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Abstract The present study aims to understand how

microbial decomposition of leaf litter from two

riparian tree species differing in their quality varies

among streams covering a gradient of nutrient

concentrations. We incubated leaf litter from alder

(Alnus glutinosa) and sycamore (Platanus9 hispanica)

in 3 streams with low human pressure and 2 streams

influenced by wastewater treatment plant effluents.

We quantified leaf litter decomposition rates (k) and
examined the temporal changes in the leaf litter

concentrations of carbon (C) and nitrogen

(N) throughout the incubation period. We measured

the extracellular enzyme activities involved in degra-

dation of C (i.e., cellobiohydrolase) and organic

phosphorus (i.e., phosphatase). Results showed that

alder k decreased with increasing nutrient concentra-

tions, while sycamore decomposed similarly among

streams. For both species, leaf litter N concentrations

were positively related to in-stream dissolved N

concentrations. However, we found different tempo-

ral patterns of leaf litter N concentrations between

species. Finally, we found relevant differences in the

enzymatic activities associated to each leaf litter

species across the nutrient gradient. These results

suggest that the intrinsic characteristics of the leaf

litter resources may play a relevant role on the

microbially driven leaf litter decomposition and

mediate its response to dissolved nutrient concentra-

tions across streams.
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Introduction

Decomposition of leaf litter is a fundamental process

in streams since it contributes to the metabolism

(Webster & Benfield, 1986; Tank & Webster, 1998;

Wallace et al., 1999), nutrient cycling (Tank et al.,

2000), and food webs (Fisher & Likens, 1973;

Vannote et al., 1980) of these ecosystems. Microbial
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assemblages (mainly fungi and bacteria) in streams

can use leaf litter as a colonizing substrate as well as

a source of carbon (C) and nutrients for their

development and metabolic activity. In addition,

microbial assemblages on leaf litter can also meet

their nutrient demand from dissolved compounds in

the stream water column (Suberkroop & Chauvet,

1995; Gulis & Suberkroop, 2003). Therefore, both

leaf litter quality and nutrient concentrations in

streams are expected to influence microbial growth

and activity on decomposing leaf litter, which

ultimately can dictate their decomposition rates

(Webster & Benfield, 1986; Gulis & Superkropp,

2003).

Quality of leaf litter is commonly assessed by its

elemental composition (i.e., the concentration of C,

nitrogen [N], and phosphorus [P]) and the relative

proportions among these elements (Melillo et al.,

2001). In general, leaf litter with high N and P

concentrations relative to C concentration decom-

poses faster than leaf litter with low relative

concentration of N and P (Webster & Benfield,

1986; Enriquez et al., 1993). Other indicators of leaf

litter quality are related to the toughness of the

leaves, the presence of wax products, and the

complexity of organic C molecules that constitute

the leaves (Webster & Benfield, 1986). Simple

organic compounds in leaf litter, such as soluble

polysaccharides, are labile C sources, and thus are

easily degraded and consumed by microbes. In

contrast, more complex C compounds in leaf litter,

such as lignin or tannins, are recalcitrant C resources,

and thus metabolically more costly to be used by

microbes (Sinsabaugh et al., 1993). Therefore, rela-

tively higher proportions of recalcitrant C sources in

leaf litter have been negatively related to leaf litter

decomposition rates (Schindler & Gessner, 2009).

Extracellular enzyme production is the primary

mechanism by which fungi and bacteria degrade

polymeric and macromolecular compounds from

organic matter into low-molecular-weight (LMW)

molecules. LMW molecules can then be assimilated

by microbial communities (Rogers, 1961). In this

sense, microbial activity associated with decompos-

ing leaf litter is commonly assessed by extracellular

enzyme activities (Sinsabaugh et al., 1994; Romanı́

et al., 2006). The most relevant extracellular enzyme

activities involved in leaf litter decomposition are

those related to the degradation of cellulose (such as

β-glucosidase and cellobiohydrolase), hemicellulose

(such as β-xylosidase), and lignin (such as phenol

oxidases). In addition, N- and P-containing organic

compounds are degraded by the activities of pepti-

dases and phosphatases, respectively (Sinsabaugh

et al., 1993; Romanı́ et al., 2006). The activity of

these extracellular enzymes can be also influenced by

the nutrient availability and the relative proportions

between nutrients in the stream, since these enzymes

can also degrade compounds from the water column

(Sala et al., 2001; Romanı́ et al., 2004, 2012; Sabater

et al., 2005; Romanı́ et al., 2012).

