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Abstract Phytoplankton communities respond

rapidly to environmental selection at a given locality,

and they are also shaped by spatial processes at certain

scales. The extracted effect of environmental selection

and spatial processes may vary if different classifica-

tion approaches are applied to phytoplankton and the

spatial scales. In this study, summer phytoplankton of

43 lakes from three major lake regions in China were

investigated and phytoplankton were classified with

three approaches: taxonomy of species, habitat tem-

plate-based functional groups, and morphology-based

functional groups. Within a single lake region, the

pattern of phytoplankton meta-community was sig-

nificantly explained by environmental but not by

spatial variables. In a larger scale covering all the three

lake regions, both environmental and spatial variables

explained the variance of the phytoplankton commu-

nity, but the spatial variables were detected only by

classification with species, and only the environmental

variables were detected with phytoplankton functional

groups. This study revealed that although vegetative

populations of different species sorted into the same

functional group have common response to environ-

mental changes, their dispersal abilities, mechanisms,

and strategies might differ markedly and therefore the

species-specific approach cannot be disregarded when

studying phytoplankton patterns at spatial scales.

Keywords Phytoplankton � Functional groups �
Spatial distribution � Environmental filtering � Spatial

distance � Scale dependence

Introduction

Phytoplankton can easily be dispersed or transported

by agents such as rivers, streams, wind, or animals,

and the human vector also contributes to their

dispersal (Incagnone et al., 2015; Padisák et al.,

2016). Thus, phytoplankton communities in separated

water bodies are usually connected as a general meta-

community via dispersal (Leibold et al., 2004). In a

given water body, phytoplankton species are strongly

selected by environmental conditions, e.g., physical

and chemical conditions, and grazing (Reynolds,

2006). Strong passive dispersal allows phytoplankton

to track changes in environmental conditions (Leibold

& Miller, 2004; Leibold et al., 2004). Considering the
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strong environmental filtering in phytoplankton, the

species-sorting and mass effects paradigms were used

to explain the structure of phytoplankton meta-com-

munity according the dispersal rate (Bergström et al.,

2008; Vanormelingen et al., 2008; Shoemaker &

Melbourne, 2016). Meta-community theory is useful

to answer ‘‘the paradox of phytoplankton,’’ and

answer questions such as how to recognize the effect

of environmental filtering and dispersal in phyto-

plankton community.

To better identify the variables and their effects of

environmental selection, three widely used classifica-

tions have been developed: functional groups (FG) as

described by Reynolds et al. (2002), morpho-func-

tional groups by Salmaso & Padisák (2007), and the

morphology-based functional groups (MBFG) by

Kruk et al. (2010). The FG groups (coda) were

described along with their habitat templates, which is

based on carbon- and nutrient supply, mixing regime

and grazing resistance (Padisák et al., 2009), and the

functional traits of MBFG focused on cell morphology

and later habitat properties were allocated to each

group mainly combining transparency, nitrogen, and

temperature (Kruk et al., 2010; Kruk & Segura, 2012).

As studies with no exception supported that the critical

environmental variables can be more easily identified

for phytoplankton communities when they are classi-

fied with functional groups (e.g., Hu et al., 2013, 2017;

Huszar et al., 2015), these approaches became wide-

spread in phytoplankton studies. However, exploring

the importance of the spatial scale has started only

recently (Naselli-Flores & Padisák, 2016).

Phytoplankton is characterized with small sizes and

can easily be transported. So far, dispersal limitation

of phytoplankton was detected only on large spatial

scales and only large spatial distance explained the

compositional differences in lakes (Vyverman et al.,

2007; Stomp et al., 2011; De Bie et al., 2012; Rojo

et al., 2016). The similarity of phytoplankton com-

munities tends to increase with the distance decay

(Nekola & White, 1999). In a natural water body,

phytoplankton community is composed by many

species with different dispersal abilities. For example,

the endemism in flagellates has been repeatedly

reported (Wołowski et al., 2013; Cavalcante et al.,

2016). The traits used to classify the functional groups

are relevant mostly to the response in nutrients, light,

and grazing resistance (Salmaso et al., 2015). The

differences in dispersal ability have not been

incorporated into the current classification of func-

tional groups yet.

