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Abstract Non-native fish introductions may damage
aquatic ecosystems. To assess the ecological impacts of
the introduced icefish (Neosalanx taihuensis Chen),
three reservoirs in a cascade, including the Shuibuya
Reservoir (SBYR), which is devoid of icefish, and the
Geheyan Reservoir (GHYR) and the Gaobazhou Reser-
voir (GBZR), which have large and small icefish
populations, respectively, were selected for this study.
Three mass-balance trophic models were established
using the Ecopath approach. The results indicated that
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(1) the three ecosystems tended to depend more on the
grazing food chain, possibly because the dominant fish
species in three reservoirs were mainly filter feeders or
planktivores; (2) the large icefish population in the
GHYR decreased the overall energy transfer efficiencys;
(3) the ecosystem indices suggested that the GHYR
ecosystem appeared to be a moderately mature system
with a simple and vulnerable food web structure, and the
lack of complexity was largely attributed to the large
population of introduced icefish; and (4) the “mixed
trophic impacts (MTI)” and niche overlap analysis
indicated that the ecological impacts of icefish mainly
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came from predation and interspecific competition. This
study demonstrates the consequence of icefish intro-
duction to aquatic ecosystems and suggests that appro-
priate control of exotic fish is worth considering.

Keywords Non-native fish - Introduction - Aquatic
ecosystem - Cascading reservoirs - Ecopath - Mass-
balance model

Introduction

China has become the leading producer in global
aquaculture in recent decades (FAO, 2018). Apart from
the increasing aquaculture area and diversified aqua-
culture practices (Wang et al., 2015), the introduction of
alien fish species to China and the translocation of
domestic species across their natural geographic ranges
are considered significant contributors to aquaculture in
China (De Silva et al., 2009; Lin et al., 2015). These fish
species are chosen for their characteristics, such as good
adaptability and plasticity, high reproductive and sur-
vival rates, rapid growth rates, and high edible and
commercial values (De Silva et al., 2006, 2009; Zablot-
ski, 2010). It has been reported that more than 25% of
aquaculture production in China is derived from the
farming of non-native species, and this trend is currently
accelerating (Lin et al., 2015). However, non-native
species introductions also bring risks, e.g., sharply
increasing the number of non-native fish species and
population size and generating further ecological
impacts on fish biodiversity and the entire ecosystem
(Naylor et al., 2001; De Silva et al., 2006, 2009; Kang
et al., 2014; Xiong et al., 2015), which should not be
overlooked. Furthermore, domestic translocation may
be more frequent and pose even higher risks than
international introductions, mainly due to the ease of
transfer to relatively similar geographical and climatic
environments, cost effective and time saving, and lack
of restriction regulations (Lin et al., 2015).

Icefish (Salangidae) in China, with a natural distri-
bution ranging from the Bohai Sea to the Beibu Gulf and
in river systems and their affiliated lakes (Wang et al.,
2005; Zhang et al., 2013), have been commercially
exploited for a long time. However, the wild resources
of icefish have markedly declined due to overfishing and
environmental changes induced by human activities in
recent decades (Wang et al., 2005; Kang et al., 2015).
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China has 2865 perennial lakes each with a water
surface area in excess of 1 km? and with a total water
surface area of 78,000 km?; additionally, China has
98,002 reservoirs with a total storage capacity of
9.32 x 10" m® (MWR & NBS, 2013). To utilize
these extensive water resources and compensate for
the decline in wild fish resources, two main species of
icefish, i.e., Neosalanx taihuensis Chen and Protos-
alanx chinensis Basilewsky, which are widely dis-
tributed and have remarkable ecological plasticity,
have been introduced into numerous reservoirs and
lakes across the country since 1979 (Kang et al., 2015).
Icefish are short-lived species with an average life
span of one year, high fecundity, and excellent
adaptability to new environments that support the
population boom (Zhang et al., 2013; Kang et al,,
2015). N. taihuensis is naturally distributed in the
middle and lower reaches of the Yangtze River and
affiliated water bodies (Wang et al., 2005). In com-
parison to the substantial contributions to wild
resource supplements and social-economic benefits
(Kang et al.,, 2015), relevant assessments on the
impacts on aquatic ecosystems by this group are
limited. The sharp decline of endemic fish species and
their population sizes in plateau lakes in Yunnan
Province (China) during the last 30 years have been
largely attributed to N. taihuensis transplantations
(Xiong et al., 2008; Yuan et al., 2010). Nevertheless,
its broader impacts and underlying mechanisms on
aquatic ecosystems are still poorly understood, mainly
due to the lack of suitable ecosystem approaches that
can be applied to the abundant but fragmented
ecological data.