Inorganic nutrients from the water column can be

additional sources of energy and matter to microbial

assemblages on leaf litter (Suberkroop & Chauvet,

1995; Hall & Meyer, 1998; Ferreira et al., 2015).

Therefore, differences in dissolved nutrient concen-

trations could explain part of the observed variability

in decomposition rates for a given leaf litter type

across streams (Webster & Benfield, 1986; Wood-

ward et al., 2012). The stimulation of leaf litter

decomposition by nutrient concentrations has been

observed in response to increasing concentrations of

dissolved inorganic N (DIN) (Richarson et al., 2004),

P (Rosemond et al., 2002), and combined enrichment

of N and P (Gulis & Superkropp, 2003; Rosemond

et al., 2015). In contrast, other studies reported that

decomposition rates were not stimulated by nutrient

enrichment, especially when background nutrient

concentrations (i.e., before the nutrient enrichment)

were not limiting (Royer & Minshall, 2001; Chad-

wick & Huryn, 2003; Albelho & Graça, 2006; Baldy

et al., 2007). Furthermore, leaf litter decomposition

rates can be lowered in polluted streams, probably

because other factors may counteract the stimulating

effects of nutrient enrichment on leaf litter decom-

position (Webster & Benfield, 1986; Pascoal &

Cássio, 2004; Woodward et al., 2012). The relation-

ship between microbially driven leaf litter

decomposition rates and nutrient concentrations has

been also described by Michaelis–Menten models

(Gulis et al., 2006; Pereira et al., 2016) suggesting

that other factors beyond the nutrient concentrations

may limit leaf litter decomposition rates in streams.

Moreover, contrasting results among studies exam-

ining the effect of nutrient concentrations on leaf

litter decomposition could be also explained by leaf

litter quality, which may dictate the strength of

interactions between microbial assemblages and
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dissolved nutrients. In this sense, a recent meta-

analysis showed that the magnitude of the nutrient

enrichment effect on leaf litter decomposition was

usually higher for leaf litter with low and interme-

diated N concentrations such as Quercus than for

high-N litter such as Alnus (Ferreira et al., 2015).

However, in other cases the decomposition of nutri-

ent-poor Fagus or Eucalyptus leaf litter was not

affected by nutrient enrichment, suggesting that other

factors beyond the litter N concentration may influ-

ence the effect of nutrient enrichment on leaf litter

processing in streams (Ferreira et al., 2015).

The present study aims to understand how micro-

bially driven decomposition of leaf litter from two

riparian tree species differing in elemental composi-

tion (i.e., C:N ratio) varies among streams which

cover a gradient of nutrient concentrations. To

approach this question, we incubated leaf litter from

alder Alnus glutinosa (low C:N ratio) and sycamore

Platanus 9 hispanica (high C:N ratio) in 5 different

streams. In each stream, we assessed leaf litter

decomposition rates, leaf litter C and N concentra-

tions throughout the decomposition period, and

microbial extracellular enzyme activities of cellobio-

hydrolase (cbh) and phosphatase (phos) after 85 days

of leaf litter incubation. We expected (a) that leaf

litter decomposition rates would increase with nutri-

ent concentrations, and (b) to find a larger effect of

nutrient concentrations on decomposition for the low-

quality leaf litter species (i.e., sycamore) if nutrients

in the water column act as an important additional

energy and matter sources to microbial assemblages

developing on leaf litter.

