marengo

et al., 2020), with rainfall anomalies between 20 and

60% below the 1981–2000 mean. During this period,

2012 and 2016 were the driest years with rainfall

300–400 mm year-1 below the expected amount

(Marengo et al., 2018). Hence, we sampled lakes with

relatively low water volume during this drought period

in 2017, i.e., three of them had their volume between

11 and 33% of its maximum capacity (Table 1).
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The morphometric variables, area, and maximum

capacity of the lakes were obtained from the State

Department of Environment and Water Resources

(SEMARH, 2017) (Table 1). The studied lakes have

been used for multiple purposes, including irrigation,

fishing, leisure activities, livestock maintenance and,

two of them, Santa Cruz do Apodi (Sta. Cruz) and

Boqueirão de Parelhas (Boq. Parelhas), also for

drinking water supply. This study was conducted as

part of a monthly monitoring program (12 months)

designed to evaluate whether such lakes may be

suitably used for fish cage culture. These lakes match

the scenario described to favor cyanobacteria popula-

tions: warm temperatures, high solar irradiance, and

high vulnerability to nutrient input, especially from

diffuse anthropic sources and internal fertilization

from sediments (Kosten et al., 2011; Cavalcante et al.,

2018).

Sampling and analysis

Water samplings from the six lakes were carried out on

two consecutive days at monthly intervals from

January to December 2017. The sampling point was

set in the deepest part of each lake near the dam. The

mean of three depth measurements at the sampling

point was used as a proxy for maximum depth (Zmax).

Water transparency was assessed using a Secchi disk.

The euphotic depth (Zeu) was calculated as 2.7 times

the Secchi transparency (Cole, 1994). Water

Fig. 1 Study area showing the location of the six studied lakes

Table 1 Morphometric variables of the six lakes included in the study

Man-made lakes Basin Area (ha) Maximum capacity (m3) Volume (%)

Boq. Parelhas Piranhas/Assu 1.267 84.792.119 33.22

Encanto Apodi/Mossoró 124 5.192.538 74.98

Prata Jacú 151 9.321.149 81.87

Tabatinga Potengi 1.090 89.835.678 11.76

Sta. Cruz Apodi/Mossoró 3.413 599.712.000 24.75

Pajuçara Rio Trairi NA NA NA

Volume (%) means annual average of volume during the year 2017 compare to its maximum capacity near to the dam. Data on the

area and maximum capacity for the Pajuçara lake were not available (NA). Data source: State Department of the Environment and

Water Resources, (SEMARH)
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temperature was measured in situ at the bottom and top

of the water column. Water samples were collected

with a PVC tube in each lake (2 m in length)

integrating the first two meters of the water column

beneath the surface. This procedure was repeated five

times spaced around the collecting point with * 2 m

horizontal distance between them. Water samples

(* 30 l/sample) were integrated and stored into pre-

washed bottles. Phytoplankton samples were imme-

diately fixed with acetic Lugol solution. Samples for

chemical analyses were transported to the laboratory

in a refrigerated cooler box.

Aliquots of unfiltered lake water were stored in a

freezer (- 20�C) for total phosphorus (TP) and total

nitrogen analyses (TN). For chlorophyll-a (Chl-a),

total dissolved nitrogen (TDN) and total dissolved

phosphorus (TDP), total suspended solids (TSS),

volatile suspended solids (VSS—Organic), and fixed

suspended solids (FSS—Inorganic), aliquots of water

(250–500 ml) were filtered onto GF/C glass fiber

filters (1.2 lm pore size). TN and TDN were analyzed

by standard techniques using SHIMADZU TOCVCPN

sampler with the SSM-5000A solid sample combus-

tion unit by chemiluminescence. TP and TDP were

determined using the persulfate oxidation method

(Valderrama, 1981). Chlorophyll-a (Chl-a) was quan-

tified by spectrophotometry using ethanol 95% as a

solvent (Wintermans & De Mots, 1965; Jespersen &

Christoffersen, 1987), while TSS, VSS, and FSS were

determined using gravimetric analyses (Chanlett,

1947). To assess the trophic states of the lakes, we

used the criteria proposed by Thornton & Rast (1993).

