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Abstract Among territorial animals, several species

are characterized by males showing the same initial

behaviours towards both sexes, leading to significant

chances of injuries against conspecifics. In this study,

we investigated how visual stimuli exhibited by a

female-mimicking robotic replica can be exploited by

highly territorial Betta splendens males to discrimi-

nate males from females. In addition, we tested the

effect of light stimuli, mimicking the colour pattern of

a reproductive female, on the consistence of courtship

displays in B. splendens males. The intensity of male

behaviours used in both courtship and not-physical

agonistic interactions (e.g. fin spreading and gill

flaring) was not importantly modulated by different

stimuli. Conversely, behavioural displays used specif-

ically in male–female interactions significantly

increased when the robotic replica colour pattern

mimicked a reproductive female. Furthermore, male

courtship behaviours obtained in response to the

robotic replica exhibiting light stimuli were compara-

ble with responses towards authentic conspecific

females. Our biomimetic approach to establish ani-

mal–robot individual interaction can represent an

advanced strategy for trait-based ecology investiga-

tion, a rapidly developing research field.

Keywords Aggression � Animal–robot interaction �
Bioinspired robotics � Courtship behaviour � Siamese

fighting fish

Introduction

The decision-making process in animal sexual selec-

tion is largely regulated by specific signals displayed

during courtship and mating behaviour (Darwin, 1871;

Sichlau et al., 2015; Benelli & Romano, 2018). The

evaluation of male genetic quality and resource-

holding potential by females, based on stereotyped

courtship displays as well as features such as body

size, colouration, and sound, is widely spread in the

animal kingdom (Zahavi, 1975; Hamilton & Zuk,

1982; Bischoff et al. 1985; Höglund & Lundberg,
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1987; Andersson, 1989, 1994; Rosenthal et al., 1996;

Wikelski et al., 2001).

In territorial species, the initial behaviours of males

towards individuals of both sexes are the same,

although mate discrimination occurs in a short time

(Robertson & Sale, 1975; Berglund et al., 1996;

Borgia & Coleman, 2000; Patricelli et al., 2002, 2006).

Accordingly, in these contexts the risk of injuries to

females as well as to males is often significant (Shine

et al., 2003). To achieve the maximum mating success

and to minimize injuries, both males and females of

these species have evolved specialized morphological

features and behaviours that are important for sex

recognition (Clotfelter et al., 2006).

Siamese fighting fish, Betta splendens Regan, 1910

(Perciformes: Osphronemidae), males are highly ter-

ritorial (Simpson, 1968). In addition, B. splendens is a

dimorphic species presenting morphological differ-

ences between males and females (e.g. coloration and

fin dimensions), which are important in the recogni-

tion of the female individual by the male (Rainwater,

1967; Clotfelter et al., 2007).

During sexual selection, males advertise for

females, and the latter choose the best available male

(Darwin, 1871). This may hold true for B. splendens;

however, male aggression may require that females

communicate their gender and reproductive state, as

well as their quality, since males heavily invest in

parental care (Rainwater, 1967; Robertson & Sale,

1975), and are inclined to defend the area around their

bubble nest vigorously (Simpson, 1968; Halperin

et al., 1998; Doutrelant et al., 2001). Interestingly,

during courtship, males display several behaviours

that are identical to male–male not-physical agonistic

displays (e.g. fin spreading display, gill flaring

display), as well as courtship-specific displays (e.g.

zigzag movements, bubbling display) (Rainwater,

1967; Simpson, 1968; Robertson & Sale, 1975;

Clotfelter et al., 2006). Too aggressive males would

chase the female away or would increase the risk of

injuries. Conversely, too passive males would cause

female loss of interest (Clotfelter et al., 2007).

Therefore, in B. splendens the perfect balancing of

aggressive and courtship-specific displays can ensure

male mating success.