Methods

Study sites

This study was performed in 5 streams located in

different tributaries of La Tordera catchment (Cat-

alonia, NE Spain, Table 1). Three of them are streams

with low human influence (Llavina-LLAV, Santa Fe-

SF, and Font del Regàs-FR; Table 1), and thus are

characterized by relatively low nutrient concentra-

tions (von Schiller et al., 2008). The other 2 streams

(Gualba-GUAL and Santa Coloma-COL; Table 1)

receive the inputs from wastewater treatment plants

(WWTP), and thus, these streams have higher T
ab
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nutrient concentrations. In these streams, nutrient

enrichment could potentially enhance leaf litter

decomposition rates. However, in many cases WWTP

effluents also contain other pollutants, such as barium

or aluminum, that may have the opposite effect on

leaf litter decomposition (Pascoal & Cássio, 2004;

Woodward et al., 2012). All the study sites are

second- and third-order streams, with relatively well-

preserved stream channel morphology characterized

by riffles and pools. All the streams are flanked by

riparian forest dominated by alder (Alnus glutinosa
(L.) Gaertn.), black poplar (Populus nigra L.), and

sycamore (Platanus x hispanica (Mill.) Münchh),

except the SF stream where European beech (Fagus
sylvatica L.) dominates the catchment as well as the

stream banks.

Field experiments

For this study, we used leaves of alder and sycamore

as species with high and low quality in terms of C:N

ratio, respectively. Leaves from alder and sycamore

were collected in November 2010 at GUAL site. To

measure litter decomposition rates (k, degree-days−1),
we followed procedures by Webster & Benfield

(1986). For each leaf litter species, 5 g of air dried

leaves was placed in 250-µm-mesh-size bags, which

mostly excluded macroinvertebrates and thus basi-

cally allowed measurement of microbial leaf litter

decomposition. Leaf bags were deployed in the

selected streams, anchored on the streambed with

metal bars, and incubated in the streams from

November 11, 2010 to March 10, 2011. At each

stream, three leaf bags for each leaf litter species

were collected on days 8, 15, 29, 47, 85, and 119 after

deployment. Collected leaf bags were kept cold (~4°
C) in the field and in the laboratory until later

measurements of dry weight and C and N leaf litter

concentrations. On each sampling date, stream water

samples were collected to analyze the concentrations

of ammonium (N–NH4
+), nitrite (N–NO2

−), nitrate (N–

NO3
−), and soluble reactive phosphorus (SRP). We

also measured stream discharge based on cross-

section measurements of width, water depth, and

water velocity (Gordon et al., 2004). At each stream,

we continuously recorded water temperature every

20 min during the entire incubation period using

temperature data-loggers (HOBO Pendant® UA-002-

64) placed on the streambed. After 85 days of leaf

litter incubation in the streams, we collected addi-

tional leaf bags to quantify the extracellular enzyme

activities of cellobiohydrolase (cbh; EC 3.2.1.91) and

phosphatase (phos; EC 3.1.3.1-2) as outlined in

Romanı́ et al. (2006). We measured cbh activity as

an indicator of leaf litter microbial degradation

activity and especially for a recalcitrant compound

such as cellulose. We measured phos activity to

assess how changes in the inorganic nutrient avail-

ability (i.e., SRP) may affect the potential microbial

use of organic phosphorus compounds. We quantified

the enzyme activity after 85 days of incubation when

the leaf litter packs roughly loosed 40–60% of initial

mass. At this point, we expected that microbial

assemblages were well developed and extracellular

enzyme activities were high (Romanı́ et al., 2006).

Laboratory methods and data analysis

Stream water samples were analyzed at the Nutrient

Analysis Service of the Centre d´Estudis Avançats de

Blanes (CEAB) for nutrient concentrations using an

Automatic Continuous Flow Futura-Alliance Ana-

lyzer and following standard colorimetric methods

(APHA, 1998).

