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Abstract Studying aquatic population dynamics

using spatio-temporal monitoring data is associated

with a number of challenges and choices. One can let

several samples represent the same population over

larger areas, or alternatively model the dynamics of

each sampling location in continuous space. We

analysed the spatio-temporal population dynamics of

six phytoplankton taxa in the Baltic Sea applying

multivariate state-space models with first-order den-

sity dependence.We compared three spatial scales and

three models for spatial correlation between prede-

fined subpopulations using information theoretic

model selection. We hypothesised that populations

close to each other display similar dynamic properties

and spatial synchrony decreasing with the distance.

We further hypothesize that intermediate-scale group-

ing of data into subpopulations may parsimoniously

represent such dynamics. All taxa showed constant

density dependence across space and strong spatial

synchrony, consistently requiring a parameter for

spatial correlation whenever models included several

population states. The most parsimonious spatial

structure varied between taxa, most often being one

panmictic population or ten intercorrelated population

states. Evidently, longer time-series, containing more

information, provide more options for modelling

detailed spatio-temporal patterns. With a few dec-

ade-long plankton time-series data, we encourage

determining the appropriate spatial scale on biological

grounds rather than model fit.

Keywords Density dependence � Moran effect �
Spatial scale � Spatial synchrony � State-space models

Introduction

Time-series data on species’ relative abundances are

commonly gathered for monitoring trends and patterns

in biological populations and communities, as well as

for identifying intrinsic and extrinsic drivers of

population dynamics (Turchin, 1995, 2003). Usually,
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these data consist of counts or density estimates from

multiple locations, which show more or less syn-

chronous fluctuations (Ranta et al., 1997, 1999).

Spatial synchrony between subpopulations can arise

if they are connected by dispersal, or naturally, if

sampling points all represent one panmictic popula-

tion. However, isolated subpopulations also show

synchronous dynamics if they have identical density

dependence and are subject to the same environmental

forcing (Moran, 1953). This phenomenon, known as

Moran effect, has later been shown to produce various

degrees of synchrony even under more relaxed

assumptions, such as somewhat different density-

dependent dynamics and non-identical but spatially

autocorrelated environment (Ranta et al., 1997, 1999;

Engen & Sæther, 2005; Sæther et al., 2007).

In order to analyse large-scale temporal patterns

and processes, it is tempting, and not uncommon to let

observations from a larger area represent one larger

population—an approach which has been applied for

trend analysis regionally in many systems and also on

plankton in our study area, the Baltic Sea (e.g.

Suikkanen et al., 2007). Data from different stations

may be treated as replicates of one-state variable, or

analysed as a time-series of temporal averages (pooled

from several stations). These approaches provide

information about sampling noise, which facilitate

analyses and summarising of results. On the other

hand, they may ignore valuable information about

spatial patterns and local dynamic properties, which

also contain some implicit information about the

contribution of observation error (Dennis et al., 2010).

To make well-informed decisions on the analysis of

monitoring data, we need to know to which extent

population structure can be inferred from the data

analysed, and what consequences the choice of scale

may have for the parameters estimated (Ward et al.,

2010).

State-space models are quantitative dynamic mod-

els that explicitly separate between stochastic popu-

lation fluctuations not captured by the model

prediction (process error), and additional stochasticity

in the data due to noisy sampling and counting

procedures (observation error) (Durbin & Koopman,

2012). These type of models are frequently needed for

making inference about density dependence (e.g.,

Knape, 2008), environmental effects (Lindén &

Knape, 2009), trends (Humbert et al., 2009) and in

population viability analysis (Tolimieri et al., 2017). It

is not uncommon that spatio-temporal population-

monitoring data lack replicates for a given location

and point in time, which may hamper our ability to

estimate observation error variance at the desired scale

of observation, and hence, to fit state-space models

(Dennis et al., 2010). Observation error is a common

issue in marine time-series (Hampton et al., 2013;

Scheef et al., 2012), and quality control information

from all work stages (from sampling to taxonomical

analysis) needs to be considered when plankton data

are used for analyses (Zingone et al., 2015).