Robotics provides novel and advanced strategies to

produce life-like, fully controllable stimuli, and to

select different signals used during animal communi-

cation (Todd, 1993; Webb, 1995; Partan, 2004;

Bradbury & Vehrencamp, 2011; Kopman & Porfiri,

2011; Krause et al., 2011; Abaid et al., 2012; Mondada

et al., 2013; Schmickl et al., 2013; Katzschmann et al.,

2018; Romano et al., 2019a). In addition, abilities

performed by animals can inspire novel approaches to

design robots with improved flexible and adaptive

behaviours in unstructured scenarios (Ijspeert et al.,

2005; Wood, 2008; Stefanini et al., 2012; Laschi,

2017; Romano et al., 2019a). A range of researches

have reported successful interactions among animals

and robots (Michelsen et al., 1992; Halloy et al., 2007;

Gribovskiy et al., 2010; Kawabata et al., 2014; Shi

et al., 2015; Romano et al., 2017a, 2019b; Batabyal &

Thaker, 2018; Benelli et al., 2018a). Several studies

used artificial agents to interact with different fish

species (Polverino et al., 2012, 2013; Kopman et al.,

2013; Spinello et al., 2013; Langraf et al., 2014, 2016;

Worm et al., 2014, 2017; Bonnet et al., 2015; Ruberto

et al., 2016; Donati et al., 2016). Particularly, in

previous studies, we developed a biomimetic robot

that was successful in adding basic knowledge to

crucial aspects of territorial aggression in B. splendens

(Romano et al., 2017b).

In this study, we developed a robotic apparatus

moving biomimetic fish replicas inspired by female B.

splendens, to investigate visual stimuli that are

important for Siamese fighting fish males to discrim-

inate females from other males. Vision has been

reported to play a crucial role in communication of

both aquatic and terrestrial animal species, routing

conspecific size evaluation and recognition, among

others (Atema, 2018; Benelli et al., 2018b; Bruce

et al., 2018). We focused on the colour pattern

exhibited by reproductive B. splendens females con-

sisting in horizontal darker stripes along their bodies

with lighter stripes in between (Rainwater, 1967). In

addition, it should be considered that Robertson &

Sale (1975) reported dark horizontal bars as a sign of

submission in both males and females. The dark

stripes could therefore be a conventional signal

(Guilford & Dawkins, 1995) that is displayed by

subordinate individuals independently of their sex to

avoid attacks. One of our fish replicas was endowed

with three bright stripes per side of its body (i.e. two

dorsal, two median, and two ventral stripes), each of

them obtained by using light emitting diodes (LEDs),

to have two darker longitudinal areas along the body

(i.e. between the dorsal and the median bright stripes

and between the median and the ventral bright stripes),
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mimicking the colour pattern of a receptive B. splen-

dens female. Besides, a further fighting fish replica

developed in this study presented painted dark stripes,

to investigate two potentially independent signalling

mechanisms.

In this scenario, we tested two hypotheses: (a) the

cues delivered by fighting fish replicas are of different

attractiveness to males, e.g. (i) the robot is seen as a

conspecific; (ii) the robot is seen as a non-reproduc-

tive/reproductive female (the behavioural significance

of dark stripes); and (b) light stimuli reproducing the

colour pattern of reproductive females increase the

consistence of courtship displays in B. splendens

males.

To address these issues, Siamese fighting fish males

were exposed to a reproductive female-mimicking fish

replica, exhibiting a neutral coloration, to a reproduc-

tive female-mimicking fish replica exhibiting a lumi-

nescent colour pattern, as well as to a reproductive

female-mimicking fish replica with a painted colour

pattern. In addition, we evaluated the degree of

biomimicry of our artefacts by comparing B. splen-

dens male responses to the fish replicas with those

obtained during authentic male–male and male–

female interactions.

Materials and methods

Ethics statement

This study complied with the guidelines reported by

ASAB/ABS (2004), as well as the Italian law (D.M.

116192). No authorizations are required in Italy to

conduct behavioural observations on B. splendens and

other fish species (Donati et al., 2016; Romano et al.,

2017b). Due to the high territoriality of this fish, each

animal was isolated in different tanks. Injuries to the

animals were carefully avoided during the

experiments.