According to these authors, waters of semiarid lakes

with total phosphorus (TP) concentrations lower than

50 lg l-1 and total chlorophyll-a (Chl-a) lower than

15 lg l-1 may be classified as mesotrophic while

those samples with TP and Chl-a higher than

50 lg l-1 and 15 lg l-1, respectively, may be con-

sidered as eutrophic.

The identification and quantification of phytoplank-

ton community was performed with an optic light and

inverted microscope (9 400 magnification), until

species level (or the lowest taxonomic level possible)

via morphologic and morphometric characteristics.

The individuals (cells, colonies, and filaments) were

enumerated in random fields (Uhelinger, 1964), using

the sedimentation technique (Utermöhl, 1958). At

least 100 specimens of the most frequent species

(P\ 0.05; Lund et al., 1958) were counted. The

volume of the sedimentation chamber was selected

depending on the amount of algae and/or detritus in the

sample. The biovolume (mm3 l-1) of phytoplankton

was obtained based on approximated geometric forms

(Hillebrand, 1999; Fonseca et al., 2014) after counting

40–60 specimens. Phytoplankton biomass (mg l-1)

was calculated by assuming that the unit of fresh

weight is equivalent to a mass of 1 mm3 l-1-

= 1 mg l-1 (Wetzel & Likens, 2000). Species repre-

senting more than 5% of the total biomass were

included in the statistical analyses. The estimation of

mean cell size was based on measurements of at least

40 cells or individuals (case of Raphidiopsis). In the

case of cyanobacteria species with dense colonies such

as Microcystis (except M. protocystis), biovolume was

calculated according to Fonseca et al., (2014), which

uses a conversion factor to consider the free space

between cells as a taxonomic characteristic of each

species. In general, geometric shapes such as sphere,

spheroid, ellipsoid, or a combination there of were

used, while considering three different categories

about colony size, small, medium, and large based on

their greatest axis linear dimension, as detailed further

in Fonseca et al., (2014).

We considered a species or genus dominant if its

relative biomass was[ 50% of the total phytoplank-

ton biomass. To assess the abiotic drivers regulating

Raphidiopsis or Microcystis dominance during per-

sistent blooms, we used a ‘‘Raphidiopsis index’’ (i.e.,

R-index), which is the ratio between the biomass of

Raphidiopsis and the sum of the biomass of Raphid-

iopsis plus Microcystis. Here, 0.5 means equal

biomass of both taxa, 1.0 represents absolute domi-

nance of Raphidiopsis, and 0 (zero) indicates absolute

dominance of Microcystis. The R-index was calcu-

lated for the three eutrophic lakes where the bloom

consisted mostly of Raphidiopsis or Microcystis (i.e.,

3 out of the 4 bloom dominated lakes). The R-index

result was compared to all abiotic variables measured

(Zeu, Zmax, TP, TDP, TN, TDN, TSS, VSS, and FSS)

to identify the difference in environmental conditions

where Microcystis or Raphidiopsis populations dom-

inate. The Chl-a/TP ratio indicates phytoplankton

resource efficiency, values equal to 1:1 indicating

maximal resource use efficiency which phytoplankton

can make use of the carrying capacity, while the ratio

can increase at low values of TP or higher values of

Chl-a under light limitation conditions (Reynolds,

1992; Chorus & Spijkerman, 2020).
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Statistical analyses

The relationships between Zmax, total and dissolved

nutrients, phytoplankton, and cyanobacterial biomass

were evaluated with single factor generalized linear

models (GLM). The deviance value (%D) provided by

the GLM analysis shows the percent of the variability

in the dependent variable that is explained by the

independent variable(s). The normality of the data was

confirmed via Shapiro–Wilk test and when necessary,

variables were log10 (x) or log10 (x ? 1) transformed

to meet the assumptions of linear models: The specific

transformations can be seen in the regression equa-

tions for each GLM (Table 3). The criterion of

P\ 0.05 was considered as statistically significant.

All statistical analyses were performed using R

software (R Core Team, 2018).

Results

Based on eutrophication threshold values regarding

TP and Chl-a, the lakes ranged from mesotrophic (Sta.