Ecopath with Ecosim (EwE) has been widely
considered an effective tool for the analysis of trophic
relationships and ecosystem characteristics (Chris-
tensen et al., 2005; Coll & Libralato, 2012; Li et al.,
2019), and this approach can be used to demonstrate
species interactions within an ecosystem (Christensen
et al., 2005; Xu et al., 2011; Cremona et al., 2018) and
evaluate the effects of specific species on ecosystems
based on quantitative estimations of ecosystem char-
acteristics (Heymans et al., 2004; Coll & Libralato,
2012; Ibarra-Garcia et al., 2017). EWE was initially
introduced to China by Tong (1999) and has been
widely applied in marine ecosystem research. More
recently, many EWE models have been constructed for
China’s lake ecosystems (e.g., Li et al., 2009; Jia et al.,
2012; Guo et al., 2013; Kong et al., 2016), whereas the
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application of EwE models for reservoirs is still
limited (Liu et al., 2007; Wu et al., 2012; Deng et al.,
2014). Moreover, EWE models have seldom been used
to assess the impact of non-native species on ecosys-
tems (Khan & Panikkar, 2009; Tesfaye & Wolff,
2018).

The cascading reservoirs, including the Shuibuya
Reservoir (SBYR), Geheyan Reservoir (GHYR) and
Gaobazhou Reservoir (GBZR), from upstream to
downstream, are located on the Qingjiang River
(108.58°-111.58° E, 29.43°-30.58° N), where the
Qingjiang biota (518 million years old) have been
found in the local Burgess Shale-type fossil Lager-
stiatten (Fu et al., 2019). The SBYR, GHYR, and
GBZR construction began in the 2000s, 1980s, and
1990s, respectively. With the completion of impound-
ment processes, N. taihuensis were translocated into
the GHYR and GBZR in 1995 and 1996, respectively,
and the species has formed different population sizes.
However, icefish transplantation did not occur in the
SBYR. Thus, the gradient of icefish population size in
the Qingjiang cascading reservoirs provides us with an
unprecedented opportunity to evaluate the various
effects of icefish transplantation on aquatic
ecosystems.

Materials and methods
Study area

The Qingjiang cascading reservoirs (SBYR, GHYR,
GBZR; Fig. 1) are located on the Qingjiang River,
which is a major tributary of the Yangtze River. The
basic characteristics of the reservoirs during the study
period are listed in Table 1. According to the statistics
from the local Fisheries Bureau of Changyang County,
the icefish yields in 2016 and 2017 accounted for O,
36.60%, and 3.32% of the total fishery catch in the
SBYR, GHYR, and GBZR, respectively. For the
estimation of the composition and biomass of all biotic
groups, a total of 16, 27, and 19 randomly selected
sampling stations were well distributed in the SBYR,
GHYR, and GBZR, respectively.

Ecopath modeling approach

The static mass-balance trophic models of the
Qingjiang cascading reservoirs were constructed using

EwE version 6.5 (freely available at http://www.
ecopath.org; Christensen & Walters, 2004); these
models encompass the full trophic spectrum and are
appropriate for quantitatively assessing ecosystem
structure and function in a systematic way (Chris-
tensen, 1995; Guo et al., 2013). Ecopath assumes that
all functional groups in the ecosystem are relatively
stable and can be defined by a set of linear simulta-
neous equations, i.e., production = catches + preda-
tion  mortality 4+ biomass accumulation + net
migration + other forms of mortality, which can be
re-expressed more concisely as follows:

B;- (P/B);-EE; =Y _B;-(Q/B);- DC; + EX,
j=1

where for prey i and predator j, B is the biomass, P is
the production, (P/B) is the production/biomass ratio,
and EE is the ecotrophic efficiency; (Q/B) is the
consumption/biomass ratio; DC;; is the contribution of
prey i in the diet of predator j; and EX is the export
value (e.g., fishing and the extent of migration). For
each functional group, the DCj;, EX, and at least three
of the four parameters (B, P/B, EE, and O/B) must be
inputted to establish the mass-balance model. In
general, the EE value is difficult to obtain; therefore,
it is usually calculated using other parameters in the
model.

