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Abstract The processes that lead to a successful

invasion are complex. Here, we investigated life

history characteristics potentially explaining the inva-

sion success of Potamopyrgus antipodarum, a small

parthenogenetic and ovoviviparous freshwater snail

that was recently added to the top ‘‘hundred worst’’

alien species in Europe. We monitored monthly, over

the course of 1 year, shell size, number of brooded

embryos, and the presence of castrating parasites at

three Northeast German sites: a lake (the Kiessee), a

stream (Hohen Sprenz), and a small spring brook

(Rügen) (N = 1165). We found that (1) despite sharing

the same clonal lineage, drastic differences in space

and time for size and fecundity were observed, and

these differences were linked to specific environmen-

tal variables (water temperature, salinity, and current);

(2) P. antipodarum reproduces all year around, except

at one of our sites, the spring Rügen, where the

reproduction was seasonal; (3) none of our dissected

specimens was infected by parasites. Together with

ovoviviparity and the ability to reproduce partheno-

genetically while being released from parasite pres-

sure, the ability to adapt readily to a wide range of

habitat conditions is likely paramount for the invasive

success of P. antipodarum.

Keywords Potamopyrgus antipodarum � New

Zealand mud snail � Shell size � Fecundity � Plasticity �
Adaptation � Invasive species

Introduction

Biological invasions represent a major ecological and

economic threat (Pimentel et al., 2006; Nentwig,

2007) and are even viewed as a component of global

change (Vitousek et al., 1996). Invasive species have

often been attributed with specific life history charac-

teristics. For instance, once the transportation and

establishment phase have been overcome (Sakai et al.,

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice,

Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic

Invasive Species III

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10750-020-04333-8) con-
tains supplementary material, which is available to authorized
users.

Present Address:
G. Verhaegen (&)

Advanced Science-Technology Research (ASTER)

Program, Institute for Extra-cutting-edge Science and

Technology Avant-garde Research (X-star), Agency for

Marine-Earth Science and Technology (JAMSTEC), 2-15,

Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan

e-mail: gerlienverhaegen@hotmail.com

M. Haase

e-mail: martin.haase@uni-greifswald.de

G. Verhaegen � K. von Jungmeister � M. Haase

AG Vogelwarte, Zoologisches Institut und Museum,

Universität Greifswald, Soldmannstraße 23,

17489 Greifswald, Germany

123

Hydrobiologia (2021) 848:2153–2168

https://doi.org/10.1007/s10750-020-04333-8(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-8942-8112
http://orcid.org/0000-0002-9281-8752
https://doi.org/10.1007/s10750-020-04333-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10750-020-04333-8&amp;domain=pdf
https://doi.org/10.1007/s10750-020-04333-8


2001), high growth rate and reproduction often allow

for rapid spread of invasive species by outcompeting

native populations. Astounding examples comprise

the Nile perch Lates niloticus (Linnaeus, 1758) in

Lake Victoria (Goldschmidt, 1996) and the zebra

mussel Dreissena polymorpha (Pallas, 1771) in the

northern USA (Caraco et al., 1997) that caused the

extinction of native species and profound ecological

changes. The adaptability to novel environments has

also been considered a key feature in the range

expansion success of invasive species (e.g., Eriksen

et al., 2012; Mccann et al., 2014; Verhaegen et al.,

2018a), including the adaptation of their life history

traits (e.g., Dlugosch & Parker, 2008; Jaspers et al.,

2014; Li et al., 2015). Studying the adaptation of life

history traits of invasive species to their new habitat is,

therefore, crucial for two reasons. First of all, it is

essential to reveal predispositions of species to

become successful invaders or pioneers (Sakai et al.,

2001) to prevent, manage, and mitigate biological

invasions. Second, invasive species can be used as

models providing insights on how organisms will cope

with the consequences of current human-enhanced

environmental change, as by definition the habitat they

invade is new (Sakai et al., 2001).

In the present study, we investigated the spatial and

temporal fluctuations in the life history traits size and

fecundity of small invasive fresh and brackishwater

snail Potamopyrgus antipodarum (Gray, 1843) in

northern Germany. Commonly called the New Zeal-

and mud snail, this gastropod is native to New

Zealand, but has successfully invaded fresh and

brackish waters in Australia, Europe, Japan, the

USA, and Chile within the last 180 years (Smith,

1889; Alonso & Castro-Dı́ez, 2012; Collado, 2014).