In the laboratory, leaf litter samples collected on

each sampling date and at each stream were carefully

rinsed with stream water to remove inorganic sedi-

ment attached to the leaf surface. Then, leaf litter

samples were oven-dried until constant weight (60°C
for 48 h) and weighed to obtain the remaining dry

mass. Sub-samples of leaf litter were ignited (500°C,
4 h) to calculate ash-free dry mass (AFDM), which

was expressed as percentage of the initial AFDM.

The remaining AFDM on each sampling date for each

leaf litter types and for each stream was plotted

against degree-days (i.e., summing the daily mean

temperature registered along the study period). The

relationship fitted a negative exponential model

described by Petersen & Cummins (1974):

Wt ¼ W0 � e�kdd; ð1Þ
where W0 and Wt are AFDM (g) at the beginning and

at sampling dates, respectively, dd (degree-days) is

the incubation time expressed in terms of summed

mean daily water temperature (°C) up to the sampling

dates, and k is the decomposition rate (expressed in

terms of dd−1). Values of k denote the velocity at

336 Hydrobiologia (2018) 806:333–346
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which mass of leaf litter decreases over time

corrected for the potential temperature differences

among streams, so that k values can be compared

among sites with different water temperatures.

Concentration of C (g C/g DM) and N (g N/g DM)

in leaf litter before and over the incubation period for

the 2 leaf litter species and among the 5 study streams

were measured for the collected samples. Dried sub-

samples were ground to a fine powder, and a sub-

sample of 1.5 mg was weighed and encapsulated in

tin vials. Samples were sent to the Unidade de

Técnicas Instrumentais de Análise (Universidade da

Coruña, Spain) for the analysis of elemental C and N

concentrations, which was done by sample combus-

tion using an elemental autoanalyzer EA1108 (Carlo

Erba Instruments). Data of N concentrations at d 85

were used to explore how the effect of dissolved

nutrient concentrations influences on leaf litter N

concentrations.

Extracellular enzyme activities of cbh and phos on
leaf litter samples incubated for 85 days were

measured using methylumbelliferyl (MUF) fluores-

cent-linked substrates, following the method

described in Romanı́ et al. (2006). These assays were

conducted at saturation substrate conditions of

0.3 mM. Leaf litter disks (14 mm diameter, 3

replicates per experimental condition) and water

controls were incubated for 1 h in the dark in a

shaker. Blanks and standards of MUF (0–100 µmol

L−1) were also incubated. At the end of the incuba-

tion, Glycine buffer (pH 10.4) was added (1/1 vol/

vol), and the fluorescence was measured at

365/455 nm excitation/emission (Kontron SFM25

fluorimeter). Results of extracellular enzyme activi-

ties were expressed as the amount of MUF substrate

produced per incubation time (h) and leaf litter ash-

free dry mass (AFDM; g).

Statistical analysis

To determine differences in the physical and chem-

ical variables among study streams, we used a one-

way analysis of variance (ANOVA) model with

stream (n = 5) as fixed factor followed by post hoc

Tukey’s t test. We also used a one-way ANOVA

model to determine initial differences in the leaf litter

C and N concentrations and the C:N ratio among the

2 leaf litter species.

We used a two-way ANCOVA to explore differ-

ences in leaf litter k between the 2 leaf litter species

and among the 5 study streams. Fraction of litter

remaining AFDM of alder and sycamore was natural

log transformed prior to the analysis. The two-way

ANCOVA included fraction remaining AFDM as

dependent variable, time (expressed in degree-days)

as the covariate, and stream (n = 5) and leaf litter

species (n = 2) as fixed factors. We used the

interaction term stream*species*degree-days to

explore the null hypothesis in which the variability

in k among streams did not differ among leaf litter

species (Zar, 1999). Additionally, to explore the

specific variability of k for each leaf litter species

among streams, we also used a one-way ANCOVA

for each leaf litter species, which included fraction

remaining AFDM as dependent variable, time (ex-

pressed in degree-days) as the covariate, and stream

(n = 5) as a fixed factor. Tukey’s test followed

significant differences among streams.