Data collection and parameter estimation
Classifying functional groups

In the Ecopath model, an ecosystem generally includes
three categories: detritus, producers, and consumers,
all of which can be classified into various functional
groups. The classification of functional groups in the
Ecopath model of the Qingjiang cascading reservoirs
was conducted primarily based on their biological and
ecological characteristics and abundance; species with
a high degree of niche overlap were combined to
simplify the food web. In total, 20, 23, and 23
functional groups were defined to establish the Eco-
path models for the ecosystems of the SBYR, GHYR,
and GBZR, respectively (Table 2). It is noteworthy
that the groups of exotic carnivorous fish (e.g.,
Lucioperca lucioperca Linnaeus, Micropterus sal-
moides Lacépeéde, Ictalurus punctatus Rafinesque),
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Fig. 1 Map of the Qingjiang cascading reservoirs. The orange dots represent the sampling sites

Table 1 Basic characteristics of the Qingjiang cascading
reservoirs—year of impoundment, year of icefish transplanta-
tion, annual weight percentage of icefish in total fishery catch
(W%), total length of mainstream, area, capacity, and annual

average values (mean + SE) of WT (water temperature), WD
(water depth), SD (Secchi Disk depth), pH, Cond (conductiv-
ity), TP (total phosphorus), TN (total nitrogen), NH4"-N,
CODyy, (chemical oxygen demand), Chl a (chlorophyll a)

Reservoir SBYR GHYR GBZR

Year of filling 2002 1993 1996

Year of icefish transplantation None 1995 1996

W% 0.00 36.60 3.32

Total length of mainstream (km) 104.55 87.82 47.61

Area (km?) 47.90 72.12 2.23

Capacity (10% km®) 45.80 34.00 3.50

WD (m) 92.23 £+ 6.16 55.74 £ 2.90 19.46 £+ 0.93
SD (m) 4.07 £ 0.28 5.73 £ 0.17 2.16 £ 0.08
pH 7.73 £ 0.08 8.16 + 0.10 8.51 £ 0.10
WT (°C) 20.03 £+ 0.71 20.45 £+ 0.60 19.27 £ 0.70
Cond (ps cm™") 218.56 + 1.67 255.89 +£3.73 241.42 £+ 2.59
TP (mg L™ 0.011 £ 0.001 0.006 +£ 0.000 0.021 £ 0.003
TN (mg L™ 2.69 + 0.11 3.02 + 0.24 2.74 + 0.06
NH, "N (mg L™ 0.21 £ 0.02 0.27 £ 0.03 0.25 £+ 0.02
CODy, (mg LY 2.56 £ 0.38 2.19 £ 0.07 233 £0.15
Chl a (ug LY 3.11 £0.28 220 £ 0.12 5.13 £0.58
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Table 2 Species composition of each functional group for the ecosystem models of the Qingjiang cascading reservoirs

No.  Functional group

Dominant species composition

Mandarin fish

Siniperca chuatsi Basilewsky

Pelteobagrus fulvidraco Richardson, Pelteobagrus vachelli Richardson, Mystus macropterus
Lucioperca lucioperca Linnaeus, Micropterus salmoides Lacépede, Ictalurus punctatus

Cultrichthys erythropterus Basilewsky, Opsariichthys bidens Glinther

Sheatfish Silurus meridionalis Chen, Silurus asotus Linnaeus
3 Catfish
Bleeker, Pseudobagrus truncates Regan
4 Exotic carnivorous fish
Rafinesque
5 Small carnivorous fish
6 Icefish Neosalanx taihuensis Chen
7 Common carp Cyprinus carpio Linnaeus, Cyprinus carpio var. specularis Linnaeus
8 Crucian carp Carassius auratus Linnaeus
9 Tench Tinca tinca Linnaeus

10 Small pelagic fish
11 Small demersal fish

Hemiculter leucisculus Basilewsky

Acheilognathus macropterus Bleeker, Pseudorasbora parva Temminck & Schlegel, Abbottina

rivularis Basilewsky, Sarcocheilichthys nigripinnis Gilinther

12 Silver carp
13 Bighead carp
14 Grass carp

Aristichthys nobilis Richardson

Hypophthalmichthys molitrix Valenciennes

Ctenopharyngodon idellus Cuvier et Valenciennes

Macrobrachium nipponense De Haan, Exopalaemon modestus Heller

15 Bream Parabramis pekinensis Basilewsky

16 Shrimp

17 Zoobenthos Molluscs, Oligochaeta, Aquatic insecta

18 Microzooplankton Brachionus diversicornis Dadav, Trichocerca cylindrica Imhof

19 Cladocera

20 Copepoda

21 Submerged plant
22 Phytoplankton
23 Detritus

Potamogeton crispus Linn

Bosmina longirostris Muller, Diaphanosoma leuchtenbergianum Fischer

Mesocyclops leuckarti Claus, Cyclops vicinus Uljanin

Chlorophyta, Bacillariophyta, Cyanophyta
Bioseston, abioseston, formula feed

The groups of exotic carnivorous fish, icefish, and tench were not included in the ecosystem model of the SBYR

icefish, and tench (Tinca tinca Linnaeus) were not
included in the ecosystem model of the SBYR.

