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Abstract South-western Australia is isolated from

other forested regions of Australia by desert and

bounded on southern and western sides by the

Southern and Indian Oceans, respectively, with Wes-

tralunio carteri (Iredale, 1934) as the sole endemic

freshwater mussel. Its conservation status is vulnera-

ble. This species has a history of nomenclatural

change and its systematic placement and population

genetic history are largely unknown. We sampled 46

individuals from 13 sites across W. carteri’s distribu-

tion and sequenced two mitochondrial genes (16S

rDNA and cytochrome c oxidase subunit I) and one

nuclear gene (28S rDNA). The mitochondrial haplo-

type networks and COI phylogenies revealed three

evolutionarily significant units (ESUs): ‘‘W. carteri’’ I

including the west coast populations, ‘‘W. carteri’’ II

from the south and south-eastern range, and ‘‘W.

carteri’’ III only occurring in the south-western tip of

Australia. Four species delimitation methods identi-

fied two molecular operational taxonomic units sup-

porting two distinct species (‘‘W. carteri’’ I and ‘‘W.

carteri’’ II ? III). Phylogeographic patterns revealed

herein confirm the historical separation of Western

and Southern paleo-basins, also highlighting the

isolation of the south-western extremity of the region.

This underlines the need for taxonomic revision and

will require a re-evaluation of W. carteri’s conserva-

tion status.
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Introduction

Freshwater mussels (Bivalvia: Unionida) are among

the most threatened groups of animals in the world

with around 45% of assessed species being threatened

or near threatened according to the IUCN Red List of

Threatened Species (Lopes-Lima et al., 2018). Fresh-

water mussels provide a wealth of ecosystem services

and given their importance to freshwater ecosystems

and local economies, their conservation is crucial

(Vaughn, 2018).

Species delimitation is essential because govern-

ment biodiversity legislation is dependent on species’

names as core conservation units (Prié et al., 2012;

Ferreira-Rodriguez et al., 2019). Yet, conservation

assessments of freshwater mussels are hindered by

phylogenetic and taxonomic uncertainties (Walker

et al., 2014a; Lopes-Lima et al., 2017; Ferreira-

Rodriguez et al., 2019). Many freshwater mussel

species are difficult to distinguish based on morpho-

logical characters alone (e.g. due to homoplasy,

morphological convergence and lack of distinctive

synapomorphies) and molecular species delimitation

methods have been used with success to identify

molecular operational taxonomic units (MOTUs)

within cryptic species (Araujo et al., 2018; Johnson

et al., 2018; Lopes-Lima et al., 2019).

As adults, freshwater mussels have a limited ability

to disperse, owing to their slow movement and

relatively confined habitat. However, the larval stage

(glochidia in the Margaritiferidae, Unionidae and

Hyriidae) is parasitic and attaches to a vertebrate host,

generally a fish. Using this strategy, freshwater

mussels can disperse their offspring using the host as

a vector (Kat, 1984; Strayer, 2008). Not surprisingly,

species’ distribution among the Unionida closely

follows the phylogeographic distribution of their host

fishes (Haag, 2012).

Despite their larval dispersal strategy, rates of

dispersal remain low among freshwater mussels,

leading to substantial genetic structuring within

species (Berg et al., 2007; Geist, 2010). To effectively

manage conservation of genetic diversity within a

freshwater mussel species, it is important to identify

evolutionarily significant units (ESUs), because these

represent groups of populations with distinct evolu-

tionary trajectories (de Queiroz 2005, 2008; Froufe et al.,

2016; Lopes-Lima et al., 2016). The analysis of current

biogeographic distribution and phylogenetic structure,

along with knowledge of paleo basin formation, tectonic

events, and other past landscape modifications can help

to explain the evolutionary history of freshwater mussels

and thereby contribute to the identification of ESUs

(Wilson, 1995; Araujo et al., 2018).

The freshwater mussels of Australia are all mem-

bers of the Hyriidae, a family with representatives in

South America, Australia, New Zealand and New

Guinea comprising 90–94 species from 13 to 17

genera (Graf & Cummings, 2007; Marshall et al.,

2014; Pereira et al., 2014; Walker et al., 2014a; Graf

et al., 2015), with evidence of ‘cryptic speciation’

having been identified for several undescribed species

complexes within the last two decades (Baker et al.,

2003; Sheldon 2017). Furthermore, recent molecular

phylogenetic analysis has revealed inconsistencies

with systematic relationships constructed using tradi-

tional morphological characters (Graf et al., 2015).

