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Ectoparasites are more vulnerable to host extinction
than co-occurring endoparasites: evidence from metazoan
parasites of freshwater and marine fishes
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Abstract The extinction of fish species can direct

and indirectly affect many groups of associated

species, among which parasite communities can be

the most susceptible. However, the intensity of this

effect depends on the structure interaction networks.

This study evaluated whether networks constituted of

fish ectoparasites or endoparasites differed in their

robustness to the loss of host species and to what

extent these potential differences are explained by the

network structures. We used path models to evaluate

the direct and indirect effects of host and parasite

richness, connectance, and nestedness on the robust-

ness of ecto- and endoparasite-based networks. In

most cases, nestedness was the descriptor that best

explained the robustness of the fish-parasite networks,

and co-extinctions are less likely when the fish species

act mainly as hosts of the generalist parasites. Both the

richness of the host species and connectance in the

networks have an essential indirect influence on

robustness. Regardless of the extinction sequence,

the ectoparasite-based networks showed higher vul-

nerability to host species loss when compared to

endoparasite-based networks. These findings highlight

the importance of considering both ecto- from

endoparasites to better understand the structure and

vulnerability of host–parasite networks.

Keywords Ecological interaction networks � Co-
extinctions � Antagonistic networks � Host specificity

Introduction

Parasites comprise a high proportion of global species

diversity (Windsor, 1998; Poulin, 2014). They provide

essential functions and services to ecosystems, many
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M. Almeida-Neto

Instituto de Ciências Biológicas, Departamento de

Ecologia, Programa de Pós-Graduação em Ecologia e

Evolução, Universidade Federal de Goiás, Campus II,
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of which through indirect effects on host abundance

(Hatcher et al., 2012; Frainer et al., 2018). The local

extinction or even the reduction in the population of

host species tends to negatively affect parasite com-

munities (Dallas & Cornelius, 2015). Highly special-

ized parasites use few host species and are generally

more vulnerable to the loss of their host species than

generalist parasites that use various host species,

although the latter are also negatively impacted by the

extinction of their hosts (Farrell et al., 2015). Given

that many species will be extinct in the next few

decades due to anthropogenic activities, even species

that are not considered as vulnerable to extinction may

become endangered because of interspecific depen-

dencies (Kolbert, 2014).

Marine and freshwater fishes are among the most

threatened animal groups worldwide (Costello et al.,

2016; Darwall & Freyhof, 2016). The local extinction

of fishes is mainly driven by habitat loss, invasive

species, water pollution, and overfishing (Franco,

2013; Costello et al., 2016; Darwall & Freyhof, 2016).

Fish parasites, in turn, are ubiquitous in aquatic

environments, being characterized by high diversity

of species, life history strategies and habitat require-

ments (see Bush et al., 2001). Fish parasites range

from species whose life cycles only include aquatic

hosts (e.g., parasites with simple cycles as monoge-

neans, which do not have intermediate hosts, or

parasites with complex cycles and all aquatic hosts) to

species that use terrestrial hosts during their life cycles

(e.g., birds are definitive hosts of various species of

trematodes to which fish are intermediate hosts).

Additionally, parasite species can be classified into

two categories depending if they live on or in their

hosts: ectoparasites that live on the host’s body and

have direct contact with the external environment, and

endoparasites that live in their host’s body and have

almost no direct contact with the external environment

(Bush et al., 2001).

Resource sharing within an ecosystem provides that

different species interact with each other, directly or

indirectly (Rynkiewicz et al., 2015). The extinction of

host fish species can lead to changes not only for host–

parasite interaction, but also for other species with

which interact directly (e.g., species competing for

resources, species that preyed or were preyed on by

extinct species) or indirectly (e.g., environment use

and/ or intermediate interaction by shared parasite

species). The extent to which species in parasite

assemblages persist after the loss of one or more host

species constitutes their robustness against co-extinc-

tions, which is an important predictor of how species

extinctions cascade through ecological networks (Pas-

cual & Dunne, 2006). In this context, analyzing the

fish-parasite networks allows us to understand how

parasites will respond to the extinction of their host

species (Dallas & Cornelius, 2015).