To examine differences in the variation in the leaf

litter C and N concentrations during the leaf litter

decomposition between leaf litter species and across

streams, we used two-way ANOVA with repeated

measures (RM, i.e., sampling time) with both leaf

litter C and N concentrations as dependent variables,

respectively, leaf litter species (n = 2) and streams

(n = 5) as fixed factors, and time (expressed in days)

as the covariate. In addition, we used linear and

asymptotic-type models to explore the best fit of the

temporal variation in the N concentrations throughout

decomposition period of leaf litter for both alder and

sycamore (from November 11, 2010 to March 10,

2011).

The asymptotic model followed the equation:

N ¼ Nmaxd

Kd þ d
; ð2Þ

where Nmax is the maximum leaf litter N concentra-

tions, Kd is the incubation day at which N reach the

half of Nmax concentrations, and d is the incubation

time (in days).

We examined differences in extracellular enzyme

activities of both cbh and phos using a two-way

ANOVA model with stream (n = 5) and leaf litter

species (n = 2) as fixed factors. We used Pearson

correlation coefficients (PCC) to explore relation-

ships between cbh and phos activities on each leaf

litter species. In addition, we explored the
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relationships between both cbh and phos extracellular
enzyme activities and the percentage of leaf litter

mass loss among streams using data from the d 85 of

leaf litter incubation. To do that, we used linear,

exponential and asymptotic relationships in order to

find the best-fit model.

Finally, to assess differences between leaf litter

species in terms of k, leaf litter N concentrations, and

cbh and phos activities across increasing nutrient

gradient, we explore linear relationships between

these parameters and the concentrations of DIN and

SRP and the DIN:SRP molar ratio of the study

streams for the 2 leaf litter species separately.

Statistical analyses were done with PASW Statis-

tics 18 (v18.0.0/SPSS Inc) and R 2.14.0 (R

Foundation for Statistical Computing, Vienna, Aus-

tria, http://www.R-project.org/.). Statistical results

were evaluated at the α = 0.05 significance level.

Results

Stream characteristics

Stream discharge varied among streams, and was

lower in SF and FR than LLAV and the two streams

influenced by WWTP effluents (GUAL and COL)

(Table 1). Mean water temperature varied 4°C among

streams, and was higher in GUAL and COL streams

and lowest in SF, the stream located at the highest

elevation (Table 1). DIN and SRP concentrations

covered a wide range among streams, especially for

the DIN species, which spanned two orders of

magnitude (Table 1). Concentrations of DIN and

SRP were strongly correlated among streams (PCC,

r = 0.90, P value \ 0.001) and both were higher in

the streams influenced by WWTP inputs (Table 1).

The concentration of NO3 accounted for the largest

fraction of the DIN concentration in all the streams;

however, the percentage of DIN as NH4
+ was higher

in the streams influenced by WWTP inputs (Table 1).

Initial leaf litter C and N concentrations and leaf

litter decomposition rates

Alder and sycamore leaf litter presented similar C

concentrations (44.65 ± 0.56 and 44.60 ± 0.45%

of dry mass, respectively) (one-way ANOVA,

P value [ 0.05). However, alder showed higher N

concentrations than sycamore (2.03 ± 0.09 and

1.32 ± 0.12% of dry mass, respectively) (one-way

ANOVA, P value \ 0.001). Therefore, the C:N ratio

of alder leaf litter was significantly lower than the C:

N ratio of sycamore leaf litter (one-way ANOVA,

P value \ 0.001).

On average, k values of alder leaf litter were

higher than k values of sycamore leaf litter (two-way

ANCOVA, Tukey’s t test, P value\ 0.001, Table 1).

The variability in k values among streams was higher

for alder than for sycamore leaf litter (Table 1).