Cruz and Prata) to eutrophic (Encanto, Boq. Parelhas

and Pajuçara) (Table 2). Tabatinga lake was consid-

ered meso-eutrophic, with TP concentrations below

the eutrophic threshold and Chl-a concentrations

above the eutrophic threshold (Table 2). Euphotic

depth (Zeu) was highest for the mesotrophic and

lowest for enriched lakes (Table 2). TDP was always

above 3 lg l-1, expecting one month in Sta. Cruz, and

TDN above 450 lg l-1 (Table 2). TP ranged from

12.83 to 231.89 lg l-1, TN from 500.30 to

6864.00 lg l-1, and Chl-a from 0.45 to

193.65 lg l-1 among lakes (Table 2). The Chl-a/TP

ratio varied from 0.02 to 1.44 during our study and was

seldom above the maximal resource use efficiency

(1:1), only 6 out of 71 samples, the lowest overall

annual mean value in Sta. Cruz (0.07) and highest

annual mean in Tabatinga (0.75). Total suspended

solids (TSS), volatile suspended solids (VSS) and

fixed suspended solids (FSS) were higher in the

eutrophic and meso-eutrophic lakes (Table 2). Most of

the lakes had a mean temperature of 28�C (Table 2).

The lakes were well mixed and the difference between

the temperatures of the surface versus deepest layer

was less than 1�C save a single exception.

As expected, the mesotrophic lakes (Sta. Cruz and

Prata) had the lowest mean biomass of total

phytoplankton (0.60 and 3.90 mg. mg l-1; Table 2)

and cyanobacteria (0.05 and 0.70 mg l-1; Table 2). In

contrast, the most nutrient-enriched lakes (Boq.

Parelhas and Pajuçara) had the highest mean phyto-

plankton (149.24 and 97.29 mg l-1; Table 2) and

cyanobacteria biomass (148.19 and 94.40 mg l-1;

Table 2). The mesotrophic lakes were characterized

by a more diversified phytoplankton composition. Sta.

Cruz was mostly dominated by Bacillariophyceae

with cyanobacteria dominance only in January, while

Prata was mostly dominated by Chlorophyceae with

cyanobacteria dominance from October to December

(Fig. 2a, b). Tabatinga had a more pronounced

dominance of cyanobacteria (Fig. 2c), and the

eutrophic lakes (Encanto, Boq. Parelhas e Pajuçara)

had persistent dominance of cyanobacteria virtually

during the entire year (Fig. 2d–f). Thus, increased

dominance of cyanobacteria corresponded closely to

the decline in the relative abundance of eukaryotic

phytoplankton in the more eutrophic lakes.

Cyanobacteria dominated the phytoplankton com-

munity (i.e., cyanobacteria[ 50% of phytoplankton

biomass) in the meso-eutrophic (Tabatinga) and the

three eutrophic lakes (Boq. Parelhas, Pajuçara, and

Encanto) for most months of the year (Fig. 2).

Moreover, the three eutrophic lakes had high

cyanobacterial dominance throughout the year save

one month, and cyanobacteria was[ 80% of the total

phytoplankton biomass for at least nine months over

the year (Fig. 2). In the eutrophic lake Boq. Parelhas,

cyanobacteria was always[ 80% of total phytoplank-

ton biomass (Fig. 2).

During these persistent blooms of cyanobacteria

(i.e., lakes with 11 months of cyanobacterial domi-

nance per year), the dominant cyanobacterial taxa

differed among lakes over time. In the eutrophic lakes,

the high cyanobacteria dominance was manifested in

high biomass throughout the year and total cyanobac-

teria biomass was nearly equal to phytoplankton

biomass. The dominant genera in these eutrophic

lakes (Boq. Parelhas, Pajuçara, and Encanto) was

either Raphidiopsis raciborskii (Woloszynska) Aguil-

era, Berrendero Gómez, Kastovsky, Echenique &

Salerno, or Microcystis aeruginosa (Kützing) Kütz-

ing, and these two species rarely co-occurred (Fig. 3d–

f). Encanto and Pajuçara had a temporal switch of

dominance between these species (Fig. 3d, f). Pseu-

danabaena catenata Lauterborn also appeared from

January to March in Encanto (Fig. 3d). Microcystis
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aeruginosa represented the highest biomass achieved

in the meso-eutrophic and all eutrophic lakes (Fig. 3c–

f). In the meso-eutrophic lake, Tabatinga, cyanobac-

teria biomass varied with time, and in most months

cyanobacteria biomass dominated the phytoplankton

community (Fig. 2); the dominant species was Plank-

tolyngbya limnetica (Lemmermann) Komárková-Leg-

nerová & Cronberg, though Microcystis panniformis

Komárek reached the highest biomass in April

(55.30 mg l-1) (Fig. 3c). In contrast, cyanobacteria

biomass contributed very little to phytoplankton total

biomass in the mesotrophic lakes most of the months

(i.e., 7 months cyanobacteria\ 10% of

phytoplankton biomass in both lakes), where the main

species found was Aphanocapsa sp. in Sta. Cruz and

Prata, though Planktolyngbya sp. also appeared in

Prata (Fig. 3a, b).