Molecular data are thus necessary as a complement to

shell characters, larval forms and internal anatomy to

build a solid taxonomic framework for the conserva-

tion of Australian freshwater mussels (Walker et al.,

2014a). Two Australian hyriids have been assessed as

threatened within the last 10 years. Hyridella glenel-

gensis (Dennant, 1898) is listed as critically endan-

gered under State and Commonwealth legislation and

is the IUCN Red List (Playford & Walker 2008;

Walker et al., 2014a, b). Similarly,Westralunio carteri

(Iredale, 1934) was assessed as vulnerable by the

IUCN Red List of Threatened Species (Klunzinger &

Walker, 2014) and subsequently listed as threatened

(vulnerable) under State and Commonwealth legisla-

tion (Klunzinger et al., 2015).

Westralunio carteri is a regional endemic,

restricted to south-western Western Australia. It is

listed as vulnerable due to a contraction of its former

range primarily from secondary salinization of its

freshwater habitats (Klunzinger et al., 2015). The

genus Westralunio was described by Iredale (1934)

and included Westralunio ambiguus and the sub-

species Westralunio ambiguus carteri. McMichael &

Hisock (1958) later consolidated these names to a
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single species,W. carteri. The taxonomy of the species

was based almost exclusively on shell morphology.

Given that shells can vary with habitat and locality

(Balla & Walker, 1991; Baker et al., 2003) and the

conflicting taxonomy between Iredale (1934) and

McMichael & Hiscock (1958), we herein examine the

patterns of genetic diversity and phylogeographic

structure of W. carteri to identify ESUs for conserva-

tion and delineate MOTUs to help clarify the

taxonomy.

In this study, we aim to (a) describe the genetic

structure of Westralunio carteri across the endpoints

of its distribution, (b) reveal phylogeographic patterns

and evolutionary history, (c) evaluate hidden cryptic

diversity using a combination of species delimitation

methods and (d) discuss the conservation implications

of these results.

Materials and methods

Tissue sampling, DNA extraction, sequencing

and alignment

A total of 46 individual specimens of W. carteri were

collected from 13 sites (hydrology follows AWRC,

1976) across the distribution of the species (Table 1).

In the field, a small sample from the foot was collected

(following Naimo et al., 1998) and placed in 99%

ethanol. Genomic DNA was extracted from the tissue

samples, using a standard high-salt protocol (Sam-

brook et al., 1989) and amplified for one nuclear and

two mitochondrial markers: the F-type mtDNA cyto-

chrome oxidase subunit 1 gene (COI; ca. 700 bp

fragment), with LCO_22me and HCO_700dy primers

(Walker et al., 2006, 2007); the mtDNA 16Sr DNA

(16S rRNA; ca. 500 bp fragment), with 16SL and

16SH primers (Palumbi et al., 1991); and the nuclear

28SrDNA (ca. 800 bp fragment), with 28S-RD1.3f

and 28S-rD4b primers (Whiting, 2002). PCR condi-

tions followed Froufe et al. (2014), with annealing

temperatures ranging from 48 �C (16S and COI) to

54 �C (28S). Sequences were obtained by Macrogen

Inc., Korea. Individual gene alignments were built for

each marker with ClustalW, in Bioedit 7.2.5 (Hall,

1999), including sequences from GenBank (Table 1,

phylogeny specimens).

Genetic diversity of Westralunio carteri

COI and 16S individual alignments were joined in

unrooted networks using TCS 1.21 (Clement et al.,

2000). Uncorrected p-distances among and within

haplogroups were calculated using MEGAX (Kumar

et al., 2018). For COI, genetic diversity indices (i.e.

haplotype and nucleotide diversity) and indices of

neutrality (Tjima’s and Fu’s) were calculated using

DnaSp6 v6.11 (Rozas et al., 2017) and pairwise Fst

values were calculated in Arlequin 3.5.2.2 (Excoffier

& Lischer, 2010).