Among streams, k values for both alder and sycamore

leaf litter were lower in streams influenced by inputs

from WWTP effluents (two-way ANCOVA, Tukey’s

t test, P value \ 0.001, Table 1). In addition, in COL

(i.e., the stream with the highest nutrient concentra-

tions) we found a smaller difference in k between the

two leaf litter species (k alder: k sycamore = 1.21;

Table 1). Overall, k rate for alder leaf litter was

negatively related to stream DIN concentrations

(r2 = 0.77, P value \ 0.001, Fig. 1A; Table S1)

and SRP concentration (r2 = 0.93, P value \ 0.001,

Table S1). In contrast, no relationships were found

between k values for sycamore leaf litter and

DIN and SRP concentrations (P value [ 0.05,

Fig. 1B; Table S1). Leaf litter k was not related with

DIN:SRP molar ratio among streams for neither leaf

litter species (Table S1).

Variation in leaf litter C and N concentrations

during the decomposition period

The C concentrations did not significantly vary

during decomposition period, and values were similar

among leaf litter species and among streams

(ANOVA-RM, P value [ 0.05). In contrast, the N

concentrations differed among leaf litter species

(ANOVA-RM, P value \ 0.01), with alder leaf litter

showing higher N concentrations than sycamore leaf

litter. The N concentrations of leaf litter during the

decomposition period varied among streams

(ANOVA-RM, P value \ 0.01), with the highest

values in COL and lowest values in LLAV. The

interaction term (i.e., leaf litter species*stream) of the

ANOVA-RM was not significant (P value [ 0.05)

indicating that differences in N concentrations

between alder and sycamore leaf litter during the

decomposition period were consistent among

streams. The leaf litter N concentrations at d 85 of
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incubation period was positively related to stream

DIN concentrations for both alder and sycamore leaf

litter (r2 = 0.66, P value \ 0.01, r2 = 0.77, P value

\ 0.05, respectively, Fig. 1C, D; Table S1).

The temporal patterns of N concentrations during

the decomposition period differed between alder and

sycamore leaf litter. The temporal variation of N

concentrations in alder leaf litter was best fitted with

an asymptotic-type model in all streams (Fig. 2, left

panels), except in LLAV (Fig. 2E). N concentrations

showed a rapid increase during the early stages of the

leaf litter decomposition but then reached a steady

state until the end of the incubation period. In

contrast, the temporal variation of N concentrations

in sycamore leaf litter during the incubation period

followed a linear model in all streams (Fig. 2, right

panels), except in GUAL (Fig. 2H).

Extracellular enzyme activities

The extracellular enzyme activity of cbh was higher

for alder than for sycamore leaf litter (2.97 ± 1.6 and

0.57 ± 0.29 µmol MUF g DM−1 h−1, respectively;

ANOVA, P value \ 0.001; Fig. 3A). Values of cbh
for both alder and sycamore leaf litter significantly

differed among streams (ANOVA, P value \ 0.001;

Fig. 3A). Basically, the higher cbh activities for the

two leaf litter species were measured in streams with

intermediate nutrient concentrations (i.e., LLAV and

GUAL). The interaction term of the ANOVA (leaf

litter species*stream) was not significant (P value [
0.05), indicating that the variation in cbh among

streams was consistent among leaf litter species.

Extracellular enzyme activity of phos was higher

for alder leaf litter than for sycamore leaf litter

(8.73 ± 4.33 and 2.30 ± 1.24 µmol MUF g DM−1

h−1, respectively; ANOVA, P value \ 0.001;

Fig. 3B). Values of phos for both alder and sycamore

leaf litter significantly differed among streams

(ANOVA, P value \ 0.001; Fig. 3B), and the

interaction term (leaf litter species*stream) was not

significant (ANOVA, P value [ 0.05). Extracellular

enzyme activities of cbh and phos were strongly

correlated for both alder leaf litter (PCC, r = 0.97,

P value \ 0.01) and sycamore leaf litter (PCC,

r = 0.95, P value \ 0.01).