The topological properties of ecological networks,

such as connectance and nestedness, are emergent

properties arising from species-specific differences in

their specialization, adaptations and interaction con-

straints (Dallas & Cornelius, 2015; Vanbergen et al.,

2017). These topological properties are important

because mediate how the set of species responds to

extinctions in ecological networks (Tylianakis et al.,

2010; Vieira & Almeida-Neto, 2015). In ecological

networks, the connectance measures the proportion of

realized interactions in relation to the total possible

(Pimm, 1982). Nestedness measures the extent to

which the interactions of species with fewer connec-

tions represent a subset of the interactions performed

by species with more connections (Almeida-Neto

et al., 2008; Almeida-Neto & Ulrich, 2011). Both

measures reflect the way parasite species use the host

species available on the network, for example, lower

connectance and nestedness values indicate more

specialist interactions on the network. However, high

connectivity values do not correspond a perfectly

nested structure.

There is a wide variation in the ability of parasite

species to use their hosts as resources. Nevertheless,

they can be classified by specialists for their ability to

infect only one host species (or a limited number of

host species), while other parasite species are gener-

alist in being able to infect many host species (Ventim

et al., 2012; Walker et al., 2017). In a previous study

(Bellay et al., 2015), we showed that endoparasite-

based networks are characterized by higher con-

nectance and nestedness values than ectoparasite-

based networks. Therefore, the effects of host extinc-

tion on the structure of fish-parasite networks is

expected to be distinct for ecto- and endoparasites

considering the network structure, being fish ectopar-

asites generally more specialists and endoparasites

less specialists in the network (Bellay et al., 2015).

When host species are removed from networks with

higher connectance values, such as the fish-endopar-

asite networks, in general, the parasites are less prone
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to going extinct because many of them have alterna-

tive host species. Furthermore, the different life

strategies of the parasites (e.g., ecto- or endoparasites;

or simple life cycle species that no require interme-

diate host or complex life cycle species that need one

or more intermediate hosts) may lead to variations in

their ecological functions within the host fish-parasite

network (Lima-Jr et al., 2012; Bellay et al.,

2015, 2018; Lima et al., 2016).

The primary aim of this study was to evaluate

whether the primary extinction of host fish species

results in different patterns of the co-extinction of

endoparasites and ectoparasites. In a previous study,

Dallas & Cornelius (2015) demonstrated that the

random extinction host species lead to a faster loss of

parasite species when compared to the extinction

sequence starting with the host species with the

smallest to the greatest parasitic communities. These

authors evaluated different models of host removal

considering the number of interactions between

species in a binary host fish-parasite network but did

not evaluate the effects of this removal on robustness

considering ecto- and endoparasites separately. These

two groups of fish parasites have a great diversity of

species (see Bush et al., 2001; Eiras et al. 2008) and,

although each group may be composed of members of

different taxa (for example: ectoparasites—monoge-

neans, copepods, branchiura and others; endopara-

sites—nematodes, trematodes, cestodes,

acanthocephalans and others), members of each group

share morphophysiological and ecological character-

istics that allow them to occupy microhabitats outside

the host body (ectoparasites—exposed, for example,

to environmental variations) or inside (endopara-

sites—exposed, for example, to peristaltic move-

ments, gastric juices of the host).

Nevertheless, as ectoparasites are exposed to more

extreme environmental conditions (variation of water

currents), they change their morphology and biology

(such as mobility and reproductive strategies; Bush

et al., 2001). These changes tend to lead, for example,

to the need to have robust organs for attachment and

copulation, which can be the basis for more effective

speciation on the one host species (Rohde & Heat,

1998). These authors reinforce that such robust

attachments and copulatory organs are absent in

digenean and other helminth endoparasites, and their

speciation may depend on the speciation of their hosts.

Here, we expected that ectoparasites are more

susceptible to host fish extinction due to their higher

host specialization (i.e., lower connectance) and lower

host overlap (i.e., lower nestedness) when compared to

endoparasites (see Bellay et al., 2015). Thus, fish-

ectoparasite networks submitted to the simulated loss

of hosts were expected to present a greater decrease in

the richness of the ectoparasites when compared to the

reduction of endoparasites.

Materials and methods

Study system

We gathered from the literature 22 binary host–

parasite networks composed of fish species and their

metazoan parasites species from worldwide marine

and freshwater ecosystems (Table S1). The number of

host and parasite species in the networks range from 6

to 91 and from 20 to 420, respectively. Bellay et al.