Phylogeny and species delimitation in Westralunio

carteri

A COI alignment was constructed with GUIDANCE2

(Sela et al., 2015) following Fonseca et al. (2016). It

included all newly sequenced individuals in addition

to outgroups. Outgroups included two other Australian

Hyriidae species which Graf et al. (2015) confirmed as

non-Westralunio (Velesunioninae: Velesunio ambi-

guus (Philippi, 1847) and Hyriinae: Hyridellini: Cu-

cumerunio novaehollandiae (Gray, 1834)) and one

representative each from each of the other two

freshwater mussel families which possess glochidia:

one Unionidae (Unio pictorum (Linnaeus, 1758)) and

one Margaritiferidae (Margaritifera margaritifera

Linnaeus, 1758) (Table 1). The COI alignment was

then analysed with maximum likelihood (ML) and

Bayesian Inference (BI) methods using IQ-TREE v

1.6.10 (Nguyen et al., 2015) and MrBayes 3.2.7a

(Ronquist et al., 2012), respectively. For the BI

analyses, the best-fit models of nucleotide substitution

and partition scheme were selected using PartitionFin-

der 2 (Lanfear et al., 2016) under the Bayesian

Information Criterion. Two independent runs of

10 9 106 generations were sampled at intervals of

1,000 generations producing a total of 10,000 trees.

Burn-in was determined upon convergence of log

likelihood and parameter values using Tracer 1.7.1

(Rambaut et al., 2018). For the ML analysis, the best-

fit models of nucleotide substitution and partition

scheme were selected using ModelFinder

(Kalyaanamoorthy et al., 2017). Maximum-likelihood

searches were then conducted with an initial tree

search followed by 10 independent runs and 10,000

ultrafast bootstrap replicates.
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Table 1 List of taxa used for phylogenetic analyses: GenBank accession codes and collection sites data

Taxon COI 16S 28S Basin/Locality Waterbody Voucher/source

Unionidae

Unio pictorum

AF156499 DQ060163 AF305383 Europe N/A Graf & Ó Foighil (2000a, b),

Källersjö et al. (2005)

Margaritiferidae

Margaritifera
margaritifera

JN243891 AF303281 JN243869 Europe N/A Machordom et al. (2003),

Whelan et al. (2011)

Hyriidae:

Hyriinae

Cucumerunio
novaehollandiae

KP184901 KP184853 KP184877 NSW, Australia-

MANNING

Glochester R UMMZ 304501, Graf et al.

(2015)

Hyriidae:

Velesunioninae

Velesunio
ambiguus

KP184915 KP184868 KP184892 NSW, Australia-

HAWKSBERRY

Napean R FMNH 337195, Graf et al.

(2015)

Hyriidae

‘‘Westralunio
carteri’’ I

MT040666 – – WA. Australia-

MOORE-HILL

Gingin Bk WAM S82791

’’ MT040670 MT040067 MT040076 WA. Australia-

SWAN COAST

Lk

Leschenaultia

WAM S82739

’’ KP184918 KP184871 KP184895 ’’ ’’ UMMZ 304517

’’ MT040671 – MT040074 ’’ Marbling Bk WAM S82790

’’ KP184917 KP184870 KP184894 ’’ Neerigen Bk UMMZ 304516

’’ MT040628 – – WA. Australia-

COLLIE

Collie R WAM S56210

’’ MT040629 – – ’’ ’’ WAM S56211

’’ MT040630 – – ’’ ’’ WAM S56212

’’ MT040631 – – ’’ ’’ WAM S56213

’’ MT040632 – – ’’ ’’ WAM S56214

’’ MT040665 MT040066 MT040075 ’’ ’’ WAM S82777

’’ MT040646 – – WA. Australia-

PRESTON

Preston R WAM S56215

’’ MT040647 – – ’’ ’’ WAM S56216

’’ MT040648 – – ’’ ’’ WAM S56217

’’ MT040649 – – ’’ ’’ WAM S56218

’’ MT040650 – – ’’ ’’ WAM S56219

’’ MT040651 – – WA. Australia-

MURRAY

Serpentine R WAM S56220

’’ MT040652 – – ’’ ’’ WAM S56221

’’ MT040653 – – ’’ ’’ WAM S56222

’’ MT040654 – – ’’ ’’ WAM S56223

’’ MT040655 – – ’’ ’’ WAM S56224

’’ MT040664 MT040065 – ’’ ’’ WAM S82779

’’ MT040656 – – WA. Australia-

SWAN COAST

Wungong Bk WAM S56225

’’ MT040657 – – ’’ ’’ WAM S56226

’’ MT040658 – – ’’ ’’ WAM S56229

‘‘Westralunio
carteri’’ II

MT040669 – – WA. Australia-

ALBANY COAST

Goodga R WAM S82756
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Four species delimitation methods were applied to

the COI dataset (excluding outgroups) to determine

the number of molecular operational taxonomic units

(MOTUs). Two distance-based methods were imple-

mented; the BOLD BIN system (Ratnasingham &

Hebert, 2013) and the Automatic Barcode Gap

Discovery (ABGD) (Puillandre et al., 2012). For

BOLD, the COI dataset was analysed with an online

cluster sequences tool implemented in BOLD4 (Rat-

nasingham & Hebert, 2013). The ABGD method was

also applied (COI and 16S) using its online version

(http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.

html) with default settings and the Kimura-2-param-

eter distance matrix (Puillandre et al., 2012). An

additional statistical parsimony method was imple-

mented with TCS 1.21 (Clement et al., 2000), with a

95% connection limit following Lopes-Lima et al.