Animal rearing and general observations

Siamese fighting fish were maintained as described in

our earlier study (Romano et al., 2017b). Observations

were carried out from January to June 2017 in

laboratory conditions (25 ± 1�C), with a 16:8 (L:D)

photoperiod. The test tanks sidewalls were screened

by using white filter paper (42 ashless, Whatman

Limited, United Kingdom) to avoid external cues

(Benelli et al., 2015a; Romano et al., 2017a). Before

starting an experimental replication, the test tank was

carefully washed to prevent odorant cues, as described

by Romano et al. (2017b). Fifteen sexually mature B.

splendens males were tested in our experiments. In

addition, five males and five females were used as live

stimuli in the experiments.

Fish replica design

The process used to fabricate the fighting fish replicas

as well as the external apparatus actuating them is

similar to that used in Romano et al. (2017b), with

some modifications concerning the fish replicas. Fish

replica design is inspired by the morphology and

coloration of Siamese fighting fish females, since

females of this species have less gaudy colours and

shorter fins than males (Rainwater, 1967; Clotfelter

et al., 2007) (Fig. 1A, B).

A liquid silicone rubber (Dragon Skin F/X PRO),

mixed with a non-toxic pigment similar to the colour

of a B. splendens female, more faintly coloured than

males (Rainwater, 1967; Jaroensutasinee & Jaroensu-

tansinee, 2001a, b), was injected in the mould, in order

to cast the fish replica. In this species, the colouration

of the body varies considerably among individuals

(Blakeslee et al., 2009), so the colour of the fish

replicas did not reproduce accurately the colour of real

fish. Fish replicas were 70 mm long, with a height of

35 mm, and 13 mm wide. According to previous

findings demonstrating an increased level of accep-

tance by real fish of robotic fish that included

realistically coloured eyes (Ruberto et al.,

2016, 2017; Landgraf et al., 2016), we endowed our

fish replicas with two nickel-plated birdshots (diam-

eter 2.5 mm), since they are visually similar to B.

splendens eyes.

The colour pattern exhibited by reproductive B.

splendens females (2 horizontal darker stripes along

their bodies with lighter stripes in between (Rainwater,

1967) was reproduced in the fish replica with a

luminescent colour pattern by locating 6 bright stripes

(e.g. two dorsal, two median, two ventral ones), in the

mould, prior to inject the silicone rubber, to have three

bright stripes along each side of the fish replica body

(Fig. 1C). The fish replica with LEDs off (neutral fish

replica) and with activated LEDs is shown in Fig. 1D

and E, respectively. This, as mentioned earlier, allows
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us to have a darker longitudinal area between the

dorsal and themedian bright stripes and another darker

longitudinal area between the median and the ventral

bright stripes on the body of the fish replica. Each

dorsal and ventral bright strip consisted of 6 LEDs

connected in series. Each median bright strip consisted

of 9 LEDs connected in series. The 6 LEDs stripes

were connected in parallel.

In the fish replica with a painted colour pattern, two

horizontal darker stripes were painted with a non-toxic

pigment (Fig. 1F).

Colour measurements of the fish replicas are shown

in Table 1. Spectral data were obtained using a

spectrometer Ocean Optic HR2000-UV–VIS–NIR

(Ocean Optics, USA) following the method recently

described by Benelli et al. (2018a, b). An external

microcontroller (Arduino Mega 2560) was used to

activate both the servo and the LEDs.

Experimental apparatus

The tank used for the experiments

(500 9 300 9 200 mm), consisted of three virtual

zones: nest, middle and robot (a), (b) zone (Fig. 2). A

square of bubble wrap was located in the nest zone of

the tank, as described in Romano et al. (2017b), since

it speeds up the bubble nest building in B. splendens

and allows us to control the nest position

(Dzieweczynski et al., 2006). Prior to perform a test,

Siamese fighting fish males were individually placed

in the test tank until they build a bubble nest (i.e.

usually within 24–48 h) (Clotfelter et al., 2006;

Dzieweczynski et al., 2006; Romano et al., 2017b).