(2015) brought these networks together by searching

The Interaction Web Database (IWDB, available in

https://iwdb.nceas.ucsb.edu/resources.html; access

date: April 7th, 2020), articles available on Google

academic searches using ‘‘fish parasite’’, ‘‘fish host–

parasite interaction’’ as search terms; after the sear-

ches, only studies with data that characterized net-

works were selected (S. Bellay, personal

communication; see Bellay et al., 2015 for data

availability). Because they are binary networks, we

only deal with aspects related to species richness of

parasites by fish species and the number of host spe-

cies that each parasite species occurs, and data on the

abundance/intensity of interactions are not used.

The criterion for selecting the networks that were

analyzed in this study was that these were composed of

both ecto- and endoparasites. Our analyzes do not

cover data from small aquatic environments (i.e.

streams, temporary lakes) due to the lack of enough

data on fish-parasite interactions in the network

approach. Each network was decoupled into two

subnetworks: (i) those with only ectoparasites (or

ectoparasite-based networks), (ii) those with only

endoparasites (or endoparasite-based networks).

Because both ecto- and endoparasites were presented

in all networks we were able to perform within-

network comparisons between these two parasite

groups.
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The taxonomic groups of ectoparasites were Acari,

Branchiura, Copepoda, Hirudinea, Isopoda, Mollusca,

Monogenea, and Myxosporea. In turn, the endopara-

sites were represented by Acanthocephala, Aspi-

dobothrea, Cestoda, Digenea, Nematoda, and

Pentastomida. Following the studies conducted by

Vázquez et al. (2005) and Bellay et al. (2013, 2015),

we considered the different stages of the parasites as

different ‘‘functional species’’ in the networks.

Network structure and robustness

The selected descriptors of the networks were con-

nectance and nestedness. Connectance is the sum of

interactions in the network divided by number of

possible interactions (i.e. number of parasite species

times number of host species) in binary bipartite

network (see Dunne et al., 2002). Connectance was

calculate in R Programming Environment (R Core

Team, 2019), with bipartite package, networklevel

fuction and connectance index (Dormann et al., 2008).

Nestedness values were obtained from Bellay et al.

(2015) and can be calculated using the NODF index

(Almeida-Neto et al., 2008) in bipartite package.

NODF index measures, for each species pair, the

proportion of interactions of the more specialized

species that are predicted by the less specialized ones.

The NODF value for the entire network is then

calculated as the mean nestedness value for all species

pairs. Connectance and nestedness values are avail-

able as supplementary material (Data S1).

We evaluated the effect of host extinction on the

robustness of ecto- and endoparasite-based networks

according to two criteria: (1) the random removal of

host fish species; and (2) the sequential removal of

host fish species from the least to the most parasitized.

The second criterion follows the assumption that less

parasitized hosts are less abundant or less susceptible

to the parasites, requiring more specific conditions that

make them more susceptible to extinction. For each

criterion, whenever a host species was removed, all

parasite species that had no remaining host species

were also removed from the network.

We calculated the robustness of the parasite species

against coextinctions using the robustness index (R),

which ranges from 0 to 1 and measures the area under

the coextinction curve (Burgos et al., 2007). The

robustness approaches its maximum value when most

of the parasite species remain in the network after most

of the host species have been removed and tends to 0

when the networks collapse with the removal of a few

host species (Burgos et al., 2007). We generated the

extinction curve using the second.extinct function

(with 100 randomizations) of the bipartite package.

We obtained the co-extinction curves through two

primary extinction sequences mentioned earlier.

Statistical analysis

A paired t test (Zar, 2010) was used to verify

significant differences between the robustness values

of ecto- and endoparasite-based networks, considering

the proposed scenarios for the removal of host species.

We used the path analysis to investigate the effects of

connectance and nestedness on network robustness,

controlling the potential for direct and indirect effects

of host richness and parasite richness. The application

of the R index for both proposed removal procedures

resulted in four path models when considering the

networks with ecto- and endoparasites separately. We

considered host richness (log) and parasite richness

(log) as exogenous explanatory variables that can

affect robustness both directly and indirectly, medi-

ated by their effects on connectance and nestedness

(NODF). The effect of connectance on robustness was

also decoupled in a direct effect and an indirect effect,

mediated by nestedness. Therefore, we assumed that

the variations in nestedness depend on the degree of

overall specialization (i.e., the connectance) of the

host–parasite networks. Only the direct effect of

nestedness on robustness were considered in the path

models.