Considering the high correlation between func-

tional traits and environment conditions, it is expected

that classifications by functional groups would show

strong environmental selection but much less effect of

dispersal. To confirm the expectation, we conducted a

survey of phytoplankton assemblages, environmental

variables, and the spatial information of 43 lakes in

three major lake regions in China in summer of 2012

(20 July–20 August). The phytoplankton was grouped

as taxonomy of species, functional groups (FG;

Reynolds et al., 2002; Padisák et al., 2009), and

morphological-based functional groups (MBFG; Kruk

et al., 2010).

Materials and methods

Most lakes in China are located on the west plateau, in

the middle and lower reaches of the Yangtze River

(middle-east of China) and on the northeast plain. In

the present study, 21 lakes (A1–A21) were located on

Yunnan plateau (lake region A); the distance between

the lakes ranges in 0.34–540 km, average distance is

222 km; 9 lakes (B1–B9) in the lower reaches of the

Yangtze River (lake region B), with a distance

between the lakes ranging from 21 to 546 km, average

distance is 255 km; 13 lakes (C1–C13) on the

northeast plain of China (lake region C), the distance

between the lakes ranges in 2–679 km, average

distance is 307 km; and the distance between the

lakes from different regions ranges in 1285–3232 km,

average distance is 2353 km (Fig. 1). All the lakes

were sampled in summer of 2012 from 20 July to 20

August. The water samples were collected at center of

the lake in small lakes (area\ 1 km2), and in pelagic

zone of large lakes (area[ 1 km2). Whole water

column samples were taken if water depth (Depth) was

lower than 10 m, and whole euphotic layer was

sampled in lakes deeper than 10 m. Subsamples were

taken for phytoplankton analyses, chlorophyll-a,

nutrients, and total suspended solids (TSS) simulta-

neously. Water temperature (WT), pH, conductivity

(Con), and turbidity (Tur) were measured at 1 m depth

with Yellow Spring Instrument (YSI). Transparency

was measured as Secchi depth (SD). The geographic

variables such longitude (Lon), latitude (Lat), and

altitude (Alt) and the depth of lakes were also
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recorded. Nutrients (total nitrogen—TN; total phos-

phorus—TP; soluble reactive phosphorus—SRP; and

total dissolved nitrogen—TDN) were determined

following the Chinese National Standards for water

quality (similar to those of American Public Health

Association, 1989).

One-liter samples were preserved with 1% Lugol

for phytoplankton counting. Phytoplankton identifica-

tion and enumeration were carried out under an

inverted microscope (at 400 magnification) in 10-ml

sedimentation chambers (Utermöhl, 1958). At least

400 settling units were counted, and the size of each

counted algal cell was measured. The biovolume was

calculated according to Hillebrand et al. (1999), with

assuming a specific gravity of 1 mg mm-3. Phyto-

plankton were classified in three ways: species and

two kinds of functional groups: FG and MBFG.

Analysis of variance (ANOVA) was used to test the

difference of each environmental variable in lakes

between regions, and 1,000 times’ bootstrap method

was used to get the same sample size in the ANOVA

analysis. The environmental matrix contained 11

variables (Depth, SD, WT, TP, SRP, TN, TDN, pH,

Con, TSS, Tur), and was standardized before the

analyses. Phytoplankton community matrices were

constructed for three classifications (species, FG, and

MBFG), and phytoplankton biomass was then trans-

formed with ‘‘Hellinger’’ (Borcard et al., 2011).