Generalized linear regressions with single factor

predictors indicated that Zmax was significantly and

negatively correlated to TP (Fig. 4a; Table 3), and also

TDP, TN, and TDN (P\ 0.001 see Table 1 in Online

Resource), and total phytoplankton biomass (Fig. 4b;

Table 3). In general, lower lake depth corresponded to

an order of magnitude increase in phytoplankton

biomass (Fig. 4b). In turn, TP was significantly and

positively correlated to cyanobacteria biomass

Table 2 Descriptive statistics (average, maximum and minimum values between parentheses) of limnological variables from each

lake during the year 2017

Variables Sta. Cruz Prata Tabatinga Encanto Boq. Parelhas Pajuçara

Zeu (m) 7.5

(3.5–12.1)

3.8

(3.2–4.3)

2.2

(1.6–2.4)

1.9

(0.8–3.5)

1.3

(0.3–1.6)

1.6

(0.3–2.7)

Zmax (m) 16.6

(10.9 -19.3)

3.9

(2.1–11)

5

(3–7)

5.9

(3.8–8.3)

5

(3.4–6.8)

4.52

(1.3–7)

Temp (�C) 28

(26–30)

28

(26–31)

28

(25–30)

28

(25–31)

26

(23–28)

28

(25–30)

TP (lg l-1) 22.7

(12.8–35.8)

38.7

(22.9–69.2)

45.4

(33.1–56.1)

67.6

(16.7–111.9)

97.5

(50.24–170.76)

107.6

(42.9–231.9)

TDN (lg l-1) 10.7

(1.7–20.2)

17

(3.5–60.8)

23.25

(12.8–45)

29.5

(12.8–52.3)

38.8

(16.78–119.75)

40.7

(17.8–67.4)

TN (lg l-1) 690.6

(543.7–802.4)

652.6

(500.3–830.3)

2150.2

(1640–2389)

1502.3

(707.9–2502)

1824.83

(1278–2383)

3462.9

(1328–6864)

TDN (lg l-1) 603.9

(510.3–748.2)

573.7

(456.1- 742.1)

1809.4

(1473–2042)

1046.9

(746.1–1324)

1530

(1212–2070)

2736.3

(1370- 5574)

TSS (mg l-1) 3.2

(1.5–6.3)

6.8

(2.8–12.1)

16.9

(10.4–32)

10.4

(3–34.7)

15.9

(8.2–27.7)

16

(8 –37)

FSS (mg l-1) 1.6

(0 -3.7)

3.1

(0.2–8.4)

5.5

(1.6–13.5)

3.2

(0.6–12)

9.7

(3.4–19.7)

5.1

(2.2–10.8)

VSS (mg l-1) 1.6

(1–2.6)

3.7

(2–6.8)

11.4

(8.5–18.5)

7.2

(2.2–22.6)

6.2

(4.5–8)

10.8

(3 (83–28.5)

Chl-a (lg l-1) 3

(0.9–10.8)

7.6

(3.7–11.6)

35

(20.2–53.6)

32.6

(9–112.7)

29.1

(4.8–51.2)

70.3

(10.4–193.6)

Chl-a/TP 0.07

(0.0–0.22)

0.2

(0.0–0.4)

0.7

(0.4–1.4)

0.36

(0.13–1.3)

0.4

(0.1–0.7)

0.57

(0.23–1)

Phytoplankton (mg l-1) 0.60

(0.0–2.1)

3.9

(0.5–12.7)

13.3

(4.7–64.5)

48.4

(1.6–175.8)

149.2

(4.8–643.1)

97.3

(7.8–469.8)

Cyanobacteria (mg l-1) 0.05

(0.0–0.11)