The combination of cues (e.g. fish replicas or real

fish) was placed in the centre of the robot zone (b) of

the tank, which was isolated from the other zones by a

one-way glass. During tests, fish replicas were indi-

vidually positioned at a depth of 30 mm, in the middle

of the robot zone (b) of the test tank (Romano et al.,

Fig. 1 Different stimuli presented to males of Siamese fighting

fishes during the experiments. a Betta splendens male;

b reproductive B. splendens female exhibiting horizontal darker

stripes along her body with lighter stripes between; c dorsal (i),

median (ii), and ventral (iii) bright stripes located in the mould,

before casting the fish replica; d neutral fish replica; e fish

replica with activated LEDs; f painted fish replica

Table 1 Colour measurements of the Betta splendens fish replica body, painted stripes and incorporated LEDs; each value was a

mean ± standard error of three replicates

Tested cue L* a* b*

Fish replica body 47.2 ± 1.52 - 15.0 ± 2.25 0.6 ± 1.51

Painted stripe 2.11 ± 0.09 - 0.68 ± 0.32 - 0.71 ± 0.1

LEDs on 48.6 ± 3.08 - 37.1 ± 1.99 19.1 ± 3.69

L* represents the lightness component, a* (from red to green) and b* (from blue to yellow) are the two chromatic components
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2017b). The one-way glass isolates the tested combi-

nation of cues so that it cannot see the focal fish, to

prevent visual feedback between the conspecifics

(Ruberto et al., 2017), thus ensuring standard condi-

tions during experiments with living or artificial

stimuli.

An opaque partition (30 9 20 cm) avoided fish to

view the combination of cues until the test began and

was removed to allow visual contact with the combi-

nation of cues after 10 min from its insertion.

Combinations of cues presented to the tested

subjects included: (i) neutral fish replica (e.g. without

stripes); (ii) fish replica with activated LEDs (e.g.

luminescent stripes); (iii) painted fish replica (e.g.

painted stripes); (iv) female (as control); (v) male (as

control). Stimuli presented are shown in Fig. 1.

In each fish replica context, the dummy displayed

its body axis orthogonal to the central longitudinal line

of the tank, to exhibit the lateral colour pattern of its

body. In addition, the fish replica was oscillating on its

longitudinal axis with an angle of 30� in amplitude and

with a frequency of 0.5 Hz to emulate the decreased

locomotor activity of real B. splendens behaving

individually in a tank (e.g. a fish used as control,

having no visual contact with the conspecific), as well

as a female starting mate evaluation or eavesdropping

(Doutrelant et al., 2001; Herb et al., 2003; Cantalupo

et al., 1996; Clotfelter et al., 2006). The fish replica

autonomously yawed 180� every 5 min to invert the

head–tail orientation, to avoid positional bias. Fifteen

sexually mature B. splendensmales were analysed and

each of them was exposed to the stimuli listed above.

Behavioural observations

Observations lasted 30 min and started when fish

noted the proposed combination of cues. The sequence

of tested combination of cues was randomized over the

experiments. To limit prior context experience effects

(Hsu et al., 2006), each fish was tested only once every

7 days with a different combination of cues (Arnott

et al., 2016), since the effects of context outcomes are

drastically reduced between 24 and 48 h in Siamese

fighting fish (Dzieweczynski et al., 2012;

Dzieweczynski & Forrette, 2013).

For each combination of cues, we noted behaviours

identically displayed in both agonistic and courtship

interactions, including (i) the fin spreading behaviour

Fig. 2 Experimental setup.

Different colours of the test

tank indicate its virtual

division in nest zone

(green), middle zone

(yellow) and robot zone

(red). The fish replica was

placed in the robot zone (b),

divided from other sections

of the tank by a one-way

glass and an opaque

partition. The experiment

started once the opaque

partition was removed and

the Betta splendensmale can

see the fish replica through

the one-way glass
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duration towards the combination of cues, correspond-

ing to all fins outspreaded (Simpson, 1968); (ii) the gill

flaring duration towards the combination of cues,

consisting in the erection of gill covers (Simpson,

1968); (iii) time to the combination of cues, defined as

the duration of B. splendens males swimming inside

the robot zone (a).