We assessed the model fit through the chi-squared

test and by examining the Tucker–Lewis Fit Index

(TLI), the Comparative Fit Index (CFI), and the Root

Mean Square Error of Approximation (RMSEA). We

used the approach introduced by MacCallum et al.

(1996) to determine the statistical power of the path

models. The statistical power was calculated using

RMSEA through the R code developed by Preacher &

Coffman (2006). Normality was verified using Mar-

dia’s test, and outliers were inspected using the

Mahalanobis distance. We conducted the path analy-

ses using the AMOS 5.0 software (Arbuckle, 2003).
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Results

The random extinctions of host fishes resulted in

higher coextinctions of the ectoparasites than of the

endoparasites in the same networks, which indicates

that endoparasite networks were more robust against

random primary extinctions (Fig. 1a; t = 4.37; DF =

21; P\ 0.0001). Similarly, endoparasite-based net-

works were more robust than ectoparasite-based

networks against the removal of host fish species from

those least to most connected to different parasite

species (Fig. 1b; t = 2.62; DF = 21; P = 0.0173).

The selected path models used to explain the

robustness of parasite assemblages against the loss of

host species showed an appropriate fit (Table 1). The

explained variation in robustness in the path models

for endoparasites was of 79% and 59% for random and

sequential extinction of the hosts from the least to the

most connected fish species, respectively (Fig. 2). For

ectoparasites, the path models accounted for 57% and

27% of the variation in robustness for random and

sequential host extinction from the least to the most

connected fish species, respectively.

The influence of the network structure on the

robustness against secondary extinctions showed

marked differences between ecto- and endoparasite-

based networks (Fig. 2). For host-endoparasite net-

works, nestedness was the network structure that most

influenced robustness, showing direct positive effects

on robustness for both random and sequential removal

of host fish species (Fig. 2a, b). On the other hand,

nestedness presented no significant effect on parasite

coextinctions considering the random removal of hosts

for host-ectoparasite networks but showed a positive

effect on robustness considering the sequential

removal of host species (Fig. 2c, d). In addition,

connectance had no significant direct effect on

robustness for endoparasite-based networks but

showed positive and negative significant effects for

ectoparasite-based networks considering both random

and sequential removal of host species.

The direct and indirect effects of host richness and

parasite richness on robustness against extinction also

varied between ecto- and endoparasite-based net-

works. Regarding the random extinction of the fish

species, the richness of host species showed a strong

positive effect on robustness for ectoparasites but no

direct effect for endoparasites. However, because the

indirect effect of host richness on robustness was even

more significant than its direct effect for ectoparasite

networks, the total net effect did not differ between

ecto- and endoparasite-based networks (Table 2). In

addition, parasite species richness had significant, but

opposite, effects on robustness in endoparasite and

ectoparasite networks under the random extinction of

the host species. We verified a significant direct effect

in the richness of the host species for endoparasite-

based networks regarding the sequential extinction

Fig. 1 Robustness from 22 host–parasite networks with ecto-

and endoparasites analyzed separately. a Random primary

extinction; b Primary extinction from least to most connected

host species. Details on the networks are presented in the

supplementary material. Lines link endoparasite- and ectopar-

asite-based subnetworks from the fish-parasite network. In red

the mean line of robustness values (mean ± SE)
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from the least to the most connected host fish species

(Fig. 2b).

Discussion

We found that simulated primary extinction of fish

species lead to a faster lost of ectoparasites when

compared to the lost of co-occuring endoparasites.

This finding was consistent regardless of the fish

extinction sequence (i.e., random extinction or from

least to most connected host species) used in the

coextinction simulations. In addition, results using

path analyses show that the influence of network

structure on the vulnerability of fish parasite faunas to

the extinction of their host differ between ectoparasite-

and endoparasite-based networks.