Our goals are primarily exploratory: we aim to

investigate suitable approaches for modelling spatio-

temporal population dynamics using practically

unreplicated monitoring data. As a model system, we

study six common phytoplankton taxa in the Baltic

Sea, applying multivariate autoregressive state-space

models on three spatial scales, with one-, five-, and

ten-population state variables. Our set-up is fairly

similar to that of Ward et al. (2010) and Holmes et al.

(2012). We hypothesise that (1) the stations will show

clear synchrony, presumably due to the Moran effect.

(2) Synchronous fluctuations can be modelled on a

coarse scale, treating some or all of the stations as

representing the same population, without meaningful

loss of information. Complex interactions of variables

like temperature and nutrients are suggested to cause

Moran effects in plankton (Defriez & Reuman, 2017),

and the Baltic Sea basins in the study area are all

distinct in terms of temperature, nutrient concentra-

tions and salinity (Andersen et al., 2017; Snoeijs-

Leijonmalm & Andrén, 2017). We thus hypothesize

that our models with five subpopulations correspond-

ing to these basins should be particularly parsimo-

nious. (3) In the cases with several different

subpopulations, we expect that synchrony decreases

with distance. (4) When applicable, we expect that the

subpopulations can be assumed to have the same

density dependence parameters due to ecological and

genetic similarities. Alternatively, if our prediction

does not hold, environmental gradients in, e.g. salinity

or basin-specific communities, may result in spatially

variable density dependence parameters.
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Methods

Study area

The Baltic Sea is a 442 000 km2 brackish water basin,

with only a narrow connection to the North Sea

through Kattegat and Skagerrak straits. This leads to

varied salinity conditions with highest salinity in the

south and decreasing salinities towards north and to

the east, with a total salinity range from ca. 2 to 30

practical salinity units (PSUs) for the whole Baltic

Sea. The ten chosen monitoring stations are located in

the Bothnian Bay (BB), Bothnian Sea (BS), Sea of

Åland (AS), Gulf of Finland (GoF) and the Baltic

Proper (BP) (Fig. 1). All these sub-basins have distinct

differences in mean salinity and depth, and some of

them are additionally separated by sills (BS, BB and

AS). All stations are pelagic with depths exceeding 80

metres. The salinity within the study area ranges from

ca. 3 to 7 PSU.

Monitoring data

We study six phytoplankton taxa, identified either to

the genus or species level: Chrysochromulina spp.,

Hemiselmis spp., Plagioselmis prolonga Butcher

1967, Pseudopedinella tricostata (Roukhiyajnen)

Thomsen 1988, Pyramimonas spp. and Teleaulax

spp.—with the finest taxonomic resolution resulting

in meaningful time-series (nomenclature according to

Hällfors, 2004). These are all observed over large

areas and considered to be abundant, but little is

known about their spatial population structure and

dynamics.

The Finnish national monitoring data have been

collected since 1979 as part of the Helsinki Commis-

sion’s (HELCOM) COMBINE program, according to

the methods described in the Manual for Marine

Monitoring (HELCOM, 2017). Phytoplankton sam-

ples were taken as integrated samples from 0 to 10

metres and preserved with acid Lugol solution. The

samples were analysed using an inverted microscope.

For each year, the same person analysed and counted

the samples for that year for all ten stations. Cells were

divided into taxon-specific size classes and then

transformed into biovolumes using taxon-specific

formulae and size class-specific cell measurements

(Olenina et al., 2006). Biovolumes were converted to

biomass by assuming that the density was one. The

amount of plankton is reported in biomass (wet

weight) lg l-1.

Monitoring data, spanning 37 years, was obtained

from two different databases, Sumppu (1979–2007)

and Hertta (2008–2015, www.ymparisto.fi/oiva). We

focus on a seasonal window spanning from the 1 July

to the 29 September, as the monitoring has focused on

measuring the late summer phytoplankton. The mean

Julian day for data gathered during this period is 229

(SD 13.14). All six studied taxa show a reasonably flat

phenological pattern of occurrence during the sampled

time interval, i.e., variation in sampling date should

not introduce severe bias or noise.

Generally, only one sampling event per station and

year was carried out during the chosen seasonal

window. Exceptions are three years with multiple

samples at LL7 and one year with two samples at

LL3A. The monitoring stations were chosen based on

sampling frequency, disregarding stations that had not

been sampled for more than 25% of the full time

period (less than 10 years).