Data collection and parameter estimation

The biomass and catch data for all biotic groups and
the import of detritus were determined between 2016
and 2017 with seasonal field investigations (April and
May 2016, August 2016, November 2016, Jan 2017),
which were assumed to represent their annual mean
values over the year. Zoobenthos, plankton, and
aquatic plants were sampled seasonally at all sampling
sites; these samples were identified and counted to
calculate biomass using routine methods (Huang,
1999). Detritus was defined as dissolved organic

carbon (DOC), particulate organic carbon (POC), and
bacteria according to Heymans et al. (2004). Mea-
surements of total fish quantity and biomass in each
reservoir were generated by hydroacoustics using a
Simrad EY60 split-beam echo-sounder operating at a
frequency of 120 kHz; the transducer was 7° x 7° at
the — 3 dB level, the pulse duration was 0.128 ms,
and the ping rate was 5 pings per second. Specific
composition and relative abundance were determined
by multi-meshed gillnet samplings (30/20 m in height,
180 m in length, evenly divided into 24 parts with
different stretched mesh sizes of 8.6, 3.9, 1.2, 2.0,
11.0, 1.6, 2.5, 4.8, 3.1, 1.0, 7.0, 5.8, 15.0, 24.0, 13.0,
18.0, 26.0, 14.0, 20.0, 19.0, 22.0, 12.0, 17.0, and
16.0 cm). The gillnets with a 30-m height were mainly

@ Springer



3642

Hydrobiologia (2020) 847:3637-3657

used in the deep SBYR and GHYR, and the gillnets
with a 20-m height were used in the shallower GBZR.
The biomass of each fish species in each reservoir was
calculated by multiplying the total number of fish
individuals (by hydroacoustics estimate) by the quan-
titative proportion of each fish species (by gillnet
sampling) by the average weight of each species (by
gillnet sampling). Fish catch data were also obtained
from commercial landings and supplemented by data
from the local fisheries bureau. The fish species
composition of the daily and annual yields were
recorded by fishers from April 2016 to March 2017.

Other biological parameters required for the models
were obtained from the literature. The P/B and Q/B
values of zoobenthos were obtained from the research
of Yan (1998), and the P/B and Q/B values of plankton
and aquatic plants were obtained from related pub-
lished research (Ye, 2007; Guo et al., 2013). The P/B
values, Q/B values, and dietary composition (DC) of
fish were obtained from existing EWE models, which
have been established in other reservoirs in the
Yangtze River basin (Liu et al., 2007; Wu et al,,
2012), and supplemented by data from FishBase
(http://www fishbase.org). Due to the combinations
of some species/groups, the above values were
accordingly and proportionally merged or adjusted.
These combined groups included sheatfish (Silurus
meridionalis Chen, Silurus asotus Linnaeus), catfish
(Pelteobagrus fulvidraco Richardson, Pelteobagrus
vachelli Richardson, Mystus macropterus Bleeker,
Pseudobagrus truncates Regan), exotic carnivorous
fish (L. lucioperca, M. salmoides, I. punctatus), small
carnivorous fish (Cultrichthys erythropterus Basi-
lewsky, Opsariichthys bidens Giinther), small dem-
ersal fish (Acheilognathus macropterus Bleeker,
Pseudorasbora parva Temminck and Schlegel,
Abbottina rivularis Basilewsky, Sarcocheilichthys
nigripinnis Giinther), shrimp (Macrobrachium nip-
ponense De Haan, Exopalaemon modestus Heller),
zoobenthos (Molluscs, Oligochaeta, Aquatic insecta),
microzooplankton (Brachionus diversicornis Dadav,
Trichocerca cylindrica Imhof), Cladocera (Bosmina
longirostris Muller, Diaphanosoma leuchtenber-
gianum Fischer), phytoplankton (Chlorophyta, Bacil-
lariophyta, Cyanophyta), and detritus (Bioseston,
abioseston, formula feed) (Table 2).
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Data processing and model balancing

All required parameters were entered into the Ecopath
model for operational simulation. It is necessary to
debug the model to balance it. After the Ecopath
model is established, the model will export a series of
parameters related to the food web structure and
ecosystem characteristics, which should conform to
objective facts and ecological principles. Generally,
0<EE <1 and 0.1 <P/Q < 0.3 (Christensen &
Walters, 2004). The basic input and output parameters
and the diet matrix of the balanced model are shown in
Tables 3, 4, 5, and 6.