(2019). Finally, we applied a coalescent-based

molecular species delimitation method, using Baye-

sian implementation of the Poisson Tree Processes

model (bPTP) (Zhang et al., 2013). A BI phylogenetic

tree (data not shown) was obtained (COI Codons

Models: HKY?I; F81; HKY) and used as an input tree

in the bPTP Web server (available at: http://species.h-

its.org/) with 1 9 106 iterations of MCMC and 20%

burn-in.

Divergence time estimates

At present, no internally calibrated molecular clock is

available for the family Hyriidae (using the fossil

record). Therefore, divergence times among lineages

were estimated from COI sequences using BEAST2

v2.6.1 (Bouckaert et al., 2014), and the substitution

Table 1 continued

Taxon COI 16S 28S Basin/Locality Waterbody Voucher/source

’’ MT040633 – – ’’ ’’ WAM S56200

’’ MT040634 – – ’’ ’’ WAM S56202

’’ MT040635 – – ’’ ’’ WAM S56203

’’ MT040636 MT040058 MT040068 WA. Australia-

KENT COAST

Kent R WAM S56205

’’ MT040637 MT040059 MT040069 ’’ ’’ WAM S56206

’’ MT040638 – – ’’ ’’ WAM S56207

’’ MT040639 – – ’’ ’’ WAM S56208

’’ MT040640 – – ’’ ’’ WAM S56209

’’ MT040667 – – ’’ ’’ WAM S82758.1

’’ MT040668 – – ’’ ’’ WAM S82758.2

’’ MT040659 – – WA. Australia-

BLACKWOOD

St. John Bk WAM S82773

’’ MT040660 MT040062 – ’’ ’’ WAM S66164

’’ MT040661 – – ’’ ’’ WAM S66165

’’ MT040662 MT040063 MT040072 ’’ Waychinicup R WAM S66127

’’ MT040663 MT040064 MT040073 ’’ ’’ WAM S66128

‘‘Westralunio
carteri’’ III

MT040641 MT040060 MT040070 WA. Australia-

BUSSELTON

COAST

Margaret R WAM S56235

’’ MT040642 MT040060 MT040071 ’’ ’’ WAM S56236

’’ MT040643 – – ’’ ’’ WAM S56237

’’ MT040644 – – ’’ ’’ WAM S56238

’’ MT040645 – – ’’ ’’ WAM S56239

GenBank accession codes for mitochondrial protein-coding cytochrome C subunit I (COI), mitochondrial ribosomal subunit (16S),

nuclear ribosomal subunit (28S) and collection sites data. Bk Brook, FMNH Field Museum of Natural History, Chicago, Lk Lake,

NSW New South Wales, R River, UMMZ University of Michigan Museum of Zoology, WA Western Australia, WAM Western

Australian Museum. Coordinate system WGS 1984
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rate of 0.265 ± 0.06% per million years recently

estimated for Unio spp. (Froufe et al., 2016) was

applied with normal distribution prior. The dataset was

run under the HKY?I substitution model according to

results from PartitionFinder2 v2.1.1 (Lanfear et al.,

2016). An uncorrelated lognormal relaxed clock

(Drummond et al., 2006) and the two-parameter

birth–death model (Nee et al., 1994; Gernhard,

2008) were used. Other parameters used default

settings. The random seed was 1,572,354,798,200.

The analysis ran for 107 generations, sampling every

1000 generations. The quality of the runs was assessed

through parameter convergence using Tracer 1.7

(Rambaut et al., 2018). The maximum credibility tree

of mean heights was constructed using TreeAnnotator

and discarding 2000 trees as burn-in.

Results

Dataset parameters

From the COI alignment with 559 nucleotides (nt) in

length, 46 sequences, 24 haplotypes, and 47 polymor-

phic and 40 parsimony-informative sites were retrieved.