Mixed populations of sexually reproducing diploid

males and females coexist in the native range with

parthenogenetically reproducing polyploids which are

almost all females (Dybdahl & Lively, 1995; Neiman

et al., 2011). Interestingly, in the entire invaded range,

however, only these clonally reproducing females can

be found (Hauser et al., 1992; Hughes, 1996; Jacobsen

et al., 1996; Gangloff, 1998; Weetman et al., 2002;

Städler et al., 2005; Verhaegen et al., 2018a). These

invasive lineages were found only by few individuals:

in Europe for instance, only two mitochondrial

lineages (Städler et al., 2005; Verhaegen et al.,

2018a) have been identified. On the nuclear level,

the diversity was somewhat higher, but the divergence

estimated based on microsatellites (Weetman et al.,

2002) or SNPs was fairly low suggesting post-invasion

diversification (Verhaegen et al., 2018a).

The impact of this snail on its invaded habitat varies

from place to place, which is possibly explained by

different densities this snail can reach (Alonso &

Castro-Dı́ez, 2012). In Australia, for instance, a

positive relationship has been found between densities

of P. antipodarum and native benthic fauna (Schreiber

et al., 2002), whereas in the USA and Chile a negative

effect was shown on endemic macroinvertebrate

communities (Kerans et al., 2005), including snails

(Richards, 2004; Riley et al., 2008; Collado et al.,

2019a, b). In Europe, P. antipodarum has been

recently added to the top ‘‘hundred worst’’ alien

species (rank 42), among which it is the third ‘‘worst

alien’’ mollusc, after D. polymorpha and the golden

apple snail Pomacea canaliculata (Lamarck, 1819)

(Nentwig et al., 2018). The high rank of P. antipo-

darum was mostly attributed to its major environmen-

tal impact on ecosystems (e.g., Hall et al., 2003) and

other species through competition, a medium impact

on vegetation through herbivory, and a major socio-

economic impact on animal production [e.g., on

weight and health of rainbow trout (Vinson & Baker,

2008)], although the literature investigated for the

scoring was obviously not restricted to European

populations (Laverty et al., 2015). Although P.

antipodarum can dominate gastropod and mollusc

communities in Europe (e.g., Gérard et al., 2003;

Lewin & Smoliński, 2006), only a weak effect on

macroinvertebrate communities has been reported so

far (Múrria et al., 2008; Schmidlin et al., 2012).

The invasive success of P. antipodarum has been

attributed to various factors. Successful transportation

and establishment of P. antipodarum has been asso-

ciated with a wide tolerance to physical and chemical

parameters including high salinities (e.g., Gérard et al.,

2003; Leclair & Cheng, 2011), a wide range of

temperatures (e.g., Winterbourn, 1969; Hylleberg &

Siegismund, 1987), and desiccation (e.g., Richards

et al., 2004; Lysne & Koetsier, 2006). Another cause

of its success is the so-called ‘‘enemy release’’

hypothesis (Darwin, 1859). In its native range, P.

antipodarum is subjected to strong selective pressure

by castrating parasitic trematodes (e.g., Winterbourn,

1974; Hechinger, 2012) locally favoring sexual over

asexual reproduction (Bell, 1982; Jokela et al., 2009;

Neiman & Koskella, 2009; Neiman et al., 2017). In the
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invaded range, however, infections are extremely rare

(e.g., Zbikowski & Zbikowska, 2009; Gérard et al.,

2017; Verhaegen et al., 2018a), this ‘‘release’’ allow-

ing P. antipodarum to fully exploit the advantages of

parthenogenetic reproduction (Lively, 1992): repro-

ductive assurance (i.e., no need for finding mating

partners) (Jain, 1976; Lloyd, 1979; Gerritsen, 1980)

and no ‘‘two-fold’’ cost related to production of males

(Maynard Smith, 1971; Gibson et al., 2017). In

addition, rapid population growth, fast spread, and

high competition for primary resources have been

attributed to its high fecundity (Real, 1971; Lassen,

1979; Alonso & Castro-Dı́ez, 2008). Ovoviviparity is

certainly another factor facilitating successful inva-

sion (Collado, 2014). At last, the low genetic diversity

and lack of recombination related to asexual repro-

duction are further compensated by this invasive snail

through its ability to adapt its shell morphology, which

is linked to fecundity, to the environment through

phenotypic plasticity (Kistner & Dybdahl, 2013;

Verhaegen et al., 2018a).