Results
Food web structure and trophic analysis
Trophic structure

The trophic levels (TLs) of all ecological groups in the
SBYR, GHYR, and GBZR ranged from 1 to 3.28, 1 to
3.36, and 1 to 3.55, respectively. The lowest TL of all
ecological groups was composed of detritus, and
primary producers mainly consisted of submerged
macrophytes and phytoplankton. Carnivorous fish
such as mandarin fish (Siniperca chuatsi Basilewsky),
sheatfish, catfish, and exotic carnivorous fish (in the
GHYR and GBZR) occupied the top TLs in the
ecosystems. The TL of icefish was 3.02 in both the
GHYR and the GBZR.

The composition and biomass of the ecological
groups in the three reservoirs differed from each other,
and these differences are clearly and intuitively
depicted in Table 6 and Fig. 2. The compositions of
the ecological groups in the three reservoirs were
similar except that exotic carnivorous fish, icefish, and
tench were absent in the SBYR ecosystem. With
respect to biomass, distinctions were observed among
the three reservoirs: (1) carnivorous fish: the highest
biomass was detected for sheatfish (0.126 t km™2) in
the SBYR, exotic carnivorous fish (0.096 t km—2) in
the GHYR, and exotic carnivorous fish (0.051 t km~?)
in the GBZR; (2) icefish: the biomass values were 0,
5.425, and 0.391 t km ™2 in the SBYR, GHYR, and
GBZR, respectively; (3) secondary consumers: big-
head carp (Aristichthys nobilis Richardson), silver
carp (Hypophthalmichthys molitrix Valenciennes),
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and small pelagic fish (e.g., Hemiculter leucisculus
Basilewsky) were dominant in all three reservoirs; (4)
zooplankton: the highest biomass of zooplankton
(microzooplankton, Cladocera, Copepoda) was
detected in the GHYR, followed by that in the SBYR
and GBZR; (5) primary producers: there were few
aquatic plants (e.g., Potamogeton crispus Linn) in the
three reservoirs; the highest biomass of phytoplankton
(e.g., Chlorophyta, Bacillariophyta, Cyanophyta) was
detected in the GBZR, followed by that in the SBYR
and GHYR; and (6) detritus: the biomasses, from high
to low, were as follows: GBZR (26.7 t kmfz), SBYR
(12.7 t km ), and GHYR (8.2 t km™?).

Most of the EE values of ecological groups in the
three reservoirs were higher than 0.5, and these higher
values were mainly found for commercial species such
as silver carp (0.77, 0.71, and 0.76 in the SBYR,
GHYR, and GBZR, respectively), bighead carp (0.62,
0.76, and 0.65), crucian carp (Carassius auratus
Linnaeus) (0.84, 0.60, and 0.73), small pelagic fish
(0.68, 0.64, and 0.56), and shrimp (0.86, 0.53, and
0.80); meanwhile, the EE values of detritus were 0.75,
0.67, and 0.19, respectively. Additionally, the EE
values of icefish in the SBYR, GHYR, and GBZR
were 0, 0.87, and 0.16, respectively.

Transfer efficiencies

Two main types of food chains could be discerned
from the models in the ecosystems of three reservoirs:
a grazing food chain and a detrital-based food chain
(Fig. 3). For the SBYR, in the grazing food chain, the
amount of energy transferred from TL Ito TL IT was 1
983 t km > year ', the energy transfer efficiency
values from TLs II-V were 4.90%, 11.90%, and
15.90%, respectively, and the average transfer effi-
ciency was 10.90%. In the detrital-based food chain,
the amount of energy transferred from TL I to TL II
was 1 388 t km ? year ', the energy transfer
efficiency values from TLs II-V were 5.02%, 8.87%,
and 16.00%, respectively, and the average transfer
efficiency was 9.96%. The overall average transfer
efficiency in the SBYR ecosystem was 10.43%.

For the GHYR, in the grazing food chain, the
amount of energy transferred from TL I to TL II was 2
723 t km™? year™', the energy transfer efficiency
values from TLs II-V were 5.61%, 8.19%, and 9.72%,
respectively, and the average transfer efficiency was
7.84%. In the detrital-based food chain, the amount of

energy transferred from TL I to TL II was 1 583 tkm™>
year_l, the energy transfer efficiency values from TLs
II-V were 5.74%, 7.40%, and 9.33%, respectively,
and the average transfer efficiency was 7.49%. The
overall average transfer efficiency in the GHYR
ecosystem was 7.65%.