Data compilation

As the data come from two different databases, we had

to harmonise the data. If the biomass of a taxon was

divided into multiple size classes, they were summed

to create one taxon-specific biomass for each sample.

We aim to preserve biological relevance by keeping

the taxonomic level as accurate as possible, by

keeping it as close as possible to the species level,

and by choosing distinctive taxa. The taxa chosen for

the analysis were required to be present 40% of the

time at each of the investigated stations. As the aim is

to model already established populations, the earliest

possible starting year of each time-series was chosen

based on three criteria: (1) non-zero data for the taxon

were available for at least eight of the ten stations, (2)

if data were missing, or the taxon was not reported in

the data that year, there had to be non-zero data the

preceding or following year, and (3) the stations with

missing data could not be located in the same sub-

basin. In three cases, the length of the time-series was

influenced by changes in the accuracy of identification

through the years. The time-series for P. prolonga,

Hemiselmis spp. and Teleaulax spp. are shorter as they

were assigned to the order Cryptomonadales prior to

1990 (ESM Table 1).
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Zeros in the middle of the time-series were treated

as missing values. This was considered the most

conservative option as species or taxa might some

years have been ascribed to a less accurate taxonomic

level (e.g. unknown flagellates), and reported as zero

for the taxa studied here. When present, zeros tended

to occur simultaneously at all stations in the same year,

strongly suggesting inconsistent identification

accuracy for some of these fairly common and

widespread species. Hence, it is likely that the focal

taxa were still present in years with zeros. All time-

series were log-transformed prior to analysis.

Fig. 1 Map showing the ten

sampling stations and their

optional grouping into five

subpopulations; the

Bothnian Bay (BB), the

Bothnian Sea (BS), the Sea

of Åland (ÅS), the Gulf of

Finland (GoF) and the Baltic

Proper (BP)
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The statistical model

The applied model consists of an observation and a

process component (Eqs. 1 and 3, respectively) with

appurtenant variance structures (Eqs. 2 and 4, respec-

tively), and was applied for one taxon at a time.

Defined for a focal time step t, the model for a taxon is:

yt ¼ Zxt þ a þ tt; tt �N 0;Rð Þ ð1; 2Þ

xt ¼ Bxt�1 þ u þ xt; xt �N 0;Qð Þ ð3; 4Þ

The natural logarithm of estimated biomasses

(observed) at all the stations is the multivariate

response (vector yt in Eq. 1), which are linked to the

underlying hidden states, xt through the matrix Z, the

scaling vector a and multinormal observation errors

(vector tt in Eqs. 1 and 2). The numbers of underlying

hidden states are defined by Z. The observation errors

tt are assumed to be independent with equal variances

for all population states (the diagonal in variance–

covariance matrix R).

The diagonal of matrix B contains the parameters for

density dependence, defining how the subpopulation

states xt are linked to the situation in previous year xt–1.

When the value of B is unity, the model behaves like

exponential growth or a random walk, i.e., no density

dependence is present. Population growth is considered

negatively density dependent when 0\B\ 1 (under-

compensatory dynamics), B = 0 (exactly compen-

satory dynamics), or B\ 0 (overcompensatory

dynamics), smaller values of B indicating stronger

density dependence. On the off-diagonal, all elements

of B are zero. The row vector u represents the growth

rates of the populations, adjusting the averages. The

process errors xt are multivariate normally distributed

with mean zero and variance–covariance matrix Q.

By using different structures for Q we make various

assumptions about the correlation between the stations in

the unexplained population variation. As a general

description of Q, it can be expressed in terms of a

common process error variance r2, the correlation per

distance q, and a distance matrix D (with zero diagonal),

as

Q ¼ r2qD ð5Þ

We used three options for modelling the correlation

between the populations: (1) no correlation (NC), with

q = 0, which implies zero correlation between the

populations; (2) compound symmetry (CS), giving

equal correlation between the populations; and (3) an

autoregressive covariance structure (AR), where D is

the actual distance between the populations, resulting

in a correlation declining exponentially with distance

between the stations. For the model with one panmic-

tic population, Q is scalar and equal to r2.
All the data analysis were conducted in the

R-environment version 3.4.3 (R Core Team, 2017),

using the MARSS (version 3.9) package for fitting

multivariate autoregressive Gaussian state-space mod-

els (described in Holmes et al., 2012, 2018). To be able

to fit all desired model structures, we optimised the

process error parameters separately using a combina-

tion of MARSS and the optimx function (Nash &

Varadhan, 2013) (more detailed description in ESM).