0.7

(0.0–5.3)

10

(0.9–63.8)

45.8

(0.9–171.7)

148.2

(4.1–643)

94.4

(0.8–468.4)

Temperature refers to measurements at the surface (with\ 1�C difference between surface and deepest point, see results for details)
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(Fig. 4c; Table 3), Chl-a (Fig. 4d; Table 3), and total

phytoplankton (Fig. 4e, Table 3). Based on the

deviance value, TP explained 37% of the variability

in cyanobacteria biomass, 61% of Chl-a, and 38% of

phytoplankton biomass (Table 3). Besides, total

phytoplankton was significantly and negatively corre-

lated to Zeu (Fig. 4f; Table 3), while Chl-a was

significantly positively correlated to TSS (Fig. 4g;

Table 3) and negatively to Zeu (Fig. 4h; Table 3).

Given that Raphidiopsis and Microcystis were the

most representative genera of cyanobacteria in the

lakes with persistent dominance of cyanobacteria

(Fig. 3), the ‘‘R-index’’ was applied to explore the

range of environmental conditions that corresponded

to the dominance of these genera in the three eutrophic

lakes (see methods for details). Microcystis dominated

when TP was\ 123 lg l-1 (Fig. 5a); when TDN

was\ 2260 lg l-1 (Fig. 5b); and when TSS

was\ 16.5 mg l-1 (Fig. 5c). In contrast,

Fig. 2 Phytoplankton

taxonomic composition

shown as relative biomass of

each phytoplankton class

during the year 2017 for

each studied lake
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Raphidiopsis dominated in environments with a higher

range of nutrient concentrations from 39 to 231 lg l-1

TP (Fig. 5a); 953–4910 lg l-1 TDN (Fig. 5b); and

3–47 mg l-1 TSS (Fig. 5c). Moreover, Microcystis

dominated in environments with a relatively deeper

euphotic depth and was never dominant when the

euphotic depth was\ 1.1 m (Fig. 5d). Conversely,

Raphidiopsis dominated at a wider range of euphotic

depth, including those\ 1.1 m (Fig. 5d). Temporal

co-occurrence between Raphidiopsis and Microcystis

was seldom observed. Specifically, out of a total 36

samples, only one (* 3%) had a R-index between 0.4

and 0.6 (i.e., temporal co-occurrence of the cyanobac-

terial taxa). Moreover, only 4 out of 36 samples had an

R-index between 0.1 and 0.9, indicating that in 86% of

the samples either Microcystis or Raphidiopsis dom-

inated the cyanobacterial bloom biomass (i.e.,[ 90%

of total).

Discussion

As expected, the biomass of phytoplankton and

bloom-forming cyanobacteria increased along the

lake�s trophic state gradient. The frequency of

cyanobacterial dominance also increased from episo-

dic to perennial year-round blooms from mesotrophic

lakes to eutrophic lakes, corresponding to a parallel

decline in the relative contribution of eukaryotic

phytoplankton. Moreover, the negative relationship

between lake depth and nutrient concentration or

phytoplankton biomass emphasizes the role of drought

associated water level reduction in intensifying the

effects of eutrophication (Naselli-Flores, 2003;

Aldridge, 2014; Bakker & Hilt, 2016; Brasil et al.,

2016; Costa et al., 2016; Havens et al., 2019). Despite

the variety of physical, chemical, and biological

factors shown to control cyanobacterial blooms, the

concentration of nutrients (P and N) is often the key

driver of cyanobacteria biomass even in tropical

regions with year-round availability of light and high

Fig. 3 Total phytoplankton

and cyanobacteria biomass

for each lake from January

to December of 2017. Bars

indicate biomass of each

cyanobacteria genus and the

black line total

phytoplankton biomass
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temperatures (Paerl, 2017; Amorim et al., 2020).

Indeed, all eutrophic lakes in this study displayed

perennial year-round blooms and highlights the

potential for constant optimal conditions for

cyanobacterial dominance in shallow tropical reser-

voirs (Figueiredo & Giani, 2009; Soares et al., 2009;

Figueredo et al., 2016; Lind et al., 2016; Batista et al.,

2018).