Considering data from all streams together, leaf

mass loss by d 85 was significantly related to both

cbh and phos activity for alder leaf litter (Fig. 4A, C),

but it was not related to any extracellular activity for

sycamore leaf litter (Fig. 4B, D). Specifically, for the

case of alder leaf litter, we found that the relationship

between alder leaf mass loss and enzyme activities of

both cbh and phos was best fitted with an asymptotic-

type model (r2 = 0.57, P value \ 0.001 and

r2 = 0.78, P value\ 0.001, respectively, Fig. 4A, C).

Activities of both cbh and phos did not correlate

with concentrations of DIN, SRP, nor the DIN:SRP

molar ratio among streams (P value [ 0.05, Fig. 1E–

H; Table S1). Nevertheless data showed a hump-

shape trend characterized by an initial increase of

enzyme activities up to 1 mg l−1 of DIN followed by a

clear decrease above this threshold (Fig. 1E–H).

Discussion

The influence of nutrient gradient on leaf litter

decomposition rates

We found that the response of microbially driven leaf

litter decomposition rates to the stream nutrient

gradient differed between the two leaf litter species

considered. This agrees with previous finding (Fer-

reira et al., 2015) and reinforces the notion that leaf

litter quality mediates the responses of leaf litter

decomposition to dissolved nutrient concentration in

streams. Nevertheless, results do not agreed with our

expectations since decomposition rates of alder

decreased along the nutrient gradient, while no

significant changes were observed in decomposition

rates of sycamore across the nutrient gradient. These

results suggested that decomposition of high-quality

leaf litter (i.e., low C:N ratio), such as alder, may be

more sensitive to differences in nutrient concentra-

tions among streams than low-quality leaf litter, such

as sycamore. In this sense, Woodward et al. (2012)

also found higher variability on decomposition rates

for high-quality leaf litter species such as alder than

for low-quality litter such as oak across streams

covering a 1000-fold nutrient gradient. However, in

contrast to our results, their observed responses to

increased nutrient concentrations exhibited a hump-

shape pattern. Nevertheless, it is worth noting that in

Woodward et al. (2012) the significant hump-shape

pattern was only observed on total decomposition

which includes macroinvertebrate leaf litter break-

down. Other studies focusing on microbial
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decomposition also observed a lack of response of

k across stream nutrient gradient (Chauvet et al.,

2016). Overall, these results suggest that other factors

beyond nutrient concentrations may influence micro-

bial-driven decomposition rates across streams. In

this sense, in a recent study conducted under

laboratory conditions, Fernandes et al. (2014) found

that Michaelis–Menten kinetics best explained the

relationship between microbial-driven leaf litter

decomposition rates and N availability, suggesting

that the activity of microbial assemblages colonizing

leaf litter become limited by other factors when N
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Fig. 1 Relationships between in-stream DIN concentrations

and leaf litter decomposition rates (A–B), the leaf litter N

concentrations measured at exposure time of 85 days (C–D),
and the extracellular enzyme activities of both cellobiohydro-

lase and phosphatase measured at exposure time of 85 days (E–
H). Filled circles (left panels) and open circles (right panels)

correspond to data of alder and sycamore leaf litter. Level of

significance based on one-way ANOVA analysis is indicated by

***P value \ 0.001, **P value \ 0.01, and *P value \ 0.05.

DIN dissolved inorganic nitrogen (nitrite + nitrate +

ammonia)
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availability in streams increases as outlined in Bernot

& Doods (2005).

We found that microbially driven decomposition

of alder was lower in highly polluted streams

although it has been reported that nutrient enrichment

had a positive or saturating effects on microbial

biomass and activity associated with decomposing

leaf litter (Suberkropp & Chauvet, 1995; Fernandes

et al., 2014), as well as on leaf litter decomposition

rates (Fernandes et al., 2014; Ferreira et al., 2015;

Rosemond et al., 2015). Our results agree with

previous studies showing that on highly polluted

streams decomposition is generally reduced regard-

less of the high stream nutrient concentrations

(Pascoal & Cássio, 2004; Lecerf et al., 2006;