Minimum squared-error criterion was used in cluster

analysis. The geographical distance (surface distance

on earth), the dissimilarity (Bray–Curtis) of phyto-

plankton community and the gradient of environment

(Euclidean) between lakes were calculated, and the

relationships between them were tested with Mantel

test. The b diversity was calculated and partitioned to

species variance (SCBD) among sites and local

contributions (LCBD) in b diversity (Legendre & De

Cáceres, 2013). The spatial structure was modeled

with Moran’s eigenvector map (MEM) to yield MEM

variables (Vi, i = 1, 2, 3,…, n). Redundancy analysis

(RDA) was used to test the relationship between

phytoplankton community matrix and environmental

matrix, spatial matrix, and the significant variables

were detected with forward selection (10,000 permu-

tations). Significant environmental variables and spa-

tial variables were retained for variation partitioning

analysis in order to test the interaction of the

significant variables of environmental and spatial

matrixes on phytoplankton community. In the multi-

variate analyses, datasets were set by two scales: each

dataset for one lake region, and a combined dataset

that included all lakes in all the three lake regions. All

Lake Region B  
Included 9 lakes 

Lake Region A 
Included 21 lakes 

Lake Region C  
Included 13 lakes 

Fig. 1 The location of

sampled lakes. Dark spots

represent lakes
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calculations were carried out in R platform version

3.0.0 (Borcard et al., 2011; R Core Team, 2014).

Results

Physical and chemical conditions

The altitude of lakes was above 1500 m in lake region

A, below 77 m in lake region B, and between 125 m

and 660 m in lake region C. The environmental

conditions were different between the three regions,

and six environmental variables showed significant

differences (ANOVA, n = 1,000, P\ 0.05) between

the three regions: water depth (Depth), transparency

(SD), pH, turbidity (Tur), total suspended solid

concentration (TSS), and total phosphorus concentra-

tion (TP). The plateau lakes (in lake region A) were

characterized with lower temperature and nutrient

concentrations compared to lakes in Lake Regions B

and C. The average environmental gradient order

(Euclidean distance) in the three regions was as

follows: A (3.7)[C (3.5)[B (2.6). The 43 lakes

were grouped to five clusters according to the 11

environmental variables (Fig. 2).

Phytoplankton biomass and richness

Altogether 165 species, 26 FGs and 7 MBFGs were

observed in all the samples. The biomass of phyto-

plankton ranged from 0.01 to 29.2 mg l-1 in the 43

lakes. Phytoplankton biomass was significantly lower

(ANOVA, n = 1,000, P\ 0.05) in lake region A than

it in lake region B and C. The dominant species in the

43 lakes and the groups (the first in brackets is FG, the

second is MBFG) included the following: Aulacoseira

granulata (Ehrenberg) Simonsen (B; VI), Aulacoseira

granulata var. angustissima (Otto Müller) Simonsen

(B; VI), Cyclotella meneghiniana Kützing (B; VI),

Gloeocapsa sp. (TC; VII), Limnothrix planctonica

(Woloszynska) Meffert (S1; III), Microcystis aerug-

inosa (Kützing) Kützing (M; VII), Pseudanabaena sp.

(MP; III), Botryococcus braunii Kützing (F; VII),

Chlorella cf. pyrenoidosa (H. Chick) (X3; I), Chloro-

coccum sp. (MP; I), Coelastrum sphaericum Nägeli

(F; IV), Palmella mucosa Kützing (F; VII), Cosmar-

ium sp. (N; IV), Peridinium gatunense Nygaard (LO;

V), Peridinium sp. (LO; V), Ceratium hirundinella

(O.F. Müller) Dujardin (LO; V), Strombomonas

ensifera (Daday) Deflandre (W2; V), and Euglena

viridis (O.F.Müller) Ehrenberg (W1; V). The lakes

could be grouped to four or five groups at the height of

1.5 in cluster analysis with classification of the two

functional groups, but only two groups at height of 1.5

in cluster analysis with species (Fig. 3).

The dominant MBFGs were as follows: I, III, IV,

VI, V, VII, and the 43 lakes were distinctly grouped

into four groups when species were pooled to MBFGs.