For the GBZR, in the grazing food chain, the
amount of energy transferred from TL I to TL II was
768 t km 2 year !, the energy transfer efficiency
values from TLs II-V were 5.10%, 13.00%, and
14.30%, respectively, and the average transfer effi-
ciency was 10.80%. In the detrital-based food chain,
the amount of energy transferred from TL I to TL II
was 492 t km™~” year™ ', the energy transfer efficiency
values from TLs II-V were 4.96%, 10.20%, and
15.50%, respectively, and the average transfer effi-
ciency was 10.22%. The overall average transfer
efficiency in the GBZR ecosystem was 10.51%.

The amount of energy transferred from TL I to TL
IT in the grazing chain was higher than that in the
detrital-based food chain in all three reservoirs, as was
the average energy transfer efficiency from TL IT to TL
V. The highest overall average transfer efficiency was
observed in the GBZR (10.51%), followed by the
SBYR (10.43%) and the GHYR (7.65%).

Mixed trophic impacts

The “mixed trophic impacts (MTIs)” as described by
Ulanowicz & Puccia (1990) were integrated into EWE.
The MTIs describe the mutual trophic impacts
(including fishing fleets) between various functional
groups in an ecosystem. The MTI analysis of the
ecosystems of the Qingjiang cascading reservoirs
(Fig. 4) indicates that (1) carnivorous fish (e.g., man-
darin fish, sheatfish, catfish, and exotic carnivorous
fish) had different degrees of negative effects on small
carnivorous fish, crucian fish, small pelagic fish, and
small demersal fish in the three reservoirs, and exotic
carnivorous fish had negative effects on most fish
groups; (2) icefish had strong negative impacts on
most of the functional groups in the GHYR mainly due
to trophic predation and competition, whereas these
impacts were minor in the GBZR; (3) main econom-
ically important fish species such as silver carp and
bighead carp had negative impacts on most functional
groups in the three reservoirs; (4) grass carp
(Ctenopharyngodon idellus Valenciennes) and bream
(Parabramis pekinensis Basilewsky) had negative
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«Fig. 2 Schematic diagram of food web structure in the
ecosystems of the Qingjiang cascading reservoirs (for biomass
the units are t km~2). The area of each circle is proportional to
the biomass of each group

impacts on aquatic plants; (5) detritus and producers
such as submerged plants and phytoplankton had
positive effects on almost all functional groups; and
(6) fishing had negative effects on most fish and
shrimp groups.

Niche overlap

The predator niche overlap index and prey niche
overlap index are calculated in EwE using the
approach suggested by Pianka (1973), and these
values reflect the trophic niche overlaps between
various functional groups. The predator niche overlap
index represents the similarity of predators between
groups. The prey niche overlap index describes the
similarity of food sources between groups and indi-
cates the competition intensity for prey. It was
noteworthy that icefish (group 6), small pelagic fish
(group 10), and small demersal fish (group 11)
competed strongly against the same predator in the
GHYR and GBZR. However, the low prey niche
overlap index between icefish and other groups
indicated that icefish experienced moderate levels of
competition (Fig. 5).

Ecosystem properties and indicators

Based on the ecosystem theories proposed by Odum
(1969, 1971) and Ulanowicz (1986), a series of
indicators that can be used to assess the size, stability,
and maturity of the ecosystem are calculated by EwE
(Christensen et al., 2005). Summary statistics and
characteristics of the ecosystems of the three reser-
voirs are listed in Table 7.

The total system throughput (TST) of the SBYR
ecosystem was 8 498.40 t km™2 year ', of which
41.53% was derived from total consumption (TC),
5.92% from total exports (TE), 30.73% from total
respiration (TR), and 21.93% flowed into detritus

(TD). The highest TST, which reached 11 101.11 t
km ™% year™ ', was observed in the GHYR ecosystem,
of which TC, TE, TR, and TD accounted for 40.98%,
7.37%, 30.20%, and 21.45%, respectively. The lowest
TST (7 137.50 t km 2 yearfl) was observed in the
GBZR ecosystem, of which TC, TE, TR, and TD
accounted for 18.46%, 30.60%, 13.62%, and 37.32%,
respectively.

In the SBYR, GHYR, and GBZR, the total primary
production (TPP) was 3 111.03, 4 170.08, and 3
156.25 t km ™2 year ', respectively; additionally, the
TPP/TR values were 1.192, 1.244, and 3.247,
respectively.

Flow indices, including the connectance index (CI)
and system omnivory index (SOI), reflect the degree of
inter complexity of an ecosystem (Pauly et al., 2000).
In the SBYR, GHYR, and GBZR, the CI values were
0.256, 0.234, and 0.236, respectively, and the SOI
values were 0.112, 0.089, and 0.102, respectively.