No insertions, deletions or stop codons were observed

after translating all sequences to amino acids. From the

16S rRNA alignment with 491 nt in length, 11

sequences, 6 haplotypes, and 18 polymorphic and 16

parsimony-informative sites were retrieved. A single

haplotype was detected in 28S rDNA with no variation

across the sampling range. Full genetic datasets were

deposited in GenBank (see Table 1 for accession

numbers and specimen provenance details).

Genetic diversity, phylogeny and species

delimitation

A single haplotype network based on COI mtDNA was

obtained and three haplogroups (red, green and blue:

Fig. 1) were retrieved (corresponding to the three

obtained MOTUs, see below) separated by a minimum

of 12 mutations. The haplogroup ‘‘W. carteri’’ I (red)

presents the higher number of haplotypes (12) fol-

lowed by ‘‘W. carteri’’ II (blue) with 9 and ‘‘W.

carteri’’ III (green) with 3 (Fig. 1). ‘‘Westralunio

carteri’’ I is separated from ‘‘W. carteri’’ II by a

minimum of 24 mutations and from ‘‘W. carteri’’ III

by at least 26 mutations, with a minimum of 10

mutations separating ‘‘W. carteri’’ II and ‘‘W. carteri’’

III (Fig. 1). The haplotype network of the 16S rRNA

fragment also shows the same number of haplogroups,

with ‘‘W. carteri’’ I separated from ‘‘W. carteri’’ II by

13 mutations and from ‘‘W. carteri’’ III by 16

mutations, and two mutations separating ‘‘W. carteri’’

II and ‘‘W. carteri’’ III.

Genetic distances among haplogroups are shown in

Table 2. For the COI gene, the mean pairwise genetic

distances varied from 2.5% between ‘‘W. carteri’’ II

and ‘‘W. carteri’’ III, to 5.4% between ‘‘W. carteri’’ I

and ‘‘W. carteri’’ III. For the 16S rRNA gene, genetic

distances varied from 0.6% between ‘‘W. carteri’’ II

and ‘‘W. carteri’’ III, to 3.4% between ‘‘W. carteri’’ I

and ‘‘W. carteri’’ III.

Nucleotide and haplotype diversity were greatest

for ‘‘W. carteri’’ II and least for ‘‘W. carteri’’ III

(Table 3). Neutrality indices were negative for all

haplogroups (suggesting an excess number of alleles at

low frequency), although this was significant only for

Fu’s F in ‘‘W. carteri’’ I. All pairwise Fst values

among haplogroups were similar and high (Table 4).

Both phylogenetic trees showed similar topologies

in the main nodes, with the BI topology shown in

Fig. 2. Within the ingroup, three clades were obtained,

corresponding to the same three haplogroups, i.e. ‘‘W.

carteri’’ I, II and III, with ‘‘W. carteri’’ I being sister to

another clade formed by ‘‘W. carteri’’ II ? W. carteri

III (Fig. 2).

Molecular species delimitation methods (BOLD,

ABGD, TCS (95%) and bPTP) applied in our study

recovered, by consensus, two of these lineages as

molecular operational taxonomic units (MOTUs), i.e.

‘‘W. carteri’’ I and ‘‘W. carteri’’ II ? ‘‘W. carteri’’ III.

Also, bPTP recovered ‘‘W. carteri’’ III as an additional

MOTU, separate from ‘‘W. carteri’’ II. (Figure 2). The

geographical distributions of these three lineages are

shown in Fig. 3, colour-coded by the three lineages, as

follows:

(A) ‘‘W. carteri’’ I found in north-westerly hydro-

graphic basins to the north of and including the

Preston River Basin, with a northern limit of Gin

Gin Brook in the Moore-Hill Basin;

(B) ‘‘W. carteri’’ II in south-westerly and southerly

flowing river basins extending from the Black-

wood Basin, eastward to the Albany Coast

Basin, with an eastern limit of Waychinicup

River;
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(C) ‘‘W. carteri’’ III from Margaret River in the

Busselton Coast Basin.

Divergence time estimates

All effective sample size (ESS) values accessed in

Tracer v.1.7 were above 1000. The average esti-

mated time divergence for the crown ages for the

three ‘‘W. carteri’’ lineages was between 0.98 and

1.96 Mya (Fig. 4). The estimated age of the most

recent common ancestor (MRCA) of all three ‘‘W.

carteri’’ lineages was around the mid-Miocene, 11.0

Mya (Fig. 4), while that of ‘‘W. carteri’’ lineages II

and III was during the late Miocene, 4.9 Mya

(Fig. 4).