Arid and semiarid regions face drastic changes in

water levels as a consequence of recurrent drought and

short rainy periods that modify physical and chemical

water characteristics affecting phytoplankton biomass

and community structure (Naselli-Flores, 2003;

Medeiros et al., 2015). Several studies demonstrated

that water depth changes induced by drought can cause

an increase in nutrient concentration, favor cyanobac-

teria dominance, and result in profound impacts on

Fig. 4 GLM regressions

showing the relationship

between maximum depth

(Zmax) and a total

phosphorous (lg l-1) and

b phytoplankton biomass

(mg l-1). Also between total

phosphorus (lg l-1) and

c cyanobacteria biomass

(mg l-1); d Chl-a (lg l-1);

and e total phytoplankton

biomass (mg l-1). Also

between euphotic zone

depth (Zeu) and

f phytoplankton biomass

(mg l-1); g Chl-a (lg l-1);

and between h total

suspended solids (TSS)

(mg l-1) and Chl-a (lg l-1).

Dots represent all samples

from the six study lakes

from January to December

of 2017. The line shows the

fit while the shaded area

shows the 95% confidence

interval for each regression
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water quality (Naselli-Flores, 2003; Aldridge, 2014;

Mosley, 2015; Brasil et al., 2016; Rocha Junior et al.,

2018; Havens et al., 2019; Amorim et al., 2020). We

found similar results as shallower lakes had higher

concentrations of total and dissolved nutrient concen-

trations and the phytoplankton community was

composed mainly of cyanobacteria. In many cases,

droughts lead to reduced water level, increased

residence time, and reduced dilution capacity in

freshwater systems (Mosley, 2015). Besides the

increase in nutrient concentration, drought reduces

hydrologic flushing events, so that once a bloom is

Fig. 5 Raphidiopsis Index

in relation to a dissolved

nitrogen (lg l-1), b total

phosphorous (lg l-1),

c total suspended solids

(mg l-1), and d euphotic

zone (m). Horizontal black

dash lines represent equal

biomass for both genera, 0

means 100% dominance of

Microcystis, and 1 means

100% dominance of

Raphidiopsis

Table 3 Summary results of the generalized linear models (GLM) analyzing the relationship between depth (Zmax) and total

phosphorous (TP) and total phytoplankton biomass

Response variable Explanatory

variable

Equation D2

TP Zmax log10(y) = - 0.03x ? 1.91 27.91

Phytoplankton Zmax log10(y ? 1) = - 0.07x ? 1.63 22.38

Cyanobacteria TP log10(y ? 1) = 1.84log10(x ? 1) - 2.18 36.98

Phytoplankton TP log10(y ? 1) = 1.62log10(x ? 1) - 1.64 37.73

Chl-a TP log10(y ? 1) = 1.40log10(x ? 1) - 1.15 60.64

Phytoplankton Zeu log10(y ? 1) = - 2.53log10(x ? 1) ? 2.57 57.33

Chl-a Zeu log10(y) = - 2.40log10(x ? 1) ? 2.51 82.07

Chl-a TSS log10(y) = 1.61log10(x ? 1) - 0.43 74.18

Also, the relationship between TP, euphotic zone (Zeu), and total suspended solids (TSS) and total phytoplankton biomass,

cyanobacteria biomass, and chlorophyll-a (Chl-a). The explanatory and response variable for each GLM is shown together with the

regression equation and % deviance. All regressions were significant at P\ 0.001

123

Hydrobiologia (2021) 848:943–960 953



established it persists until the next flushing (Medeiros

et al., 2015; Paerl, 2018). Besides, the reduction of

depth may enhance sediment resuspension to the water

column, allowing for internal P loading. This may be

have been an important source of phosphorus to the

studied lakes, since shallow semiarid lakes are

susceptible to the internal release of P under certain

environmental conditions such as low depths and

resuspension of sediment due to the wind drive mixing

(Cavalcante et al., 2018). Overall, our findings

corroborate previous results highlighting the vulner-

ability of shallow eutrophic tropical lakes to the role of

nutrients for drought-triggered cyanobacteria blooms

(Bouvy et al., 2000; Bittencourt-Oliveira et al., 2012;

Braga et al., 2015; Medeiros et al., 2015; Costa et al.,

2016; Walter et al., 2018).