Discussion

The literature on the effects of exotic fish species on
aquatic ecosystems is plentiful. However, the litera-
ture on the in-depth impacts, such as trophic interac-
tions, energy flow, and mechanism analyses, is still
limited. This research was the first to attempt trophic
modeling for the Qingjiang cascading reservoirs, and
we evaluated the impacts of introduced icefish in three
large reservoirs using the derived Ecopath models;
additionally, we provided further insights for the
management of fish introductions.

The primary findings of this study were as follows:
(1) icefish suffered from high fishing pressure but still
had a considerably high biomass in the GHYR; (2) the
three ecosystems tended to depend more on the
grazing pathway; for example, the transfer efficiency
from TL II to TL III in the grazing chain was relatively
higher in the GHYR, whereas the overall energy
transfer efficiency was the lowest in this reservoir; (3)
the TPP/TR ratio was moderate, while the CI and SOI
values were the lowest in the GHYR; and (4) the MTIs
and niche overlap analysis indicated that icefish had
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«Fig. 3 Schematic diagram of Lindeman spine in the ecosys-
tems of the Qingjiang cascading reservoirs

strong negative impacts on most of the functional
groups in the GHYR.

Most fish groups had high EE values in all three
reservoirs, and so did the icefish in the GHYR (0.87).
This result suggests that commercial fish species are
suffering from high fishing pressure, while prey fish
suffer from a combination of pressures from predation
by piscivores as well as by humans. In fact, icefish
have been the main economically valuable species in
the past two decades in the GHYR and GBZR (Yang,
2012). The annual yield of icefish catches peaked at
875 tons in 2015 in the GHYR and stabilized at
100-200 tons in the GBZR from 2000 to 2015 (Fig. 6).
Despite the high fishing pressure, we still observed
considerably high icefish biomass (5.425 t km™?) in
the GHYR in 2016 and 2017. The high mean TL of the
catch (2.77) in the GHYR might be largely due to the
high yield and high EE value of icefish, which
comprised its high TL (3.02). For the GBZR, an
extreme flood in the summer of 2016 ravaged the
reservoir and resulted in very large losses in fish
resources, especially icefish (Huang et al., 2019).

The transferred energy as well as the average
energy transfer efficiency from TLs II-V in the
grazing chain were higher than those in the detrital-
based food chain in all three reservoirs (Fig. 3). The
dominant fish species in the three reservoirs were
mainly filter feeding fish or planktivorous fish such as
silver carp, bighead carp, small pelagic, and icefish (in
the GHYR). The diet selectivity of the dominant
species may cause ecosystems to depend more on the
grazing pathway. This phenomenon seemed to be
inconsistent with the suggestion by Odum (1969), who
posited that a mature system may tend to depend more
on the detrital pathway. This paradox might be
attributed to the relatively low biomass of piscivorous
and omnivorous species in the three reservoirs, as
these two functional groups seem to be the key factors
responsible for mediating biodiversity—ecosystem
functioning relationships (Petchey et al., 2004; Bruno
& O’Connor, 2005; Griffin et al., 2008). Another
notable feature was that in the grazing food chain, the
energy transfer efficiencies from TLs II-III were
4.90%, 5.61%, and 5.10% in the SBYR, GHYR, and

GBZR, respectively. It has been reported that N.
taihuensis feed on zooplankton throughout almost its
entire life cycle (Sun, 1982; Lin et al., 2015). The
much higher value in the GHYR was likely because of
the efficient utilization of zooplankton by planktivo-
rous fish, especially by the large population of icefish.
However, the large population of icefish in the GHYR
seemed to negatively affect energy transfer in other
parts of the food chain. In comparison to the overall
average energy transfer efficiency in the SBYR
(10.43%) and the GBZR (10.51%), this value in the
GHYR was 7.65%, which was far from the optimal “1/
10 law” (Lindeman, 1942).