Group VI is characterized by non-flagellated organ-

isms with siliceous exoskeletons, and dominated

mostly in lakes at elevated trophic states

(TP[ 0.08 mg l-1 and/or SD\ 1.5 m). Group VII

(large mucilaginous colonies) dominated in lakes at

lower trophic state (depth\ 8.5 m and

TP\ 0.08 mg l-1). Group V (unicellular flagellates

of medium to large size) dominated the deeper lakes at

lower trophic states (lakes with TP\ 0.08 mg l-1 and

depth[ 8.5 m or SD[ 1.5 m). The shallow lakes

Fig. 2 Cluster of lakes

based on environmental

variables
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with high level of total suspended solids and turbidity

hosted diverse MBFGs (Fig. 3).

The dominant FGs were as follows: B, F, LO, LM,

MP, NA, P, S1, Tc, W2, X3, Y, and the 43 samples

were distinctly grouped also into four groups. The

codon P, mostly Aulacoseira granulata, dominated

the lakes with elevated trophic states

(TP[ 0.08 mg l-1 and/or SD\ 1.5 m). The codon

B was mostly contributed by Cyclotella and domi-

nated the lakes with lower trophic status

(depth[ 8.5 m and/or SD[ 1.5 m) than codon

P. The codon Tc, included mostly Gloeocapsa,

dominated in shallow lakes with abundant macro-

phytes (depth\ 8.5 m). The shallow lakes with high

level of total suspended solids and turbidity hosted

diverse FGs, too (Fig. 3).

The average species number was 31 species per

sampled community. A significant difference

(ANOVA, n = 1,000, P\ 0.05) was found in species

richness of local phytoplankton communities between

the three meta-communities: 20 species in lake region

A, 28 in lake region B, 52 in lake region C. After being

grouped into FGs and MBFGs, the numbers of FGs

and MBFGs in each local community were substan-

tially lower than species richness, and the biomass and

occurrence of FGs and MBFGs were higher than the

species (Fig. 4).

There were 49 species, which were observed only

in one of the three regions, and most of them belonged

to Chlorophyta (mainly from Chlorococcales—15

species and Desmidiales—10 species). In percentage,

30% of species belonging Chlorophyta, Bacillario-

phyceae, and Dinophyta and 55% of Euglenophyta

species could only be observed in one of the three

regions. There were 25 species observed only once in

all of the 43 samples. In contrast, most FG and all of

MBFG could be observed in all of the three regions

(Fig. 5). It means the distribution of FGs and MBFGs

showed a more homogenous distribution in the three

regions than most of species.

Fig. 3 Cluster of lakes based on MBFGs, FGs and species, the percentage are the biomass proportion of dominant MBFGs or FGs in

phytoplankton
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Phytoplankton community dissimilarity

The average dissimilarity between local phytoplankton

communities was quite high within each lake region.

For example, it was 0.82 in lake region A, 0.70 in lake

region B, 0.63 in lake region C when the community

was described as species. The dissimilarity was lower

for FG and MBFG. For partitioning b diversity, the

difference in dissimilarity attributed to the difference

in SCBD. There was a significant difference between

species, FGs and MBFGs in biomass variance among

lakes. Most of species biomass variances were low, and

the biomass variance of FGs and MBFGs among lakes

was significantly higher than that of species (Fig. 6).

In Mantel test, the environmental gradient but not

the geographic distance explained significantly the

variance of dissimilarity in single region datasets,

while both the environmental gradient and the geo-

graphic distance contributed significantly to the vari-

ance of community dissimilarity in the combined

dataset covering all the three regions (Table 1).