Here, we monitored shell size and fecundity of

three populations of P. antipodarum in Northeast

Germany in monthly intervals over the course of

1 year. We tested the following three expectations that

would explain the invasion success of this clonal

invader: (1) despite being genetically practically

identical and being geographically closely located,

we expected to observe differences in the monitored

life history traits among populations, and these

differences to reflect temporal and spatial environ-

mental changes encountered in their markedly differ-

ent habitats—a lake, a stream, and a shallow spring

brook. If differences among these populations were

observed, these would most likely be due to pheno-

typic plasticity (Dybdahl & Kane, 2005; Gust et al.,

2011; Kistner & Dybdahl, 2013; McKenzie et al.,

2013; Verhaegen et al., 2018a, b) that shows the ability

of this species to adapt its life history traits to the

environment; (2) we expected P. antipodarum to

reproduce all year around (e.g., Schreiber et al., 1998,

McKenzie et al., 2013) and therefore to find both

brooding females and the presence of juveniles every

month; 3) according to the ‘‘enemy release’’ hypoth-

esis and previous studies from the invaded range (e.g.,

Zbikowski & Zbikowska, 2009, Verhaegen et al.,

2018a), the absence of castrated parasites was

expected. Our findings were then compared to those

in the species’ native range (Winterbourn, 1970a), and

in other invaded territories, namely in Australia

(Schreiber et al., 1998) and in the USA (McKenzie

et al., 2013). Despite P. antipodarum being part of the

top ‘‘hundred worst’’ alien species present in Europe,

this is the first study that monitored in situ fluctuations

in life history traits for European populations over a

year. It is also the first in situ study designed with prior

genetic knowledge in order to assure comparable

genetic background (Verhaegen et al., 2018a).

Materials and methods

Collection

Potamopyrgus antipodarum was collected monthly

between February 2017 and January 2018 (excluding

October 2017) from three Northeast German sites: a

lake, the Kiessee in Jarmen (referred to hereafter as

Jarmen, N 53� 550 44.5, E 13� 180 60.0), a stream, the

Mühlbach in Hohen Sprenz (Hohen Sprenz, N 53� 550

24.2, E 12� 110 57.7), and a small, shallow spring

brook, located in Quellsumpf Ziegensteine, Klein

Stresow, on the island of Rügen (Rügen, N 54�210

23.7, E 13� 360 27.0) (Fig. 1). These locations were

identical to the sites with acronyms DEJAR, DEHOB/

T, and DERUG, respectively, from Verhaegen et al.

(2018a), who showed that snails collected at these

locations during summer 2015 and/or 2016 shared the

same mitochondrial haplotype. The populations from

Hohen Sprenz and Jarmen also shared the same

nuclear SNP genotypes (62 neutral loci); however, the

one from Rügen differed slightly by seven substitu-

tions (Verhaegen et al., 2018a). Snails were collected

with a small dip net from the bottom or hard substrates

at a maximum depth of 50 cm and fixed immediately

in 80% ethanol. On each sampling occasion, the

following environmental parameters were recorded:

water temperature (�C) and salinity (ppm) using a

water tester (Milato�, Germany), water current [lentic

(i.e., without flow) vs. lotic (i.e., with flow)], and shade

coverage (%).

Measurement of life history traits

The shells of the snails were individually pho-

tographed under a Carl Zeiss Discovery V20 micro-

scope with a Plan Apo S 9 0.63 objective and an

AxioCam MRc camera, by identically positioning
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their aperture facing up and the coiling axis oriented

horizontally on a silicone support. Shell height

(Fig. 2) was then measured with the Axio Vision

microscope software (Zeiss). To ensure that the

variation in size was unrelated to manipulative error,

this part was only conducted by one of us, KvJ, and a

repeatability test was performed by photographing and

measuring the same 29 snails twice 2 weeks apart and

testing the difference in shell height with a two-sample

paired t test (t = - 1.427, P = 0.165). Individuals

were assigned to one of the following age classes:

adult, subadult, and juvenile. An adult snail was

defined as a fully grown individual displaying a

continuous apertural lip (Verhaegen et al., 2018a).

Snails displaying a discontinuous apertural lip and a

shell height of 70% or above than the average shell

height of the collected adults were classified as

Fig. 1 Sampling locations
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subadult, whereas smaller snails were classified as

juvenile.

After being photographed and measured, the shells

were dissolved in EDTA (0.5 M, pH 7.5) for 3 days to

expose the soft bodies. The snails were then dissected

under a microscope to determine their sex (absence of

a penis for females, Winterbourn, 1970b) and the

presence of parasites. The number of embryos as

proxy for fecundity was counted for each female by

opening their brooding pouches (see Fig. 24A in

Haase, 2008).

Statistical analyses

Univariate statistics were conducted to compare

differences in shell height and environmental param-

eters among localities and differences in the number of

brooded embryos among localities and age classes.