According to Odum (1971) and Christensen (1995),
the ratio of TPP to TR (TPP/TR) is an important
measure of ecosystem maturity; ecosystems with TPP/
TR values much higher or lower than 1 are thought to
be immature, while only those with TPP/TR ratios
approaching 1 are considered to be mature. In the
present study, the TPP/TR ratios indicated that the
ecosystems were ranked in descending order of
maturity as follows: SBYR (1.192), GHYR (1.244),
and GBZR (3.247). Additionally, the CI and SOI
values reflect the degree of intercomplexity of an
ecosystem (Pauly et al., 2000) and partly describe
system maturity since the food chain is expected to
change from being linear to being web-like as the
system matures (Odum, 1971). The CI and SOI values
(Table 7) indicated higher intercomplexity in the
SBYR (0.256 and 0.112), followed by that in the
GBZR (0.236 and 0.102), while there was a lack of
intercomplexity in the GHYR (0.234 and 0.089). The
low CI and SOI values in the GHYR appeared to be
related to the low biomasses of other fish groups that
had different ecological strategies (Guo et al., 2013).
Relatively speaking, the indices above illustrate that
the SBYR ecosystem is mature and stable and has high
complexity; the GHYR ecosystem is moderately
mature and stable and has low complexity; and the
GBZR ecosystem is immature and unstable (which
might be largely due to the extreme flood in 2016, as
mentioned above) and has moderate complexity. The
moderately maturity of the GHYR ecosystem
appeared to be reasonable due to its long history of
filling; nevertheless, the low complexity that probably
resulted from the introduced icefish indicated that the
maturity of the GHYR ecosystem might be decreasing.
Additionally, the low overall average energy transfer
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Fig. 4 Mixed trophic impacts in the ecosystems of thep (a) SBYR
Qingjiang cascading reservoirs. Blue color represents positive Impacted group
effect, red color represents negative effect. The darkness of the
color indicates the degree of the impacts
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Fig. 5 Niche overlap status
in the ecosystems of the
Qingjiang cascading
Ieservoirs
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Table 7 Ecosystem attributes of ecosystems of the Qingjiang cascading reservoirs

Parameters Units SBYR GHYR GBZR
Total consumption (TC) t km =2 year™! 3525.70 4549.58 1317.84
Total exports (TE) t km™2 yearf1 502.15 817.79 2184.19
Total respiration (TR) t km™2 year™' 2608.87 3352.30 972.05
Sum of all flows into detritus (TD) t km™> year™' 1861.67 2381.35 2663.42
Total system throughput (TST) t km—2 year_1 8498.40 11,101.11 7137.50
Total production (TP) t km™2 year’1 3322.71 4457.44 3238.47
Total net primary production (TPP) t km~? year™' 3111.03 4170.08 3156.25
Net system production (NSP) t km 2 year ™' 502.15 817.78 2184.19
Total biomass (excluding detritus) (TB) t km™2 32.01 27.08 22.77
Total catch t km™> year™! 28.48 19.76 12.40
Mean trophic level of the catch (MTLC) 2.48 2.77 2.48
Gross efficiency (catch/net primary production) 0.009 0.005 0.004
TPP/TR 1.192 1.244 3.247
TPP/TB 97.203 153.98 138.61
TB/TST 0.004 0.002 0.004
Connectance index (CI) 0.256 0.234 0.236
System omnivory index (SOI) 0.112 0.089 0.102

and other fish groups (Tables 4, 5). The competitive
advantage established by icefish enabled it to form and
maintain a large population size. The high predator
niche overlap indexes between small pelagic fish and
small demersal fish and icefish were also conducive to
the expansion of the icefish population, as small
pelagic fish and small demersal fish partly diverted the
pressure to be prey. Although a few studies show that
the introduction of exotic fish into a foreign ecosystem
contributes to its maturity and stability (Villanueva
et al., 2008; Fetahi et al., 2011), but this only occurs
when the exotic fish fill the niche that has not yet been
fully occupied by other functional groups and never
outcompete against native species (Leal-Florez et al.,
2008; Tesfaye & Wolff, 2018). As is often the case,
however, almost all findings in the present study
indicated that the considerable disparity in population
size between icefish and other fish groups might
increase in the future, which may further simplify and

@ Springer

damage the food web. Previous studies have indicated
that fish diversity can strengthen ecosystem function
and food web structure (Wahl, 2010; Carey & Wahl,
2011), and the removal or control of exotic fish could
increase biodiversity and strengthen ecological integ-
rity (Bunnell et al., 2006; Laplanche et al., 2018). The
present study also indicates that different population
sizes of exotic fish have different levels of impacts on
ecosystems. Therefore, in view of maintaining the
stability and integrity of an aquatic ecosystem, appro-
priate human control, such as high fishing pressure on
some target species such as icefish in the present study,
is worth considering to provide food security while
minimally disturbing the ecosystems. However,
potential complications (e.g., bycatch, cascading
effects) of target species control in the present study
were not fully addressed, and we suggest that specific
studies are needed before pragmatic management
interventions can be taken.
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Fig. 6 Annual yield (t) of 1000 -
icefish (Neosalanx
taihuensis Chen) over 900 -
17-year period from 2000 to
2016 in the GHYR and < 800 -
GBZR (Data come from < 700 -
Fisheries Bureau of S
Changyang Country) E 600 -
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>
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<
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