Positive effects of nestedness on the robustness of

ecological networks have been shown in both empir-

ical and simulated networks (Memmott et al., 2004;

Santamaria et al., 2014), especially when primary

extinction occurs from the least to most connected

species (Burgos et al., 2007). For the endoparasite

assemblages studied here, nestedness was the network

structure that best explained their vulnerability to host

species loss in both sequences of primary extinctions,

Table 1 Adequate fit between the path model and the observed

data, considering values of host–parasite networks robustness

presenting ecto- and endoparasites analyzed separately using

two criteria to simulate host fish extinction: random extinctions

and extinctions from host least to most connected host species

Model Chi-square DF P CFI TLI RMSEA P (close fit test) Statistical power

Endo-random 2.06 2 0.357 0.999 0.998 0.037 0.376 0.999

Endo-least to most 1.89 2 0.389 1.000 1.004 0.001 0.408 [ 0.999

Ecto-random 0.02 1 0.897 1.000 1.083 \ 0.001 0.899 [ 0.999

Ecto-least to most 1.23 3 0.745 1.000 1.054 \ 0.001 0.760 [ 0.999

DF degree freedom, CFI Comparative Fit Index, TLI Tucker–Lewis fit index, RMSEA root mean square error of approximation

Fig. 2 Path models for robustness with two methods of primary

extinction (random and from host least to most connected)

according to the structures of host–parasite networks: a, b fish-

endoparasite networks; c, d fish-ectoparasite networks. Blue and
red arrows represent significant positive and negative effects,

respectively. Dashed arrows mean non-significant effects
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showing a positive effect on the robustness of the

endoparasite faunas. In the case of ectoparasite faunas,

nestedness also had a major importance in reducing

coextinctions, but only when host fishes were extinct

from the least to the most connected. The explanation

for the positive effect of nestedness on the robustness

of fish-parasite networks is that coextinctions are less

likely when those fish species harboring fewer parasite

species usually act as hosts of the generalist parasites.

In a nested network when occur events host species

loss, it is expected that parasite species will remain

longer in time because generalist species have several

host species and specialist species tend to occur in

locally less endangered host species. Regarding the

difference in the importance of nestedness to network

robustness between endoparasite- and ectoparasite-

based networks, the simplest explanation is that the

former show higher levels of nestedness than the latter

(see Bellay et al., 2015).

The positive effect of connectance on the robust-

ness of parasites faunas against coextinctions seems to

be mostly a consequence of the strong positive

correlation between connectance and nestedness. For

endoparasite-based networks, connectance had no

direct effect on network robustness in both sequences

of host loss. On the other hand, for ectoparasite

networks, the direct effect of connectance on robust-

ness against coextinctions was positive under random

removal of host fishes, but negative when the fish

species are removed in the inverse order of their

parasite richness. These findings are in partial dis-

agreement with the prediction that higher connectance

(i.e., less specialization) lead to more robust networks

(e.g., Dunne et al., 2002; Gilbert, 2009; but see Vieira

& Almeida-Neto, 2015).

If generalist species contributes positively to con-

nectance and consequently to nestedness, then these

species can lead to fast-occurring disturbances when

compared to the removal of a specialist species that

have more restricted interactions (see Olesen et al.,

2007). The probability of a parasite finding its host is

one of the factors governing host–parasite interactions

(Strona et al., 2013). This probability theoretically

tends to increase, for example, when a host has a wide

distribution or high local abundance. Thus, while hosts

with higher distribution and abundance are theoreti-

cally less vulnerable to extinction (Strona, 2015), they

are also exposed to a greater richness and abundance

Table 2 Explanatory models for the robustness of host–parasite networks according to the path structures presented in Fig. 2

Path models for Explanatory variables Standardized effects

Direct (d) Indirect (i) Total (e = d ? i)

Endoparasites (random extinctions of hosts) Host richness (log) – - 0.379 - 0.379

Parasite richness (log) 0.501 - 1.189 - 0.688

Connectance - 0.033 1.330 1.297

Nestedness (NODF) 1.261 – 1.261

Endoparasites (sequential extinctions of hosts) Host richness (log) 0.655 - 0.085 0.570

Parasite richness (log) – - 0.813 - 0.813

Connectance - 0.557 0.932 0.374

Nestedness (NODF) 0.862 – 0.862

Ectoparasites (random extinctions of hosts) Host richness (log) 1.369 - 1.765 - 0.396

Parasite richness (log) - 1.032 - 0.617 - 1.650

Connectance 0.989 - 0.117 0.871

Nestedness (NODF) - 0.149 – - 0.149

Ectoparasites (sequential extinctions of hosts) Host richness (log) – 0.207 0.207

Parasite richness (log) – - 0.808 - 0.808

Connectance - 0.625 0.571 - 0.054

Nestedness (NODF) 0.723 – 0.723

Ecto- and endoparasites were separately analyzed using two criteria to simulate host fish extinction: random extinctions and

extinctions from host least to most connected host species. The table shows direct and indirect standardized coefficients
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of parasites (see Strona et al., 2013). Currently, even

not usually considered as threatened species, many

specialized fish parasites share the extinction risk of

their host species (see Farrell et al., 2015).