Our results also highlight factors regulating the

composition of perennial year-round tropical

cyanobacterial blooms. A key result was that the two

main bloom-forming genera (i.e., Raphidiopsis and

Microcystis) almost never co-occurred in time, as

shown by the R-index. We show that TP correlated

positively with phytoplankton and cyanobacteria

biomass; meanwhile, light availability (as indicated

by euphotic depth in this study) may be an important

regulator of cyanobacterial species composition in

tropical eutrophic lakes. Specifically, the filamentous

cyanobacterium Raphidiopsis dominated in more

turbid (i.e., euphotic depths\ 1.1 m) and nutrient-

enriched waters. Also, Raphidiopsis generally

occurred in a wider range of abiotic conditions

compared to the colonial Microcystis. Similarly, while

Microcystis did not occur at TP higher than

170 lg l-1, Raphidiopsis was present up to the

maximum TP concentration observed in our study

(* 230 lg l-1). In contrast, both cyanobacterial

species occurred similarly across a gradient of TDP,

which suggests that turbidity—not TP—was the main

driver of cyanobacterial species composition. Hence,

our results build on previous reports linking higher

water transparency with Microcystis dominance dur-

ing perennial blooms (Soares et al., 2009; Batista et al.,

2018).

Raphidiopsis is a shade-tolerant species that can

form persistent blooms despite self-shading (Padisák,

1997). In contrast, Microcystis forms surface blooms

and tolerates high levels of UV radiation due to the

enhancement of photoprotective pigments and car-

otenoid (Paerl et al., 1985). Hence, Microcystis thrives

in environments with high insolation and it is sensitive

to low total light availability (Reynolds et al., 2002;

Batista et al., 2018). Our results support the conclusion

of these studies, and further indicate that Microcystis

can be expected to be replaced by Raphidiopsis after

reductions in euphotic depth due to increased phyto-

plankton biomass, Chl-a, and turbidity (TSS) during

perennial cyanobacterial blooms. In general, the

flexibility of Raphidiopsis adaptations to a wide range

of environmental conditions (e.g., light, nutrients,

TSS) via strain-specific responses has been linked to

its expanding global success as bloom-forming

cyanobacteria (Briand et al., 2004; Bonilla et al.,

2012; Burford et al., 2016). Thus, while our results

suggest that reduced water transparency may be

expected to shift the dominance from Microcystis to

Raphidiopsis during perennial tropical cyanobacterial

blooms, the eco-physiology of cyanobacterial species

including Raphidiopsis and Microcystis can have

significant strain-specific variability in their responses

to light and nutrients (Guedes et al., 2019).

The biomass of Planktolyngbya, a shade-adapted

filamentous cyanobacterium (Fabbro & Duivenvoor-

den, 2000), was related to higher concentrations of

suspended solids (VSS and TSS) and shallower depth,

dominating year-round in the meso-eutrophic Taba-

tinga lake. In agreement with previous reports,

Planktolyngbya has been associated with turbid envi-

ronments, with mixed layers and relatively lower

values of phosphate in Brazilian semiarid lakes (Pinto

and Becker 2015; Barroso et al. 2018). Meanwhile,

Aphanocapsa, a coccoid cyanobacterium typically

found in eutrophic environments (Padisák et al.,

2009), was detected under mesotrophic conditions

and associated to lower suspended solids and deeper

water depth (Zmax). Although the dominance of

Aphanocapsa was rare in the studied lakes, micro-

cystin-producing variants of this genus have been

frequently found in other semiarid man-made lakes

(Domingos et al., 1999; Marcon et al., 2017), making

it a potential threat to water quality.

The connection between warmer temperatures and

cyanobacteria dominance is well established (Paerl &

Huisman, 2008; Paerl & Otten, 2013; Visser et al.,

2016; Paerl, 2017; Paerl et al., 2020), even in the

tropics (Bouvy et al., 2000; Huszar et al., 2000; Soares

et al., 2009). In our study, water temperature did not

relate to the biomass or composition of cyanobacteria.

During the sampling period, water temperatures often
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exceeded 25�C, which is the expected threshold for

optimal growth (Paerl, 2018). In a previous microcosm

experiment with samples from one of the eutrophic

lakes in this study (Boq. Parelhas), bloom-forming

cyanobacterial abundance was not favored in the

warmer and nutrient-enriched treatment (de Souza

et al., 2018). This may indicate that temperature is not

a main driver of phytoplankton assemblage in tropical

semiarid lakes, likely because temperatures are

already optimal and, thus, non-limiting.