Behaviours used only in male–female interactions,

such as (iv) number of zigzag displays (the male

moves away from the female in a zigzag way to

magnify its colouration and body size, as described by

Simpson, 1968); (v) time spent by males stopping

upwards the nest and undulating their bodies in order

to show the nest to females, as described by Simpson

(1968); (vi) bubbling acts (intermittently work on the

nest by adding bubbles to encourage the female to

come closer), (Rainwater, 1967; Robertson & Sale,

1975), were recorded as well. An observer focally

recorded the behaviour of B. splendens (Benelli et al.,

2015b; Romano et al., 2017a, b).

Statistical analysis

Courtship data concerning identical displays per-

formed in both agonistic and courtship interactions

(i.e. fin spreading duration, gill flaring duration and

time to the combination of cues) as well as courtship

data related to specific male–female interactions (i.e.

number of zigzag displays, upwards the nest duration

and bubbling acts) were analysed by JMP 9 (SAS)

using the general linear mixed model (GLMM)

described by Romano et al. (2017b). We used a

GLMM with a fixed factor (i.e. the tested cue/com-

bination of cues), which also considered IDw as the

w-th random effect of individual over repeated testing

phases. Averages were separated by Tukey’s HSD

test. A probability level of P\ 0.05 was used to test

significance of differences between means.

Results

Visual cues produced by different agents (e.g. living

agents and artificial ones) marginally modulated male

displays used both in agonistic and courtship interac-

tions (Fig. 3). Fin spreading duration was not affected

by different combinations of cues (F4,56 = 0.1309;

P = 0.9705). The duration of the fin spreading

behaviour was not significantly different in male–

male and male–female contexts as well as in contexts

involving the neutral fish replica, the fish replica with

activated LEDs and the painted fish replica (Fig. 3a).

Duration of gill flaring display was marginally

influenced by different combinations of cues (F4,56

= 4.5939; P = 0.0028). Gill flaring was performed

slightly longer towards conspecific males, compared

to conspecific females and to the fish replica with

activated LEDs. Gill flaring duration was shorter in

contexts involving the neutral fish replica and the

painted fish replica (Fig. 3b).

Time spent by males in the robot zone (a) was not

significantly affected by the different combinations of

cues that were proposed (F4,56 = 1.4324; P = 0.2353),

as in Fig. 3c.

Visual cues produced by different agents (e.g.

living agents and artificial ones) significantly affected

specific courtship displays performed by B. splendens

males (Fig. 4).

The number of zigzag displays was significantly

affected by different cues (F4,56 = 46.9644; P

= 0.0001). The number of zigzag displays performed

by males during male–female interactions was com-

parable with those performed in contexts involving the

fish replica with activated LEDs. A significantly lower

number of zigzag displays were performed in contexts

involving the painted fish replica. The number of

zigzag displays was significantly lower in contexts

involving the neutral fish replica and in male–male

contexts (Fig. 4a).

Time spent by males upwards the nest was signif-

icantly influenced by the different combinations of

cues (F4,56 = 39.4586; P = 0.0001). Males spent a

longer period upwards the nest in contexts including a

female conspecific as well as the fish replica with

activated LEDs compared to a context involving the

painted fish replica. In addition, the neutral fish replica

and male conspecifics produced shorter periods spent

upwards the nest (Fig. 4b).

The number of bubbling acts was significantly

affected by different agents (F4,56 = 27.2202; P

= 0.0001). B. splendensmales displayed a comparable

number of bubbling acts during interactions with a

female conspecific and the fish replica with activated

LEDs (Fig. 4c). The painted fish replica evoked a

significantly lower number of bubbling acts in

Siamese fighting fish males, compared to other agents.

An almost absent response, concerning the number of

bubbling acts, has been recorded in male–male
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interactions as well as in interactions involving the

neutral fish replica.

Discussion

The robotic system presented in this study provided a

relevant contribution in unveiling the decision-making

process of B. splendens males during sexual recogni-

tion and courtship behaviour. The robot reliably

induced stereotyped behaviour patterns that B. splen-

dens males use during agonistic interactions, and thus

it was treated like a conspecific. In addition, courtship-

specific behaviour was almost exclusively displayed in

response to colour signals, with LEDs being consis-

tently more effective than painted stripes.