We found positive effects of host richness and

negative effects of parasite richness on nestedness for

both ecto- and endoparasite-based networks. The

negative effect of parasite richness on nestedness

may have been due to a decrease in shared hosts and to

an increase in the number of highly specialized

parasite species. Every parasite has a degree of

specialization either by site of infection or host species

(see Bush et al., 2001). Thus, the higher the number of

species in the network, the occurrence of species with

specific requirements is expected. The effects of host

and parasite richness on connectance and nestedness

modulates the net effects of host and parasite richness

on robustness in both ectoparasite- and endoparasite-

based networks. Under random primary extinctions of

the host species, both host richness and parasite

richness had negative net effects on robustness. On the

other hand, when primary extinctions occur from host

species with lower parasite richness to host species

with higher parasite richness, then host richness show

a positive effect on network robustness. Because we

controlled for the indirect effects of host richness and

parasite richness through connectance and nestedness,

their net effects must be interpreted as the conse-

quence of both ecological and sampling-related

effects. The ecological effects are related to true

variation in the relative richness of specialist parasites.

The sampling-related effects are related to the nega-

tive relationship between sampling effort and con-

nectance (Bersier et al., 1999; Martinez et al., 1999),

especially for species-rich networks with many low

abundant species.

Different factors may be involved in the organiza-

tion of fish ecto- and endoparasite-based networks,

among which the relative richness of specialist

ectoparasites seems to be of major importance (Bellay

et al., 2015). The presence of monogeneans, that are

highly specialized ectoparasites, in the networks

studied seem to be a key factor associated to the

higher vulnerability of ectoparasites to host species

loss when compared to endoparasites, however in

general all taxonomic groups of ectoparasites have

species with restricted host numbers, relatively few

species occurring with a high number of host species

in network (see supplementary material from Bellay

et al. 2015). Already in endoparasite networks there

was a greater variation among endoparasite groups

with a greater number of host species due to environ-

mental characteristics of each network, considering

that in general endoparasites need intermediate hosts

and environmental variations (abiotic and biotic

factors) can benefit one group over another (see

supplementary material from Bellay et al., 2015 to

check the diversity of the groups). Even if the ecto-

and endoparasites of a network are considered

together and even if their robustness against coextinc-

tions is high, the subnetwork composed by ectopara-

sites may be relatively more fragile to local

extinctions. This difference suggests that the estab-

lishment of different life history traits among parasitic

groups may have strong ecological and conservation

implications for host–parasite networks.

Conclusion

The present study contributes to knowledge about host

fish-parasite interactions, demonstrating that the

ectoparasite-based networks tend to be more suscep-

tible to the extinction of host species in large aquatic

waterbodies. The study also shows that nestedness was

the best predictor of network robustness. The findings

highlight the importance of decoupled the components

of host–parasite networks to better understand their

structure and vulnerability to the primary extinction of

host species. Therefore, in the face of the environ-

mental change scenarios, robust networks can present

groups of species that are more vulnerable and

therefore, more susceptible to extinction (Strona &

Lafferty, 2016). Thus, future studies of host–parasite

networks should consider whether the networks pre-

sent groups of species with different patterns of

interaction and evaluate them separately.
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2010. Conservation of species interaction networks. Bio-

logical Conservation 143(10): 2270–2279.

Vanbergen, A. J., B. A. Woodcock, M. S. Heard & D.

S. Chapman, 2017. Network size, structure and mutualism

dependence affect the propensity for plant-pollinator

extinction cascades. Functional Ecology 31(6):

1285–1293.

Vázquez, D. P., R. Poulin, B. R. Krasnov&G. I. Shenbrot, 2005.

Species abundance and the distribution of specialization in

host–parasite interaction networks. Journal of Animal

Ecology 74: 946–955.

Ventim, R., J. Morais, S. Pardal, L. Mendes, J. A. Ramos & J.
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