Discussion

Although W. carteri has been included in a broader

phylogeny of the Hyriidae (Graf et al., 2015), this is

the first study to investigate the genetic diversity

within this nominal taxon. The ‘‘W. carteri’’ phyloge-

nies reveal two major allopatric clades: one (‘‘W.

carteri’’ I) in the drainages of the west coast, draining

to the Indian Ocean, and the other (‘‘W. carteri’’

II ? ‘‘W. carteri’’ III) in the south coast, draining to

the Southern Ocean of south-western Australia. This

Southern Ocean clade is further divided into two

subclades: one (‘‘W. carteri’’ III) occurring in the

Margaret River in the south-west and the other (‘‘W.

carteri’’ II) in southern drainages to the south and east

of Blackwood River to Waychinicup River in the

Fig. 1 Haplotype (TCS) networks showing the relationships of

‘‘Westralunio carteri’’ individuals sequenced for COI and 16S

(Table 1). Circle size is proportional to the observed haplotype

frequencies and black points represent unobserved haplotypes

and potential intermediates. Colours represent the three lineages

detected in the obtained phylogeny; Westralunio carteri I (red),

‘‘Westralunio carteri’’ II (blue) and ‘‘Westralunio carteri’’ III

(green)

Table 2 Pairwise genetic distance matrices of Western Australia Westralunio lineages, as recognized in the present study

Within lineages Among lineages

COI 16S ‘‘Westralunio carteri’’I ‘‘Westralunio carteri’’ II ‘‘Westralunio carteri’’ III

‘‘Westralunio carteri’’ I 0.006 0.001 – 0.028b 0.0342b

‘‘Westralunio carteri’’ II 0.003 0.002 0.052a – 0.0063b

‘‘Westralunio carteri’’ III 0.003 0.002 0.054a 0.025a –

Left column: mean uncorrected p-distance within lineages for cytochrome oxidase subunit I (COI) and for 16S rRNA gene fragment.

Right column: amean uncorrected p-distance among lineages of COI (below the diagonal) and b16S (above the diagonal) genes
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Albany Coast Basin. Moreover, these two groups are

also evident in both 16S and COI networks and

supported by the large pairwise FST and p-distance

values. A signal of demographic expansion was only

observed in ‘‘W. carteri’’ I as shown by the star-shaped

topology of the COI network and the low, significant

values of Fu’s F. No variation was detected for the

nuclear marker 28S. This lack of 28S diversity has

Table 3 Summary of the indices of genetic diversity estimated from the COI sequencing data for each ‘‘Westralunio carteri’’ lineage

N h Hd p Fu’s Fs Tajima’s D

‘‘Westralunio carteri’’ I 25 12 0.873 0.00740 2 6.924* - 1.424

‘‘Westralunio carteri’’ II 13 7 0.846 0.00606 - 2.185 -0.172

‘‘Westralunio carteri’’ III 5 3 0.700 0.00286 - 1.113 - 1.094

N Number of individuals, h haplotypes, Hd haplotype diversity and p nucleotide diversity. Tests of population growth within each

‘‘W. carteri’’ lineage, i.e. the results of Tajima’s D and Fu’s Fs neutrality tests are also shown. Statistically significant (P\ 0.05)

values are shown in bold with an asterisk

Table 4 Pairwise FST values (below diagonal) and p-values (above diagonal) among ‘‘Westralunio carteri’’ lineages

‘‘Westralunio carteri’’ I ‘‘Westralunio carteri’’ II ‘‘Westralunio carteri’’ III

‘‘Westralunio carteri’’ I – \ 0.001 \ 0.001

‘‘Westralunio carteri’’ II 0.862 – \ 0.001

‘‘Westralunio carteri’’ III 0.876 0.802 –

Fig. 2 Phylogenetic tree obtained by Bayesian Inference (BI)

analysis of ‘‘Westralunio carteri’’ individuals (COI ? 16S ?

28S). For the major nodes support values (%) are given as

Bayesian posterior probability/maximum likelihood bootstrap

support. Species delimitation methods applied in this study are

represented by colour-coded bars to the right of each ‘‘W.
carteri’’ lineage: BOLD-red, ABGD-green, bPTP-blue and

TCS-black. Species delimitation separation between ‘‘W.
carteri’’ II and III was only observed by bPTP, which is

represented here as a white line
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been reported for other congeneric species of fresh-

water mussels, due to its low substitution rate (Froufe

et al., 2016; Araujo et al., 2018).