Apart from MARSS, other packages that were used

include plyr (Wickham, 2016a), reshape2 (Wickham,

2016b), geosphere (Hijmans, 2017) and ggplot2

(Wickham & Chang, 2016).

Competing hypotheses and model selection

By modifying Z, we compared models, where samples

from all monitoring stations were considered; those

sampled either from one large population, from five

subpopulations, or from ten separate subpopulations

(Fig. 1). The division of the stations into five popu-

lations was done based on salinity and by accounting

for sills between sub-basins (Snoeijs-Leijonmalm &

Andrén, 2017). However, while alternative criteria of

division could have been applied, we stress that the

chosen scenario can also be interpreted as an arbitrary

intermediate spatial scale, between ten-state variables

and a single one. In addition, we also compared

models assuming equal or spatially variable density

dependence (along the diagonal of B). Considering the

different options for Q, Z and B, we investigated in

total 13 unique model structures for each taxon

(Table 1). Examples and a more detailed account on

similar investigations into spatial structure can be

found for, e.g. salmon (Hinrichsen & Holmes, 2009),

sea lions (Ward et al., 2010) and harbour seals

(Holmes et al., 2018).

The structure for a and u were constant for all the

models, with station-specific growth rates and a al-

lowing different average biomass levels at the differ-

ent monitoring stations. Vector a also enables us to

define the few sporadic replicates from stations LL7
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and LL3A. Inclusion of the replicates in the analysis,

effectively prevents the observation error variance

(R) from going to zero in the optimization procedure,

which is a common problem in state-space modelling

(Dennis et al., 2010). The initial values of the state

variables (at time step t = 1) were given prior

distributions with the mean being the average of the

initial time step(s) of the reference time-series and the

variance being r2 (at the diagonal of Q).

The model support for the resulting 13 candidate

models for each taxon (see ESM Table 2) was

evaluated in terms of parsimony according to their

Akaike information criterion corrected for small

sample size, AICc (Burnham & Anderson, 2002). To

compare models and scenarios between taxa we

further calculated Akaike weights and evidence ratios

to visualise the results. In the state option comparison

(Fig. 2), the panmictic option Akaike weight was

multiplied by six to make it comparable to the five-

and ten-state options. In comparisons between the

spatial correlation scenarios inQ, the panmictic option

was excluded (Fig. 5).

Additional analyses

To further investigate the plausible role of observation

noise in the model selection results, we successively

added an increasing amount of simulated noise to the

time-series of the taxa, where a multistate population

model was favoured by AICc. As the level of

observation noise increased, we expected the panmic-

tic model to eventually become the more parsimonious

model. This was carried out for the five-state models

for P. tricostata, and for the ten-state models for

Chrysochromulina spp. both with autoregressive pro-

cess error structure and one shared density dependence

term. The details of this simulation are presented in the

ESM.

To assess goodness of fit, we investigated the

normality of the residuals in all models within two units

of AICc difference (DAICc). We applied quantile–

quantile plots and the Shapiro-Wilks test for normality.

Results

In general, the fitted models captured the annual and

obviously spatially synchronous population changes

fairly well. In line with our expectations, all studied

taxa showed marked spatial synchrony between mon-

itoring stations, modelled either as correlation

between the population states, or as one population

state. Accordingly, multistate models with uncorre-

lated process error consistently performed poorly in

terms of AICc (ESM Table 2).

The most parsimonious state option for Hemiselmis

spp., P. prolonga, and Pyramimonas spp. was that of

one panmictic population (Fig. 2, ESM Table 2).