Generalized linear models (GLMs), that allow for both

continuous and categorical explanatory variables and

do not require normally distributed errors of the

response variables, were used to examine the influence

of environmental parameters and the sampling month

on the life history traits. The influence on shell height

of adult snails (N = 614) was assessed with a linear

model (LM). Collinearity between the explanatory

variables was detected by calculating pairwise Good-

man and Kruskal’s tau (GK tau) measures, a method

suited for both categorical and numerical variables,

with the GKtauDataframe function implemented in

the R package GoodmanKruskal v. 0.0.2 (Pearson,

2016). For pairs showing a strong association (GK tau

values * 1), only one variable was maintained. The

remaining explanatory variables tested in the model

were as follows: month, temperature, salinity, and

current. The influence on fecundity was tested with the

same explanatory variables plus shell height with a

GLM for Poisson-distributed errors. For this GLM, we

only kept female adults brooding at least one embryo

(N = 423) to meet the assumptions of the Poisson

distribution.

The LM and the GLM were built with the lme4 v. 1.

1-19 package in R (Bates et al., 2015) by stepwise

dropping explanatory variables based on type-II Wald

Chi-square tests of the Anova function implemented in

the car package. The positive or negative effects of the

final remaining significant explanatory variables were

visualized by means of plots using the predictorEffects

function (Fox & Weisberg, 2018) of the effects v. 4.0-3

package (Fox, 2003). All statistical tests were exe-

cuted in PAST v. 3.20 (Hammer et al., 2001) or in R v.

3.5.1 (R Core Team, 2013). Non-parametric tests were

used if normal distributions were rejected by a

Shapiro–Wilk test and P values were Bonferroni

corrected in case of multiple testing (e.g., pairwise

tests).

Results

Variation in life history traits

A total of 1165 snails were collected between Febru-

ary 2017 and January 2018. Of these, 614 were adults,

403 were subadults, and 148 were juveniles. These

three age classes were found all year around at least at

one sampling location (Table 1). All dissected snails

were females uninfected by parasites.

The shell height of adult snails varied between

2.2 mm (sampled in Rügen, February 2017) and

5.6 mm (Hohen Sprenz, December 2017), with an

annual median size of 3.9 mm. Significant differences

in adults’ shell height were found among three

locations (Kruskal–Wallis Chi2 = 356.3,

P\ 0.0001; pairwise Mann–Whitney U tests
Fig. 2 Shell height of Potamopyrgus antipodarum. Adult

individual collected in Jarmen in February 2017
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summarized in Table 2), with the largest snails

observed in Hohen Sprenz (median = 4.3 mm), fol-

lowed by Jarmen (4.0 mm) and Rügen (3.5 mm)

(Fig. 3a). In a similar fashion, the shell height of the

subadult snails varied significantly among locations

(Chi2 = 189.9, P\ 0.0001; Table 2), with the largest

snails found in Hohen Sprenz (median = 3.9 mm),

followed by Jarmen (3.6 mm) and Rügen (3.1 mm).

Brooding subadult snails (‘‘with’’ embryos) were

significantly larger (median = 3.8 mm) compared to

non-reproducing subadults (‘‘without’’ embryos;

3.2 mm; U = 4590.5, P\ 0.0001). The size of brood-

ing subadult snails varied again significantly among

localities (Hohen Sprenz = 4.1 mm, Jar-

men = 3.8 mm, Rügen = 3.4 mm; Chi2 = 56.5,

P\ 0.0001; Table 2; Fig. 4).

The number of embryos brooded by adult snails

varied between zero and 41 (Hohen Sprenz, Septem-

ber 2017) and between zero and 28 (Hohen Sprenz,

December 2017) in subadults. Adult snails brooded

significantly more embryos (median = 7) compared to

subadults (median = 0) (U = 68862, P\ 0.0001).

The annual total number of brooded embryos varied

significantly among localities, both for adult (Chi2-

= 204.7, P\ 0.0001) and subadult (Chi2 = 54.8,

P\ 0.0001) snails. The highest number of embryos

was found in Hohen Sprenz (median adults = 14,

subadults = 6), followed by Jarmen (adults = 9, sub-

adults = 0) and Rügen (adults = 0, subadults = 0)

(Table 3; Fig. 3b).

Environmental and seasonal effects on life history

traits

Water temperatures varied between 2.2 (Jarmen,

February 2017) and 21.6�C (Hohen Sprenz, August

2017), with the coldest temperatures recorded between

December and March (6.1 ± 2.1�C—mean ± SD)

and the warmest between June and September

(18.8 ± 2.9�C) (Fig. 5a). Potamopyrgus antipodarum

were observed crawling at the bottom of the sampling

locations throughout the year, including during the

coldest months when the water surface was frozen.