Redundancy analysis of phytoplankton

communities

In the redundancy analysis (RDA), environmental

variables significantly (P\ 0.05) explained the com-

positional variation of phytoplankton community, and

no any significant spatial variable was selected in any

Fig. 4 Phytoplankton

biomass and richness of

phytoplankton community.

a The phytoplankton

biomass in each lakes;

b phytoplankton richness of

species, FGs, and MBFGs in

each lakes; c average

biomass of each taxonomy

units (each species, FGs and

MBFGs) in meta-

community; d the

occurrence of each

taxonomy units (each

species, FG and MBFG) in

meta-community. A, B, C

were the datasets of the three

lake regions; T was the

combined dataset including

all of the 43 lakes. The

bottom and upper of box are

the first and the third

quartile; the dark line in the

box is average; dashed line

is 1.5 times quartile, the line

of the top of dashed line is

outlier truncation, and the

circle means outliers
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Fig. 5 Occurrence of each taxonomy unit (each species, FG

and MBFG) at regional level
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of the regions. In lake region B, classification by FG

and MBFG detected the strongest relationship

between environment and phytoplankton community,

and conductivity was the significant variable explain-

ing the variation of phytoplankton community.

For the combined dataset covering all the three

regions, several environmental variables explained

significantly (P\ 0.05) phytoplankton community

variance, but the component of significant variables

was different between the three classifications

(Table 2). Twenty positive MEM variables were

constructed in Moran’s eigenvector map (MEM),

three of them, V1 (R2
adj = 0.03, F = 2.5,

P = 0.005), V2 (R2
adj = 0.09, F = 1.8, P = 0.04),

and V18 (R2
adj = 0.07, F = 2.4, P = 0.006) explained

significantly phytoplankton community classified with

species. V1 and V2 both were broad scale variables.

The significant spatial variables could explain 11%

variance of phytoplankton communities and mostly

did not induced by environmental variables (Fig. 7).

Discussion

This study showed that phytoplankton meta-commu-

nities were determined mainly by the environment and

the spatial processes had effect only at the large spatial

scale covering all the three lake regions. The observ-

able effect of environmental and spatial variables in

shaping phytoplankton community varied with the

Fig. 6 Phytoplankton community dissimilarity. a Phytoplank-

ton community dissimilarity in the three lake regions and in the

combined dataset; b LCBD of b diversity in the three lake

regions and in the combined dataset; c SCBD of b diversity in

the three lake regions and in the combined dataset. A, B, C were

the datasets of the three lake regions, and T was the combined

dataset. The bottom and upper of box are the first and the third

quartile; the dark line in the box is average; dashed line is 1.5

times quartile; the line of the top of dashed line is outlier

truncation, and the circles mean outliers

Table 1 The correlation between phytoplankton community dissimilarity (CD) in the three classifications and the gradient of

environmental (ENV) and geographic distance (GD)

Correlation between CD and ENV Correlation between CD and GD (environment as covariate)

Species FG MBFG Species FG MBFG

r P r P r P r P r P r P

Lake region A 0.25 0.02 0.23 0.05 0.27 0.02 n.s. n.s. n.s. n.s. n.s. n.s.

Lake region B n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Lake region C 0.41 0.01 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Combined dataset 0.25 0.01 0.2 0.02 0.18 0.03 0.11 0.015 n.s. n.s. n.s. n.s.

n.s. no significant correlation
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used phytoplankton classifications: species, FG, and

MBFG.

The classification of phytoplankton by functional

groups was developed to better describe the phyto-

plankton assemblage response to environmental forc-

ing (Reynolds et al., 2002; Salmaso & Padisák, 2007;

Kruk et al., 2010) and have been widely applied in

description and analysis of phytoplankton patterns. In

multivariate analyses, including this study, a higher

portion of variance of the phytoplankton communities

was repeatedly explained by using any of three

functional approaches (Kruk et al., 2011; Hu et al.,

2013; Salmaso et al., 2015) than when phytoplankton

species or higher taxonomic units were used.

There are dozens of phytoplankton species in

natural water bodies but only few of them become

dominants because of environmental filtering (Titman,

1976; Tilman et al., 1981; Huisman & Weissing,

1999, 2000). The non-dominant species contribute to

the redundancy of the phytoplankton community, and

the use of FGs and MBFGs reduces this redundancy

(Salmaso et al., 2015; Kruk et al., 2016). In the present

study, the total species was up to 165 but the average

species number of the single lakes was only 31. The

average number of FGs and MBFGs of the investi-

gated lakes were 10 and 6, respectively, and the

dissimilarity between phytoplankton assemblages

became lower when FGs and MBFGs were used,

because of the high occurrence of some FGs and

MBFGs.