While the panmictic model was not the most parsi-

monious for Teleaulax spp., it had more weight in

comparison to the other options (Fig. 2). For

Chrysochromulina spp., the results are suggestive of

a ten-state approach and for P. tricostata the level of

support was very similar for different numbers of

states. Further, the estimated process error correlations

for the models within two DAICc units for P.

tricostata were high (model four, six and twelve:

0.963, 0.976 and 0.921, respectively). The high

correlation makes it difficult to judge anything

regarding how correlation changes with distance. This

is also the case for Pyramimonas spp., for which the

best model overall was the panmictic one, and the

Table 1 A presentation of the competing models, including

the model number (Model), number of parameters (K), number

of states modelled (States), spatial structure of process error

covariance matrix Q (NC no spatial correlation, CS compound

symmetry, AR autoregressive spatial structure), and modelling

approach for density dependence (B)

Model K States Q B

1. 13 One Scalar Scalar

2. 13 Five NC Equal

3. 17 Five DE Unequal

4. 14 Five NC Equal

5. 18 Five NC Unequal

6. 14 Five AR Equal

7. 18 Five AR Unequal

8. 13 Ten NC Equal

9. 22 Ten NC Unequal

10. 14 Ten CS Equal

11. 23 Ten CS Unequal

12. 14 Ten AR Equal

13. 23 Ten AR Unequal
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second-best one was a ten-state model with autore-

gressive spatial structure with high correlation (0.94).

While the five-state model was the best among several

competing models within two DAICc units for P.

tricostata and Teleaulax spp. (ESM Table 2), overall,

in contrast to our suggestion, we find no particular

support for an intermediate numbers of states (five

basin-specific states) being more parsimonious than

one or ten states (Fig. 2). By simulation, we could

confirm that one-state population models are indeed

favoured in noisier systems (ESM Fig. 3). The pan-

mictic population was favoured over the best multi-

state options with the addition of 2.5–3 times the

observation noise of the model estimate.

For three taxa, a single most parsimonious model

emerged (Fig. 3), while the other taxa had two, three

and five competing models within two units of DAICc
(Fig. 4). There was no consistency in which single

model was the most parsimonious for most taxa. A

generally well-performing option was model twelve,

with ten-state variables, equal density dependence,

and autoregressive spatial correlation in the process

error (Q). This model was the best in terms of AICc

only for Chrysochromulina spp., but within 1.7 units

of AICc from the best model in P. tricostata,

Pyramimonas spp. and Teleaulax spp.

Other models that gained support were model four,

six and ten (Table 1). The best models for P. tricostata
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Fig. 2 The summed Akaike weights for models with different

numbers of underlying states. To make the approaches

comparable, the Akaike weight of the one-state option was

multiplied by six (the number of models with five and ten states)

before rescaling. The evidence ratios (ER) for the best vs. the

second-best option are displayed in the upper left corner
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consisted of models six (the best model), twelve

(DAICc 1.10) and four (DAICc 1.40). All mentioned

models have equal density dependence. Both model

four and six have five-state variables and show spatial

correlation in the process error, compound symmetry

and autoregressive error structure, respectively. Mod-

els ten and twelve are the corresponding pair of models

but with ten states. The best models for Teleaulax spp.

consisted of models one (best), four, six, ten and

twelve (all with DAICc B 0.82).

For models with multiple subpopulations, the

favoured type of spatial correlation structure in the

process error was not consistent between taxa (Fig. 5).

The autoregressive structure, where correlation

decreases with distance, was clearly superior in

Chrysochromulina spp. and Pyramimonas spp. and

indicative for P. tricostata, while it was impossible to

distinguish between autoregressive and compound

symmetry options for the others. Notably, it was never

really worse than compound symmetry. For Hemi-

selmis spp., P. prolonga and Teleaulax spp., the result

is expected, as the model with one panmictic popu-

lation was superior to the models with several states

and either spatial correlation structure.

For all taxa, the best models had one shared density

dependence parameter on the diagonal of B. This is

also the case when looking at the Akaike weights

grouped by the number of state variables for most taxa

(ESM Fig. 1; ESM Fig. 2). However, the support is

not conclusive for Hemiselmis spp. with five popula-

tions and P. prolonga with ten populations. The

parameter estimates for density dependence ranged

between 0.116 and 0.825 in the models within 2 units

DAICc (Table 2). Three species showed evidence for

density dependence, Chrysochromulina spp. and P.

tricostata having undercompensatory dynamics and

Pyramimonas spp. close to exactly compensatory

dynamics. Hemiselmis spp., P. prolonga, and Te-

leaulax spp. all had point estimates corresponding to

weak or moderate undercompensatory density depen-

dence, but accounting for parameter uncertainty, the

exponential growth model (diag(B) = 1; no density

dependence) cannot be ruled out.