The annual mean water temperature was highest in

Hohen Sprenz (13.1 ± 6.9�C), followed by Jarmen

Table 1 Number of snails

collected monthly per age

class at the three sampling

locations between February

2017 and January 2018

Hohen Sprenz Jarmen Rügen

Adult Subadult Juvenile Adult Subadult Juvenile Adult Subadult Juvenile

Feb. 7 2 1 21 1 0 11 6 12

Mar. 21 4 6 14 1 0 12 10 2

Apr. 18 5 1 21 6 0 27 29 7

May 19 6 9 24 8 0 25 9 0

Jun. 24 9 5 23 4 1 22 25 7

Jul. 18 6 1 19 5 2 19 15 6

Aug. 16 13 3 18 8 0 19 14 2

Sep. 18 10 2 17 5 3 16 20 4

Nov. 18 6 4 24 39 21 16 16 3

Dec. 23 14 3 13 33 8 12 12 4

Jan. 22 29 0 18 10 1 19 23 30

Total 204 104 35 212 120 36 198 179 77

Table 2 Mann–Whitney U and P values for the pairwise

comparisons of shell height between sampling locations

All adults

Hohen Sprenz vs. Jarmen U = 9503, P\ 0.0001

Hohen Sprenz vs. Rügen U = 1227, P\ 0.0001

Jarmen vs. Rügen U = 4417, P\ 0.0001

All subadults

Hohen Sprenz vs. Jarmen U = 3122, P\ 0.0001

Hohen Sprenz vs. Rügen U = 1169, P\ 0.0001

Jarmen vs. Rügen U = 3950, P\ 0.0001

Subadults with embryos

Hohen Sprenz vs. Jarmen U = 638, P = 0.007

Hohen Sprenz vs. Rügen U = 89, P\ 0.0001

Jarmen vs. Rügen U = 99, P\ 0.0001
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(12.2 ± 6.8�C), and the lowest in Rügen

(11.7 ± 4.0�C). Salinity varied between 130 (Hohen

Sprenz, February 2017) and 379 ppm (Jarmen,

September 2017), but showed no clear seasonal

pattern (Fig. 5b). The annual mean salinity was the

highest in Rügen (287.3 ± 36.1 ppm), followed by

Jarmen (265 ± 65.5), and the lowest in Hohen Sprenz

(180.3 ± 29.76).

Sampling month (Fig. 6), current, temperature, and

salinity had significant effects both on shell height and

the number of brooded embryos of adult snails (Fig. 7,

Supplementary Fig. S2, Table 4). Temperature had a

positive and salinity a negative effect on the snails’

size and fecundity. Larger and more fecund snails

were found in lentic sites compared to lotic ones.

Larger snails also brooded significantly more

embryos. Overall, the shell size stayed relatively

constant throughout the year, with a peak observed in

winter during the months December through January,

whereas fecundity was low from February to May, and

high throughout the rest of the year, with a peak

observed in June (and a second one in Hohen Sprenz in

January; Figs. 6, 7). Monthly patterns in fecundity

varied, however, among localities (Fig. 6). Adult

snails were observed to brood embryos year-round in

Hohen Sprenz and Jarmen, with a more pronounced

increase toward summer in Jarmen, whereas brooding

adults in Rügen were predominately found in summer

Hohen Sprenz Jarmen Rügen
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Fig. 3 Annual variation in shell height of adult females (a) and

number of embryos brooded by adult and subadult females

(b) among sampling location. Boxplots show the median

(middle line), quartiles (boxes), 1.5 times the interquartile range

(IQR) (whiskers), and extreme values (dots). Significant

differences are illustrated by non-overlapping notches (± 1.58

times the IQR divided by the square root of the number of

observations (Chambers et al., 1983))
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Fig. 4 Differences in shell height between subadult females

that were brooding (with) or did not carry (without) embryos per

sampling location. Boxplots show the median (middle line),

quartiles (boxes), 1.5 times the interquartile range (IQR)

(whiskers), and extreme values (dots). Significant differences

are illustrated by non-overlapping notches

Table 3 Mann–Whitney U and P values for the pairwise

comparisons of annual number of brooded embryos between

sampling locations

Adults

Hohen Sprenz vs. Jarmen U = 14400, P = 0.007

Hohen Sprenz vs. Rügen U = 4869, P\ 0.0001

Jarmen vs. Rügen U = 8774, P\ 0.0001

Subadults

Hohen Sprenz vs. Jarmen U = 3875, P\ 0.0001

Hohen Sprenz vs. Rügen U = 4480, P\ 0.0001

Jarmen vs. Rügen U = 8977, P\ 0.0001
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between June and September, but were nearly absent

the rest of the year. In Hohen Sprenz, subadult snails

showed a similar annual pattern compared to the

adults, whereas in Jarmen and Rügen, the seasonal

fecundity pattern was even more pronounced, with

brooding occurring only from April to August in

Jarmen, and half as long, from June to August, in

Rügen.