In a wide number of researches, biomimetic robots

were used to study social behaviour in fish (Polverino

et al., 2012, 2013; Butail et al., 2013; Kopman et al.,

2013; Spinello et al., 2013; Langraf et al., 2014, 2016;

Worm et al., 2014, 2017; Bonnet et al., 2015; Ruberto

et al., 2016; Romano et al., 2017b). Concerning

courtship behaviours in fish, Phamduy et al. (2014)

investigated female mating preferences of bluefin

killifish for differently coloured male-mimicking

robotic fish.

However, in highly aggressive species, how male

courtship displays are elicited by receptive female

signals is a poorly explored issue, which can greatly

profit from using robots, performing highly reliable

and standardized behaviours.

In Siamese fighting fish, mating success is ensured

by the rapid recognition of the mate that is mainly

affected by specific visual cues delivered by the two

mating fish, and this avoids the risk of injuries as well

(Rainwater, 1967; Simpson, 1968; Robertson & Sale,

1975; Clotfelter et al., 2006).

Our results showed no significant differences in the

fin spreading duration towards males, females and

female-mimicking agents (Fig. 3a). Generally, larger

males are socially dominant and they build larger nests

(Bronstein, 1984; Jaroensutasinee & Jaroensutasinee,

2001b). Thus, fin spreading could be a strategy used by

males to appear larger to threaten conspecific males,

Fig. 3 Duration of Betta splendens a fin spreading, b gill

flaring, and c swimming in the robot zone a evoked by different
agents. NEUTRAL = neutral fish replica (without stripes).

LEDs ON = fish replica with activated LEDs (luminescent

stripes). PAINTED = painted fish replica (painted stripes).

FEMALE = female conspecific. MALE = male conspecific.

Same letters above each column indicating not significant

differences (P[ 0.05). T-bars are standard errors
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and at the same time to attract conspecific females

during courtship (Simpson, 1968; Robertson & Sale,

1975).

The gill flaring display was marginally longer in

male–male compared to the case of male–female and

male-fish replicas with activated LED interactions,

and significantly longer compared to the interactions

involving the painted and the neutral fish replica

(Fig. 3b). During this display, oxygen extraction from

water is drastically limited in fish (Abrahams et al.,

2005).

However, Siamese fighting fish have evolved a

particular organ (i.e. the labyrinth organ), which acts

functionally like a lung (Tate et al., 2017). This

enables B. splendens and the other anabantoids, a

group of air-breathing fishes living in Africa and south

Asia, to persist in extremely hypoxic situations where

gill breathing would be ineffective anyways (Rüber

et al., 2006). The longer persistence of gill flaring in

male–male interactions suggests that gill flaring

behaviour is more cost efficient as not-physical

aggressive display in defending the nest from other

intruders than as courtship behaviour. Indeed, the gill

flaring behaviour as a courtship display seems to be

not correlated with male parental quality but with

tolerance to hypoxia, and the relevance of this to

female reproductive success is unknown (Abrahams

et al., 2005; Clotfelter et al., 2006). Likely, males

performed gill flaring significantly shorter towards the

painted fish replica and the neutral fish replica because

they do not mimic a receptive female enough.

However, the similarity of the intensity of male

behaviours used both in courtship and agonistic

interactions can be explained by B. splendens female

selection of males that are aggressive and large enough

to protect the offspring (Bronstein, 1984).

The intensity of courtship-specific behaviours (e.g.

zigzag displays, time spent by males upwards the nest,

bubbling acts), significantly increased in the following

combination of cues: conspecific males, neutral fish

replica, painted fish replica, fish replica with activated

LEDs and conspecific females (see Fig. 4a, b, c). The

extreme difference of male courtship-specific

responses displayed to female conspecifics compared

Fig. 4 Number of Betta splendens a zigzag displays, b duration
upwards the nest, and c number of bubbling acts evoked by

different agents. NEUTRAL = neutral fish replica (without

stripes). LEDs ON = fish replica with activated LEDs

(luminescent stripes). PAINTED = painted fish replica (painted

stripes). FEMALE = female conspecific. MALE = male con-

specific. Different letters above each column indicated signif-

icant differences (P\ 0.05). T-bars are standard errors
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to other male conspecifics allows us to use combina-

tions of robotic cues to understand which stimuli are

displayed by females to be considered potential sexual

mates.