The model residuals did not significantly differ

from a normal distribution, with the exception of two

models in one species. These were models ten and

twelve for Teleaulax spp.

Discussion

An evident result is strong spatial synchrony in

population states, which has to be accounted for when

modelling this type of data. On the annual scale, the

environmental variation is likely to be similar across

the study area, leading to a Moran effect. Possible

candidate variables causing Moran effects are tem-

perature and salinity. In the Curonian Lagoon, Jaanus

et al. (2011) reported that phytoplankton biomass was

negatively affected by salinity, while relationships

between the dominant phytoplankton groups

remained. Another mechanism that can produce

synchrony is dispersal. The sea is a dynamic connected

P. prolonga
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Chrysochromulina spp.
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Fig. 3 The fitted state variables of the most parsimonious

models (lines) and the data (filled circles) coloured by location

and scaled with the estimated parameter values for a for taxa

with only one model within 2 units DAICc
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environment in constant movement. Earlier it was

widely accepted that plankton can be anywhere as long

as appropriate resources are available (‘Baas-Beck-

ing’s tenet’; de Wit & Bouvier, 2006), in essence

having endless dispersal potential. More recently,

microorganisms have been shown to exhibit biogeo-

graphical patterns, some at least influenced by the

environment (Martiny et al., 2006). In practice, the

range of dispersal for individual phytoplankton cells is

quite small due to their small size, low velocities

(Bauerfeind et al., 1986) and short life-span, and thus

their horizontal displacement is tied to physical

forcing. As the surface currents in the Baltic Sea are

relatively weak (Leppäranta & Myrberg, 2009), one

individual is unlikely to survive from one monitoring

station to the next—with the shortest distance between

monitoring stations being 100 km. When Defriez &

Reuman (2017) investigated the geography of syn-

chrony in plankton using remote-sensed chlorophyll a

data, they also suggested that Moran effect was the

more likely mechanism of synchronisation in plank-

ton. We therefore conclude that the observed spatial

synchrony must in practice be mediated by the Moran

effect rather than by dispersal.

The taxa investigated showed no consistent patterns

of population structure. The results suggest that the

most appropriate number of states is the one-state

option, with four taxa supporting this approach, while

Chrysochromulina spp. showed some support for ten

states and P. tricostata being inconclusive. Hence, it

seems that treating data from nearby monitoring

stations as replicates of the same population is often

Teleaulax spp.
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Fig. 4 The fitted state variables of the two most parsimonious models (lines) and the data (filled circles) coloured by location and

scaled with the estimated parameter values for a for taxa with multiple competing models within 2 units DAICc
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not a bad alternative. This is also supported by the

observed very high and uniform correlations between

the stations’ process errors in the multiple-state

models of these taxa. However, for Chrysochromulina

spp., P. tricostata and Pyramimonas spp., higher

resolution spatial models performed well, also show-

ing a more moderate correlation in process errors,

decreasing by distance. In fact, these three species had

longer time-series compared to the rest (Table 1). It is

not surprising that species with more data allows for

describing more detailed patterns.

Lower biomass of a selected taxon in a sample

means that there were fewer cells in a sample, and this

may cause lower precision in the estimated biovolume

and hence more noise (observation error). We aimed

to minimize this by selecting common, numerous taxa

with the biovolume of one cell usually ranging only

from 14 to 723 lm-3 (Olenina et al., 2006). From the

monitoring samples, at least 50 counting units (e.g.

cells) of each dominating taxon were counted, and the

total count was at least 500 units (HELCOM, 2017),

which causes that the counting accuracy for rare taxa is

not as good as for common taxa. This is common

practice in microscopy based data aiming to monitor

plankton communities. For rare, especially the large-

sized taxa, the observation error for a biomass result

can be much higher than for common small-sized taxa,

which usually are more numerous in the monitoring

Fig. 5 The summed Akaike weights for models with different

covariance structure (matrix Q) of the process error: NC no

spatial correlation, CS compound symmetry, AR autoregressive.