Discussion

In order to explain the invasion success of P.

antipodarum, we monitored shell size and fecundity

of three of its Northeast German populations in

monthly intervals over the course of one year. We

found the following as expected: 1) drastic differences

in space and time for these life history traits, and these

differences were linked to specific environmental

variables and 2) none of our dissected specimens to be

infected by castrating parasites. Our expectation that

invasive populations of P. antipodarum would be

reproducing all year around was met at all but one

sampling site, site Rügen, where it was seasonal.

Environmental effects on life history traits

Shell size and fecundity of adults varied among

locations, despite the close relationship of the snails

and their clonal nature (Verhaegen et al., 2018a). The

observed variation was explained as response to

specific environmental factors. The observed positive

effect of temperature was in accordance with previous

studies on size (Verhaegen et al., 2018b), growth rate

(Dybdahl & Kane, 2005), and fecundity (Dybdahl &

Kane, 2005; Gust et al., 2011; McKenzie et al., 2013;

Verhaegen et al., 2018b). The positive effect of

temperature on fecundity and size has, however, an

upper limit following an optimum curve, as was

experimentally shown (Macken et al., 2012; Bennett

et al., 2015). The temperature range we measured

(2.2–21.6�C) was within the experimentally tested

tolerance range of 0–28�C (Winterbourn, 1969;

Hylleberg & Siegismund, 1987; Bennett et al., 2015)

and below the upper limit for fecundity (Macken et al.,

2012) and growth (Bennett et al., 2015). Other annual

temperatures measured in situ where living snails were

found year-round ranged from 0 to 20�C in Denmark

(Lumbye & Lumbye, 1965), 2–19�C in a stream in

Colorado (McKenzie et al., 2013), and from 11 to

23�C in an Australian lake (Schreiber et al., 1998). We

collected living snails from the ice-covered lake in

Jarmen in February 2017 at a water temperature of

2.2�C. The collection of living snails from an ice-

covered lake at 1.5�C was so far only reported from the

Netherlands (Dorgelo, 1987). However, survival rates

apparently drop dramatically once temperatures drop

below 0�C (Hylleberg & Siegismund, 1987).

Salinity had a negative effect on the measured

traits, which was in contrast to some of the previous

studies. A negative effect on fecundity, but a positive

effect on size were reported for native freshwater

populations (Verhaegen et al., 2018b), whereas no

effect was found in European brackish and freshwater

populations (Verhaegen et al., 2018a). Herbst et al.

(2008) experimentally showed a positive effect of
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conductivity (ranging from 25 to 200 lS/cm) on

growth, suggesting the need of calcium ions for shell

formation. The discrepancies to previous findings is

perhaps best explained by a study of Levri et al.

(2014), who showed that the effect of conductivity on

growth rate was lineage dependent among American

populations.

Current was the third factor influencing the mea-

sured life history traits, with snails in lentic habitats

being larger, but breeding slightly less embryos

compared to those from lotic habitats. Usually, the

opposite, i.e., larger snails with increasing flow, has

been reported both in the native (Haase, 2003) and

invaded (Verhaegen et al., 2018a) ranges. This

difference is probably due to the lotic habitats, Hohen

Sprenz (a stream) and Rügen (a spring), being much

smaller compared to the lentic site Jarmen (a lake).

Indeed, Verhaegen et al. (2018b) showed the largest P.

antipodarum to be found in lakes and large streams,

the size to decrease with stream size, and the smallest

snails to be found in springs. The effects of temper-

ature, salinity, and water body type we observed

explain why the smallest and less fecund individuals

were found in Rügen, a small spring where the coldest

annual temperatures and highest annual salinities were

recorded. The lower fecundity was shown for lotic

habitats before (Verhaegen et al., 2018a) and likely

represents a trade-off with living in habitats where

more resources have to be allocated to fight

Table 4 Coefficients of the

two (generalized) linear

models showing the effects

of the significant

explanatory variables on

shell height and fecundity

Coefficients for the

categorical variables month

and water type are related to

the categories ‘‘February’’