Results also indicate that nutrients were not limiting

phytoplankton biomass based on nutrient concentra-

tions as well as the Chl-a/TP ratio. Specifically,

nutrients were always above concentrations consid-

ered limiting for phytoplankton uptake (3–10 lg l-1

SRP or 100–130 lg l-1 DIN) (Reynolds, 2006; Cho-

rus & Spijkerman, 2020) with TDN more than tenfold

higher than TDP. Yet, considering that nitrogen was

always above the saturation threshold for phytoplank-

ton nutrient uptake rate, TP was likely determining the

carrying capacity of the system. Indeed, TP represents

the total pool of phosphorous in the water, and the

greater is the pool, the greater is the phytoplankton

biomass sustained. High TP values here, however, do

not exclude the possibility that other factors such as

light or grazers might be limiting the carrying capacity

(Reynolds, 1992, 2006; Chorus & Spijkerman, 2020).

Indeed, that Chl-a/TP values were mostly\ 1 in this

study indicates that factors other than TP were likely

limiting phytoplankton biomass (Reynolds, 1992;

Chorus & Spijkerman, 2020). That said, some of the

lakes here, including eutrophic ones, occasionally had

Chl-a/TP values close to 1, suggesting that maximal

resource use efficiency (i.e., all available TP converted

to Chl-a biomass) was at least sometimes attained.

Future climate scenarios emphasize, besides warm-

ing, that land affected by drought will expand in North

and South America, Africa, southern Europe, and

Australia (Feng & Fu, 2013; Huang et al., 2016). The

combination of warming, dryland expansion, and

increased sediment loading due to land use change

(Donohue & Garcia Molinos, 2009; Moss, 2011) may

increase cyanobacterial bloom duration and favor

Raphidiopsis, at least in shallow lakes. Raphidiopsis

has been long recognized as an invader species

(Padisák, 1997; Antunes et al., 2015) and a further

increase in the expansion of the species populations

dominance is worrisome due to the suite of toxins they

can produce (neurotoxins and cytotoxins).

Finally, our results raise a public health concern

regarding the use of the studied lakes for fish cage

production as intended. The introduction of fish food

in the systems increases nutrient input, which will

likely increase the risk of eutrophication in the lower

trophic state lakes (Gorlach-Lira et al., 2013; Henry-

Silva et al., 2019). While we did not measure

cyanobacterial toxicity here, microcystins from Mi-

crocystis and saxitoxins from Raphidiopsis are widely

reported from other lakes within the same semiarid

region of the state of Rio Grande do Norte where the

study lakes are, and also from Brazilian Semiarid lakes

in general (Molica et al., 2005; Bittencourt-Oliveira

et al., 2014; Fonseca et al., 2015; Lorenzi et al., 2018;

Moura et al., 2018). Hence, it is likely that cyanotoxins

were prevalent in our study lakes as well. Given that

fish may accumulate cyanotoxins (Lee et al., 2017),

the consumption of fish from these lakes raises

additional public health concerns. Furthermore, the

economic sustainability of fish cage production in

such lakes may be questionable since sub-lethal

effects of cyanotoxins even at low concentrations

(Calado et al., 2019) may decrease fish health and

growth (Drobac et al., 2016).

Conclusion

Overall, our results indicate that in shallow tropical

semiarid man-made lakes (i) low water level caused by

prolonged drought, and higher concentrations of TP, is

a key factor leading to perennial cyanobacteria

dominance and (ii) reduced light availability (via

reduced water transparency) is a key factor regulating

the dominance of Microcystis or Raphidiopsis in year-

round perennial blooms in shallow tropical lakes.

Raphidiopsis thrives under higher nutrients and sus-

pended solids (lower light) in lakes where the

temperature is not a constraint. Equally important,

since reports on the dynamics of truly perennial

cyanobacterial blooms are scarce, the present study

provides useful information for developing strategies

for bloom control and management in tropical shallow

lakes under dry climates. We encourage future studies

to use abundance indices similar to the ‘‘R-index’’ here

when evaluating factors associated with shifts in

cyanobacterial dominance during longer duration

blooms.
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Instituto de Gestão das Águas do Estado do Rio Grande do

Norte (IGARN) supported this research. The authors are
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