The distribution and abundance (or biomass) of

species in space increased the dissimilarity of phyto-

plankton communities with the increasing scale. b
diversity is a primary indicator presenting variance of

communities and it can be partitioned into species

variance (SCBD) and local contributions (LCBD)

(Legendre & De Cáceres, 2013). The SCBD of both

FGs and MBFGs for biomass variance were higher

than that for the SCBD of species, while the LCBD

were quite similar. It means FGs and MBFGs could

more sensitively catch the variance of community than

species along the same environmental gradient.

Although the altitude, longitude, and latitude of the

three regions were distinct, lakes within the same

region experienced similar climate conditions. There-

fore, e.g., temperature should be not a critical factor

for explaining the pattern of summer phytoplankton

community in a single region. The multivariate

analysis demonstrated that nitrogen and conductivity

were the critical variables in explaining the pattern of

phytoplankton meta-community in a single regional

scale. The same environmental variables were iden-

tified as explanatory variables for the phytoplankton

meta-community with the three classifications. The

phytoplankton communities of most lakes were dom-

inated by codon B in lake region A characterized by

Table 2 The relationship between phytoplankton community in the three classifications and environmental and MEM variables in

RDA

Datasets Classification of

phytoplankton

Environmental variables MEM variables

R2
adj

P Significant variables R2
adj

P

Lake region A Species 0.05 0.002 TDN n.s. n.s.

FG 0.05 0.01 TDN n.s. n.s.

MBFG 0.07 0.02 TDN n.s. n.s.

Lake region B Species n.s. n.s. n.s. n.s. n.s.

FG 0.14 0.07 Cond n.s. n.s.

MBFG 0.24 0.04 Cond n.s. n.s.

Lake region C Species 0.09 0.002 TDN n.s. n.s.

FG 0.1 0.04 TDN n.s. n.s.

MBFG 0.12 0.07 TDN n.s. n.s.

Combined dataset Species 0.05 0.001 WT, Con 0.1 0.019

FG 0.05 0.004 SD, Con n.s. n.s.

MBFG 0.05 0.008 TDN n.s. n.s.

n.s. no significant correlation
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lower temperature and nutrients (nitrogen and phos-

phorus) than in the other regions. This dominance is

consistent with the general description (Padisák et al.,

2009) that codon B is typical for lakes with moderate

trophic states and low temperatures. Codon P, which

prefers higher trophic states (Padisák et al., 2009), was

dominant in lake region B and C.

Both FGs and MBFGs could better capture the

variation of community along the environmental

gradient than species (Reynolds et al., 2002; Padisák

et al., 2009; Kruk et al., 2010). In larger scale

(combined dataset), transparency and conductivity

were the most significant explaining variables for

variance of phytoplankton grouped as FGs, and only

total dissolved nitrogen explained significantly the

variance of phytoplankton community grouped as

MBFGs. This result indicates that selection of envi-

ronmental variables depends not only on the pooling

method (here FGs and MBFGs) applied but it might

depend on the spatial scale as well.

Although environmental variables significantly

explained the variance of species, FGs, and MBFGs,

the spatial process (dispersal or transportation) also

affect the distribution and abundance of phytoplank-

ton (Bergström et al., 2008; Xiao et al., 2016),

especially along large scales (Smith et al., 2005;

Vyverman et al., 2007). In the present study, the

spatial elements modeled with Moran’s eigenvector

map (MEM) based on latitude (Lat) and longitude

(Lon) and with Redundancy analysis (RDA), spatial

Fig. 7 Variation in the sites

scores of each significant

MEM variable (V1, V2, and

V18) and partial analysis of

significant environment

variables and the three

significant spatial variables

(MEM variables) on the

variance of phytoplankton

communities classified with

species. An overlaid map of

studied region is included in

the first graph; the larger

black or whiter square

means the higher positive or

negative absolute values for

a site, respectively. In partial

analysis, a represents

environmental variables
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variables significantly explained phytoplankton com-

munity at large scale covering three lake regions but

not in a single region.