The results are based only on the models with five and ten states.

The evidence ratios (ER) for the best versus the second best

option are displayed in the upper right corners of the panels
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samples of the area (e.g. Suikkanen et al., 2013; Kuosa

et al., 2017).

A fundamental question is whether all taxa would

be best modelled using a ten-state approach, if the

time-series would be long and informative enough.

Noisier data and shorter time-series will more likely

favour a lower resolution model with fewer states and

parameters. As shown in the simulations with added

noise in ESM Fig. 3, also the taxa with models

favouring multistate options will revert to one pan-

mictic population when 2.5–3 times more observation

noise is added. One may ask whether we are misiden-

tifying the best model, with the risk of drawing

incorrect conclusions. While this is a problem if one is

genuinely identifying population structure, the prob-

lem can also be seen merely relating to the scale of

investigation, where the study questions and conclu-

sions drawn are tied to that scale. In cases where large-

scale population trends and compound-symmetric

spatially synchronous patterns dominate (e.g. due to

Moran effects), the one-state approach may indeed be

detailed enough, or the most parsimonious alternative,

even though the population is not in reality panmictic.

Several earlier long-term studies on Baltic Sea

phytoplankton and indicator studies utilising phyto-

plankton-monitoring data have focused on certain sub-

basins, where they have grouped the same monitoring

data in similar fashion as our intermediate-state option

(Suikkanen et al., 2007, 2013; Lehtinen et al., 2016;

Kuosa et al., 2017). It is curious that the intermediate

option gained low support, since salinity is known to

affect the distribution of plankton species (Wasmund

et al., 2011), and as there is a notable difference in

salinity between the northernmost and southernmost

basins. Noticeable, the scale of population dynamics is

a different question compared to community compo-

sition or species distribution. The five-state option had

the most support for the inconclusive taxa P. tricostata

and Teleaulax spp., which regardless of model all had

high spatial correlation. Chrysophyceae, to which P.

tricostata belongs, have been shown to prefer low

salinities (Wasmund et al., 2011).

For the taxa that did not have support for the

panmictic state option, there was always a spatial

structure present either as a spatially autoregressive or

a compound symmetry error structure. When looking

at the wet weight biomass in the whole Baltic Sea, Olli

et al. (2013) observed positive spatial autocorrelation

up to 500 km for the whole Baltic Sea and up to 50 km

when looking at one basin, the Gulf of Finland. Some

plankton species are known to form patches of tens of

kilometres (Eppley et al., 1984). Also when looking at

genetic and geographical distances in Skeletonema

marinoi, Sjöqvist et al. (2015) did not see a change

with distance within the Baltic Sea.

An obvious result was the spatially uniform effects

of density dependence, applying for both the basin

level (five-state variables) and station level (ten-state

variables) analyses. Apparently, the ecology of these

species and the drivers of population dynamics are

similar throughout the study area, despite the gradients

in salinity, variable temperatures, different nutrient

availabilities and variable winter conditions. This will

also be mitigated, and the regional variation will be

Table 2 The parameter

estimates for density

dependence (diag(B)),
observation error (diag(R)),

process error variance (r2)
and the spatial correlation

parameter (q; when
applicable) for models

within DAICc 2. For

diag(B) and diag(R) we

report also standard errors

in parentheses

Taxon Model ID diag(B) diag(R) r2 q

Chrysochromulina spp. 12. 0.347 (0.145) 0.619 (0.090) 0.724 0.924

Hemiselmis spp. 1. 0.825 (0.143) 0.644 (0.074) 0.510 –

P. prolonga 1. 0.539 (0.242) 0.630 (0.067) 0.103 –

P. tricostata 6. 0.663 (0.117) 0.673 (0.075) 0.388 0.976

12. 0.522 (0.113) 0.568 (0.079) 0.540 0.921

4. 0.678 (0.111) 0.706 (0.075) 0.357 0.963

Pyramimonas spp. 12. 0.116 (0.170) 0.500 (0.074) 0.650 0.940

1. 0.221 (0.183) 0.617 (0.053) 0.531 –

Teleaulax spp. 1. 0.691 (0.149) 0.645 (0.069) 0.160 –

6. 0.809 (0.135) 0.637 (0.068) 0.130 0.999

4. 0.809 (0.132) 0.637 (0.068) 0.130 0.999

12. 0.789 (0.139) 0.639 (0.068) 0.130 0.999

10. 0.790 (0.139) 0.639 (0.068) 0.130 0.999
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decreased by including separate growth rates and