and ‘‘lake’’, respectively

SE standard error, df
degrees of freedom
aResidual deviance (shell

height): 54497128 on 554 df
bResidual deviance

(fecundity): 1199.2 on 380

df

Estimate SE t P

Shell heighta

Intercept 4622.092 82.691 55.896 \ 0.0001

Temperature 43.802 6.877 6.369 \ 0.0001

Month (April) - 278.810 89.626 - 3.111 0.002

Month (May) - 126.297 85.684 - 1.474 0.141

Month (June) - 209.206 118.595 - 1.764 0.078

Month (July) - 190.367 124.026 - 1.535 0.125

Month (Aug.) - 222.347 133.665 - 1.663 0.097

Month (Sep.) - 142.148 128.278 - 1.108 0.268

Month (Nov.) - 302.437 88.666 - 3.411 0.001

Month (Dec.) 298.211 75.475 3.951 \ 0.0001

Month (Jan.) 575.485 69.515 8.279 \ 0.0001

Water type (stream) - 193.057 28.687 - 6.730 \ 0.0001

Salinity - 4.322 0.251 - 17.239 \ 0.0001

Fecundityb

Intercept - 0.044 0.274 - 0.162 0.872

Shell height 0.001 0.000 13.396 \ 0.0001

Temperature 0.042 0.009 4.537 \ 0.0001

Month (April) - 0.032 0.145 - 0.218 0.827

Month (May) 0.233 0.142 1.644 0.100

Month (Jun.) 0.586 0.196 2.995 0.003

Month (July) 0.074 0.200 0.368 0.713

Month (Aug.) 0.101 0.211 0.481 0.631

Month (Sep.) 0.311 0.209 1.488 0.137

Month (Nov.) 0.030 0.140 0.213 0.831

Month (Dec.) 0.179 0.128 1.399 0.162

Month (Jan.) 0.553 0.126 4.386 \ 0.0001

Water type (stream) - 0.183 0.045 - 4.032 \ 0.0001

Salinity - 0.003 0.000 - 6.463 \ 0.0001
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dislodgment risk due to increased drag and lift forces

(Verhaegen et al., 2019).

The shell size of adult snails had a positive effect on

the number of embryos they brooded, as demonstrated

previously (McKenzie et al., 2013; Verhaegen et al.,

2018a, b). As expected, the size of brooding subadults

varied also significantly among locations. Female size

at maturity was already known to vary among native

populations (Jokela et al., 1997), early reproduction

being hypothesized to be a response against high

parasitic pressures (Jokela & Lively, 1995). Here, in

the invaded range, size of both adult and brooding

subadult snails was the smallest in Rügen. This

sampling location obviously provided the least favor-

able environmental conditions for both size and

fecundity (see above). By modifying the size at sexual

maturity, P. antipodarum appears to ensure reproduc-

tion also in less suitable habitats not supporting large

body size, however, at the cost of smaller brood size.

Early sexual maturity is also known to be another life

history trait favoring the range expansion success of

invasive species [e.g., in invasive pines (Richardson

et al., 1990)]. We, therefore, suggest early sexual

maturity and the adaptation of size at sexual maturity

to be added to the list of functional traits explaining the

invasive success of P. antipodarum (Alonso & Castro-

Dı́ez, 2008).

The adaptation of life history traits to changing

environments has been a key feature in the range

expansion success of invasive species (e.g., Dlugosch

& Parker, 2008; Jaspers et al., 2014; Li et al., 2015).

Any forms of adaptation can be mediated through

natural selection of beneficial alleles or genotypes

introduced into a population through mutation, migra-

tion, or recombination (Carja et al., 2014), and/or by

phenotypic plasticity (Sultan, 1995). In the case of

asexual species or lineages reproducing without

recombination, which is the case for the ameiotic

parthenogenetic invasive lineages of P. antipodarum,

the adaptation of life history traits as observed here,

should mostly be the result of phenotypic plasticity

(e.g., Verhaegen et al., 2018a, b). Besides the

measured environmental parameters, other biotic

factors and pollutants are also known to influence life

history traits in P. antipodarum. For instance, fecun-

dity can be affected by population density (e.g.,

Neiman et al., 2013; Zachar & Neiman, 2013) or

anthropogenic chemicals interfering with reproductive

endocrinology (e.g., Duft et al., 2003; Jobling et al.,

2003; Geiß et al., 2017). Therefore, it would be

interesting to extend this study and test the effect of

additional factors on the variability of plasticity in life

history traits.

Temporal fluctuations

Size, represented by shell height, and fecundity were

also significantly affected by the sampling month. The

size of adult snails slightly increased throughout the

year to reach a peak in January (Fig. 7). In Denmark,

however, a seasonal increase in average weight of

unspecified age class was reported toward the summer

months (Lumbye & Lumbye, 1965), but the annual

variation in shell size was not investigated before.

Annual fecundity patterns of adults and subadults

varied among locations. At two of our three locations,

adult snails brooded embryos year-round. In Rügen,

however, brooding adults were almost only found

during the warmest months, from June to September.

In the literature, adult snails are usually reported to

brood throughout the year [e.g., in New Zealand

(Winterbourn, 1970a) and in the USA (McKenzie

et al., 2013)], with the exception of an Australian site

where brooding adults were absent in one month

(Schreiber et al., 1998). This is, thus, the first report of

a population that does not reproduce throughout most

of the year. The number of brooded embryos by adults

and subadults varied seasonally, in concordance with

what was found on other continents (Winterbourn,

1970a; Schreiber et al., 1998; McKenzie et al., 2013).