According to Bayesian analysis, ‘‘W. carteri’’

II ? III populations diverged during the mid-late

Miocene, which is consistent with divergence timing

for a number of south-west Australian terrestrial taxa

(Rix et al., 2014) and other freshwater taxa (Gouws

et al., 2006, 2010; Unmack et al., 2011; Morgan et al.,

2014). These studies suggest that vicariant events due

to increased aridity periods acted as the main driving

force reducing genetic connectivity and dispersion

across river basins.

Furthermore, the separation of the ‘‘W. carteri’’

clades mirrors previous phylogenetic patterns of

freshwater taxa in the region, including fishes (e.g.

Fig. 3 Map of freshwater mussel populations sampled for

phylogenetic analysis: a red triangles ‘‘Westralunio carteri’’ I—

(1) Gin Gin Brook, (2) Marbling Brook, (3) Lake Leschenaultia,

(4) Canning River, (5) Neerigen Brook, (6) Wungong Brook, (7)

Collie River, (8) Preston River; b blue diamonds ‘‘Westralunio

carteri’’ II—(9) Blackwood River, (11) Kent River, (12)

Goodga River, (13) Waychinicup River; c green circle

‘‘Westralunio carteri’’ III—(10) Margaret River. Refer to

Table 1 for river basin and sample site details

Fig. 4 BEAST maximum clade credibility tree for ‘‘Westralu-
nio carteri’’ lineages. Time scale is in million years. The grey

horizontal bars indicate the height 95% HPD interval for the

crown-age estimates. The size of the triangles is proportional to

the number of haplotypes
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Unmack et al., 2011; Galeotti et al., 2015) and

crayfishes (e.g. Gouws et al., 2006, 2010), and is

likely a consequence of geological division of the

south-west coast drainage division during the Eocene.

Beard (1999) shows that geological formation

appeared to create two distinct watersheds, or drainage

subdivisions in south-western Australia: one on the

south coast to the south of the ‘‘Jarrahwood Axis’’ and

one on the west coast, to the west of the Yilgarn Craton

and the Darling Scarp.

Our study estimates the separation of the ‘‘W.

carteri’’ II and ‘‘W. carteri’’ III lineages took place

between during the late Miocene/Pliocene. During

these periods, Western Australian palaeodrainages

suffered from cycles of intense aridification (Unmack,

2001; Hopper & Gioia, 2004) that might have confined

the common ancestral populations to refuge areas

promoting their separation. We speculate that increas-

ing aridity would have decreased host fish movement

among drainages, particularly given that freshwater

fishes of south-western Australia do not undertake

ocean migration and rely on flooding events for basin

connectivity and dispersal (Morgan et al., 2014).

The south and western Australian drainages were

free from considerable readjustments since the late

Pliocene (Unmack, 2001; Murphy & Austin, 2004),

justifying the separation of the three lineages. How-

ever, the presumed wet and humid climate over the

past two million years (Hopper, 1979; Hopper &

Gioia, 2004) may have provided more favourable

conditions for regional inter-basin dispersal within

each lineage. In fact, although unique haplotypes were

found in some populations, we could not find a clear

geographic structure within each lineage, indicating

recent gene-flow or connectivity events. However, a

higher number of individuals per population are

required to confirm this apparent lack of structure.

Nevertheless, in the ‘‘W. carteri’’ I lineage, we

identified signs of a bottleneck followed by a fast

demographic expansion by the mid Pleistocene, as

mirrored by the star-shaped topology of the ‘‘W.

carteri’’ I lineage COI network, corroborated by its

negative Fu’s F and Tajimas D values. Conversely, W.

carteri II does not seem to show any evident demo-

graphic process.

Our results support the separation of ‘‘W. carteri’’

into two species: ‘‘W. carteri’’ I and ‘‘W. carteri’’

II ? ‘‘W. carteri’’ III based on most of the employed

species delimitation methods. The bPTP method

further separates ‘‘W. carteri’’ II and ‘‘W. carteri’’

III, which is not surprising given that this method has

been shown to overestimate the number of MOTUs

(e.g. Dellicour & Flot, 2018). Future morphometric

analyses combined with the present genetic results

might support putative new species.