The horizontal darker stripes along the reproductive

B. splendens females body (Rainwater, 1967) have

also been reported as a submission signal in bothmales

and females (Robertson & Sale, 1975), potentially

behaving as a conventional signal that is displayed by

subordinate individuals of both sexes to avoid attacks.

Such robotic approach could be exploited in future

researches to verify this hypothesis. Indeed, conven-

tional signals are signals whose level can or cannot be

connected with underlying quality, and are not

explained by physical or physiological reasons (Guil-

ford & Dawkins, 1995; Hurd & Enquist, 2005;

Bachmann et al., 2016). However, the display of

courtship-specific behaviours towards the painted fish

replica and the fish replica with activated LEDs

highlighted the role of the darker stripes during the

courtship and mating behaviour of B. splendens. In

particular, the painted fish replica always evoked

courtship-specific behaviours, indicating the pivotal

role of the longitudinal stripes in triggering these

highly selective responses.

Noteworthy, the fish replica with activated LEDs

evoked a significantly higher intensity of these

responses compared to the painted fish replica, and

triggered similar reactions in males to those evoked by

conspecific females, revealing its closer biomimicry

with a B. splendens female. This novel animal–robot

interaction paradigm based on a light emitting com-

munication strategy was recently proposed in a study

involving B. splendens males during agonistic inter-

actions towards a biomimetic robot (Romano et al.,

2017b). Concerning the role of light stimuli in the

courtship responses produced in B. splendens males,

although the fish replica with activated LEDs has less

marked dark stripes compared to the painted fish

replica, the former, in addition to dark stripes, also

exhibits a brighter appearance that can be perceived by

males as an indication of a healthy female (Vershinin,

1999). For instance, carotenoid pigments, procured by

fish through foraging, accomplish several physiolog-

ical roles (Vershinin, 1999; Clotfelter et al., 2007;

Svensson & Wong, 2011). In addition, carotenoids

have an important role in animal communication, in

the context of carotenoid-based signals (Svensson &

Wong, 2011). Fish that have high levels of carotenoids

in their diet display a brighter colouration, and are

perceived as high-quality subjects (Clotfelter et al.,

2007; Svensson & Wong, 2011); thus, carotenoids are

importantly involved in intraspecific sexual selection

in several species (Maan et al., 2006; Svensson &

Wong, 2011). However, further efforts are needed to

understand to what extent the wavelengths of the

LEDs actually mimic carotenoids and to what extent

real females use them to communicate fitness. In

addition, Hinow et al. (2017) proposed an interesting

mathematical approach to investigate pheromone

communication, arguing that the ratio of the individual

chemical compounds provides the sense of the

distance along the trail of pheromone, and shifts in

this ratio describe the direction of the source. A similar

approach could be applied for visual communication

to modulate the ratio of the red–green–blue (RGB)

components to obtain a closer biomimetic interaction

involving LEDs incorporated in the robotic fish.

Overall, our study firstly reports which combina-

tions of cues, produced by an artificial agent, are

important in eliciting courtship behaviours in a high

territorial species such as B. splendens during sexual

recognition. In addition, we demonstrated that light

stimuli, mimicking the colour pattern of reproductive

females, boost the consistence of courtship displays in

B. splendens males, probably because they indicate a

female that is a good forager as well as a parasite-free

individual, likely producing a high number of top-

notch quality eggs.

Our robotic approach to establish bio-hybrid indi-

vidual interactions can represent an advanced tool for

trait-based ecology that is a rapidly developing context

of ecology merging evolutionary with traditional

population and community ecology (Kiørboe et al.,

2018).
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