The duration of the period of maximum fecundity

varied, however, among locations and age classes.

Adults showed a longer high-reproductive season than

subadults, and this high-reproductive season of adult

snails from Hohen Sprenz was twice as long compared

to that on Rügen lasting from June to January. A less

pronounced seasonality in the life history traits such as

growth rate and reproduction is obvious at sites with a

more benign climate year-round (Bennett et al., 2015).

We observed juveniles throughout the year at least at

one of the three sites. The occasional absence in our

collections was probably due to our sampling method.

Year-round recruitment in this species has been shown

both in the native (Winterbourn, 1970a) and invaded

ranges (Schreiber et al., 1998; Bennett et al., 2015).

Although not investigated in this study, it is important

to note that densities of P. antipodarum have also been

reported to fluctuate through time and among localities
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(e.g., Lumbye & Lumbye, 1965; Dorgelo, 1987;

Schreiber et al., 1998; Bennett et al., 2015) and can

influence the growth rate and fecundity in P. antipo-

darum as well (e.g., Neiman, 2006; Neiman et al.,

2013; Sieratowicz et al., 2013; Zachar & Neiman,

2013).

Sex and parasitism in the invaded range

All dissected snails were females and none were

infected by parasites. This is what is typically found in

the invaded range of P. antipodarum. Previous studies

found no infected snails (N = 425) in Belgium,

Germany, or the Netherlands (Verhaegen et al.,

2018a), an 0.01–0.02% infection rate in Poland

(Zbikowski & Zbikowska, 2009; Cichy et al., 2017),

0–0.10% in the USA (Adema et al., 2009; McKenzie

et al., 2013), 0.22–0.48% in France (Gérard & Dussart,

2003; Gérard & Le Lannic, 2003; Gérard et al., 2003),

1.33% in the United Kingdom (UK) (Evans et al.,

1981), and 3.6% in an Australian lake (Schreiber et al.,

1998). The presence of males in the invaded range is

even rarer: although the percentage of males in Europe

ranged from zero to 5% in earlier studies (Wallace,

1985), no males were recently reported in Belgium,

Germany, the Netherlands, Poland, and the USA

(Cichy et al., 2017; McKenzie et al., 2013; Verhaegen

et al., 2018a), only one male individual out of 5,774

was found in France (Gérard et al., 2003), and 1.1% of

males were found in Australia (Schreiber et al., 1998).

Our observations support yet another factor explaining

the invasive success of P. antipodarum: the combina-

tion of the ‘‘Enemy release’’ and the ability to

reproduce parthenogenetically (Lively, 1992).

Conclusion

The processes that lead to a successful invasion are

complex. In situations where natural predators are

lacking, a competitive invader is determined by

specific r-strategy life history traits (e.g., fast growth,

high reproduction) and phenotypic plasticity (Sax &

Brown, 2000; Facon et al., 2006; Sorte et al., 2010).

An additional advantage is given to invaders that

reproduce asexually or self-fertilize and are, therefore,

not limited by the difficulties of finding a mate at the

early stages of colonization (Tobin et al., 2011). Here,

we characterized the growth and reproduction of such

an asexually reproducing invader, P. antipodarum, by

monitoring monthly, over the course of a year, shell

height and number of brooded embryos in three

Northeast German populations. Castrating parasites

are typically lacking in its invaded range and were

absent as well from all our dissected specimens. Our

expectation that P. antipodarum would reproduce all

year around, which was observed for other invaded

continents (Schreiber et al., 1998; McKenzie et al.,

2013) and the native range (Winterbourn, 1970a), was

only met at two of our three monitored sampling sites.

Brooding females at the small spring brook site Rügen

were only found predominantly during the summer

months. As expected, however, we found drastic

differences in adult size, size at sexual maturity, and

fecundity among sampling locations and over time,

despite the high genetic similarity of these clonal

lineages (Verhaegen et al., 2018a) and the small

geographical scale. The observed spatial and temporal

variation of these life history traits was obviously due

to adaptation to the differing local habitat conditions

and most likely an environment-induced plastic

response. Together with ovoviviparity and the ability

to reproduce parthenogenetically while being released

from parasite pressure, the ability to adapt readily to a

wide range of habitat conditions is likely paramount

for the invasive success of P. antipodarum.
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Alonso, Á. & P. Castro-Dı́ez, 2008. What explains the invading

success of the aquatic mud snail Potamopyrgus antipo-
darum (Hydrobiidae, Mollusca)? Hydrobiologia 614:

107–116.
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