levels (a and u in Eqs. 1 and 3). The similar ecology

and drivers of the population dynamics for the species

could be due to genetics, dominating Moran effects, or

a combination of these. A in vitro study on Skele-

tonema marinoi Sarno & Zingone has lent support to

the fact that species can have considerably broader

salinity spectra then what is covered by our study area

(Sjöqvist et al., 2015). Different subpopulations

between areas with high salinity differences have

been identified using genetic methods for S. marinoi;

however, these patterns were at larger spatial scale and

the differences were observed between the Baltic Sea

and the North Sea (Sjöqvist et al., 2015). This is also in

accordance with other studies conducted in the Baltic

Sea on macroorganisms, where the genetic variability

within the Baltic compared to the North Sea has been

considered to be lower (Johannesson & André, 2006).

There are also other studies suggesting a cut-of-point

at the transition zone between the Baltic and the North

Sea (Wennerström et al., 2013). Naturally, the results

presented here may not apply for other areas with

larger distances, more spatially isolated sub-basins or

more spatially variable conditions. Neither can we

guarantee that the result applies to all phytoplankton

taxa.

On a large scale, density dependence, as described

by the autoregressive coefficient, will indeed describe

the statistical properties of the time-series. However, it

may be different (weaker) at larger scales and perhaps

not accurately describing the commonly assumed

biological processes behind it, such as intraspecific

competition. Then, density dependence is merely

technically summarising the population autocorrela-

tion in a system (Turchin, 1995).

It is often notoriously difficult to partition the

variance of Q and R. It is not uncommon with a

multimodal likelihood surface, where one or both

variances show a spurious peak at zero, the realistic

peak being too shallow to be detected (Knape, 2008;

Auger-Méthé et al., 2016). In an ideal situation, we

would have multiple replicates for each time step,

which would considerably help partitioning the vari-

ances (Dennis et al., 2010). By already including very

few replicates effectively, as was done in this study,

we prevent the observation error variance from

approaching zero. On the other hand, it is not

necessarily optimal to use multiple samples from only

few years and monitoring stations (Gulf of Finland) as

replicates, and to extrapolate this information to the

whole system, as the observation error variance may

differ between the stations and/or sub-basins.

We are aware that the taxa selected are not

representative for the whole phytoplankton commu-

nity across the Baltic Sea, which includes ca. 2000

species (Hällfors, 2004). Rather our study shows a

snapshot of the kinds of patterns that emerge from this

kind of data and how the patterns may vary between

taxa. In order to investigate our questions on the large

spatial scale applied, we simply were restricted to use

the species for which sufficient data are available.

With a more limited area, it would be possible to

include more species. Our study contributes by

providing a better understanding of patterns in phy-

toplankton-monitoring data and helps us to identify

suitable modelling approaches, new potential uses and

weaknesses.

Conclusions

Our results suggest high spatial synchrony in phyto-

plankton population fluctuations in the Baltic Sea,

implying that spatial correlationmust not be ignored in

statistical analyses. For many taxa, treating the data as

replicates from one panmictic population will not lead

to relevant loss of information, as the model with most

support either included only one state variable or

showed high spatial correlation between multiple

populations. This is especially the case when using

shorter time-series. We also show that adding noise to

the time-series increasingly favour one-state models,

suggesting that modelling on a finer spatial scale is

more appealing with better quality data. Identification

of more detailed patterns, such as ten-state-models

with spatial synchrony decreasing by distance, was

restricted to the taxa with the longest times series.

Naturally, the appropriate scale of investigation may

depend on the study question, so approximately equal

model parsimony at different spatial scales can be seen

as a delighting result. Typically, the models with

multiple population states showed uniform patterns of

temporal autocorrelation, suggesting that density

dependence is most parsimoniously modelled as being

uniform across space.
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