The third MOTU lineage (‘‘W. carteri’’ III)

revealed only by bPTP modelling suggests that a

subspecies rank may be warranted, although further

population sampling within the Busselton Coast Basin

is required to determine the extent of this apparent

MOTU. We hypothesize that populations within

Busselton Coast to the north and west of Blackwood

River are ‘‘W. carteri’’ I and that populations to the

west of the Naturaliste Ridge are ‘‘W. carteri’’ III.

Populations to the east of Blackwood River within the

Donnelly, Warren and Shannon Basins, as well as

other populations along the South Coast are likely ‘‘W.

carteri’’ II.

The present results have major conservation impli-

cations for the Westralunio taxa in south-west Western

Australia. The high divergence level revealed between

‘‘W. carteri’’ I and ‘‘W. carteri’’ II ? ‘‘W. carteri’’ III

supported by all species delimitation methods supports

the separation into two species. Given that species are

generally the taxonomic units used in conservation

status assessment and legislation/policy, the taxo-

nomic status of these two taxa needs urgent confir-

mation. Moreover, the three lineages ‘‘W. carteri’’ I,

‘‘W. carteri’’ II and ‘‘W. carteri’’ III correspond to

distinct ESUs (as defined by Moritz, 1994); similarly,

ESUs are recurrently observed in a number of other

freshwater mussels (e.g. Froufe et al., 2016; Lopes-

Lima et al., 2016; Sousa et al., 2018). These ESUs

should be conserved and managed independently,

given that they represent genetically unique popula-

tions and are geographically isolated.

Klunzinger et al. (2015) elucidated the conserva-

tion status of W. carteri by modelling historical and

contemporary distributional records with environmen-

tal data. The authors revealed that salinity, flow

permanency and total nitrogen were the variables most

critical in limiting the species’ occurrence. Reduction

in the species’ extent of occurrence was due primarily

to secondary salinization of formerly freshwater

habitats, which resulted in the species being assessed

as vulnerable by the IUCN Red List (Klunzinger &

Walker, 2014). Therefore, the taxonomic split, sug-

gested here, implies that the individual conservation
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status of each MOTU, i.e. ‘‘W. carteri’’ I and ‘‘W.

carteri’’ II ? ‘‘W. carteri’’ III, should be re-assessed

by the IUCN to inform protection management under

State and Commonwealth conservation legislation.

Using distribution data from Klunzinger et al.

(2015), the extent of occurrence (EOO) for ‘‘W.

carteri’’ I is estimated to be 8814 km2, with an historic

EOO of 31,559 km2, a reduction in EOO of approx-

imately 72% which might qualify the MOTU as

endangered under criterion A2c of the IUCN Red List.

The EOO for ‘‘W. carteri’’ II is estimated to be

8660 km2 with an historic EOO of 10,070 km2, a

reduction of approximately 14%, not qualifying for

any threatened category under Criterion A. Due to an

EOO of\ 20,000 km2, ‘‘W. carteri’’ II is close to

qualifying as vulnerable status under Criterion B.

However, because there is no available evidence for

severe habitat fragmentation, or number of loca-

tions B 10, or extreme fluctuations, this rank cannot

be attributed. Although some populations of ‘‘W.

carteri’’ II are suggested to be increasing in size

(Benson et al., 2017, 2019) and a large proportion of

habitats and populations occur in national parks and

specially protected areas for conservation (Klunzinger

et al., 2015), it is unknown whether similar trends are

true across this MOTU’s range. In the absence of these

data, we suggest that ‘‘W. carteri’’ II ? ‘‘W. carteri’’

III be listed as near threatened on the IUCN Red List

but is likely to qualify for the vulnerable category in

the near future.

Besides the two MOTUs or putative species here

described, the three lineages or ESUs warrant inde-

pendent conservation actions and management. For

example, the brood stock for potential propagation

programs on each ESU should consider the original

geographic distribution. The same is true when

considering eventual translocations and reintroduc-

tions. Biological traits important for conservation

planning, such as the reproductive physiology and

habitat requirements, as well as biotic interactions,

should also be investigated independently for each

ESU, especially the range of host fish use (and see

Klunzinger et al., 2012), that is critical for the

maintenance and viability of freshwater mussel

populations.

Given the threatening processes outlined in recent

publications (Klunzinger et al., 2015; Benson et al.,

2017, 2019; Ferreira-Rodriguez et al., 2019), main-

taining riparian vegetation and habitats for host fishes,

environmental flows in regulated rivers, the flow of

freshwater (and mitigation of salinity) and reductions

in nutrient pollution should be conservation priorities

for both species/MOTUs revealed in this study.
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