According to Legendre (1993), the spatial variance

of phytoplankton community can be explained by

spatial gradient of environment (true gradient) and

spatial autocorrelation (false gradient). If the spatial

variance can be explained by spatial distance, the

spatial heterogeneity of phytoplankton must exist

(Legendre, 1993; Blanchet et al., 2011). In this study,

the distribution of MBFGs was highly homogenous in

each of the three regional communities (all MBFGs

occurred in all the three regions). The MEM analysis

did not select any significant spatial variable explain-

ing the phytoplankton community variance at the

regional scale. The distribution of FGs was slightly

heterogeneous in single regional meta-communities

and between the three regions, but none of the spatial

variables were significant, which means the hetero-

geneity cannot be attributed to spatial distance.

In contrast, most species distributions were highly

heterogeneous with low biomass and occurrence and

dozens species occurred only in one of the three

regions. The distinctive species mostly belonged to

Chlorophyta, especially to Chlorococcales and

Desmidiales, and most of Euglenophyta species

occurred only in one of the three regions. Therefore,

the species occurring in high spatial heterogeneity

were the important elements in shaping the spatial

pattern of phytoplankton community. The MEM

analysis showed that large-scale spatial variables

significantly explained the variance of phytoplankton

community, and they mostly did not induce by

environmental variables.

The use of functional groups (Reynolds et al., 2002;

Salmaso & Padisák, 2007; Kruk et al., 2010) in

phytoplankton advanced greatly our understanding of

phytoplankton responses to environmental forcing. Of

the three available FG groupings, only the one

described by Reynolds et al. (2002) requires obliga-

torily species-specific identifications, the other two

(Salmaso & Padisák, 2007; Kruk et al., 2010), at least

in theory, can be applied without almost any knowl-

edge in taxonomy since the specimens occurring in the

microscope can be sorted to groups largely by their

morphologies. The use functional groups were facil-

itated by the implementation of the EU water frame-

work directive (WFD; European Commission, 2000),

which is aimed at identifying the main human

pressures threatening ecological status of surface

waters. The so far only direct application of the FG

grouping for WFD purposes (Padisák et al., 2006) is

based on the FG system by Reynolds et al. (2002) and

was not meant to replace species-based documentation

of phytoplankton. A quite recent work on functional

traits of attached diatoms (Tapolczai et al., 2017) also

highlights the necessity of species-specific identifica-

tions. This analysis of phytoplankton communities of

43 lakes located in three distant eco-regions of China

clearly approved that species-specific approach cannot

be neglected when analyzing spatial processes shaping

phytoplankton distributions. Another recent study

(Várbı́ró et al., 2017) analyzed the shape of species–

area relationship (also a spatial issue) and concluded

that species–area relationships are modified by func-

tional redundancy. Thus, spatial issues have to be

explored in detail and by a number of different case

studies for getting a clear overview in usefulness of

species- or functional-based approaches. In a wider

view, according to the Baas-Becking (1934) hypoth-

esis, for such small organisms as phytoplankton the

‘‘everything is everywhere but environment selects’’

paradigm applies. If this hypothesis were fully true, we

would not find endemics as we do, we would not

experience invasions as we do and we would not track

adaptive radiation, as we do. So, spatial processes do

matter even in phytoplankton. The question is the

scale! This paper did show an example at a quite wide

spatial scale and many more case studies will be

necessary to explore this issue in detail.

In conclusions, the structure of phytoplankton

meta-community is strongly organized by the envi-

ronmental selection, and spatial variables become

important only at large scales but not within single

lake regions. The functional groups (FG) and mor-

phology-based functional groups (MBFG) success-

fully identified the environmental filtering on

phytoplankton communities but failed in describing

the relationship between spatial variables and phyto-

plankton community. In exploring the effect of spatial

distance, analysis of data with high taxonomical

resolution might be more promising than use of

functional groupings.
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