Woodward et al., 2012). A plausible explanation of

these results is that in polluted streams, such as those

receiving the effluents from WWTPs, confounding

factors may influence the positive effect of nutrient

concentrations on leaf litter decomposition (Pascoal

& Cássio, 2004; Woodward et al., 2012). In fact, in

our WWTP-influenced streams the relatively

%NMAX= 2.64 
r2= 0.40**

1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5
Le

af
 li

tte
r N

 c
on

ce
nt

ra
tio

ns
 (%

 D
ry

 m
as

s)

1.0

1.5

2.0

2.5

3.0

3.5

Incubation time (days)

0 20 40 60 80 100 120 140
1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100 120 140
1.0

1.5

2.0

2.5

3.0

3.5

SF

FR

LLAV

GUAL

COL

b= 0.0064
r2= 0.98***

P-value>0.05

P-value>0.05

b= 0.0067
r2= 0.89***

b= 0.0044
r2= 0.65*

b= 0.0097
r2= 0.76**

%NMAX= 2.40 
r2= 0.23*

%NMAX= 2.63 
r2= 0.65***

%NMAX= 3.07 
r2= 0.91***

Alder Sycamore

(A)

(E)

(G)

(B)

(C) (D)

(F)

(H)

(I) (J)

Fig. 2 Temporal variation
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concentrations (as
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linear models) during the

decomposition period in the

5 studied streams. Filled
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open circles (right panels)

correspond to data of alder

and sycamore leaf litter.
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proportion of NH4
+ with respect to total DIN

concentrations was higher with respect to that in

more pristine streams. A previous study found that

NH4
+ may inhibit leaf litter decomposition rates

(Lecerf et al., 2006). Furthermore, WWTP effluents

are sources of other compounds such as metals and

emergent pollutants, which may have negative effects

on the microbial communities, as well as on leaf litter

decomposition rates (Webster & Benfield, 1986;

Pascoal & Cássio, 2004; Ferreira et al., 2016). Thus,

in WWTP-influenced streams these factors could

potentially counterbalance the positive effects of

nutrient enrichment on leaf litter decomposition

leading to the decrease of organic matter decompo-

sition (Kaushik & Hynes, 1971; Pascoal & Cássio,

2004; Woodward et al., 2012).

Differences between leaf litter species

during the decomposition period

Decomposition rates of alder leaf litter were consis-

tently higher than those of sycamore leaf litter,

regardless of the stream, suggesting that the intrinsic

characteristics of the leaf litter may also drive to

some extend k. This pattern may be related to the

higher N concentration, as well as low concentration

of refractory compounds such as lignin on alder

leaves with respect to that of sycamore (Webster &

Benfield, 1986; Gessner & Chauvet, 1994; Cornwell

et al., 2008). Nevertheless, in this study, the differ-

ences in decomposition rates between alder and

sycamore leaf litter were smaller than in other studies

(Webster & Benfield, 1986), which could be in part

attributed to the lower C:N ratio of sycamore leaf

litter (34 ± 0.5) comparing to values reported

previously (C:N = 73.6; Gessner & Chauvet, 1994).

Nevertheless, we found that the difference in decom-

position rates between the two leaf litter species

decreased among streams as nutrient concentrations

and pollution conditions increased. This suggests that

in polluted streams, environmental conditions seem

to be more relevant than specific characteristics of the

leaf litter on determining the rates of organic matter

decomposition.

Alder and sycamore N concentrations at later

stages of decomposition period increased as DIN

concentrations in streams increased, suggesting that

the availability of DIN in streams can influence the

activity of microbial assemblages on leaf litter

(Molinero et al., 1996; Pozo et al., 1998; Tank

et al., 2000; Gulis & Suberkropp, 2003). This

response contrasted with that observed for leaf litter

decomposition, pointing that mechanisms controlling

N concentrations of the microbial leaf litter complex

during the decomposition could be independent of the

efficiency at which leaf litter mass is lost. However,

differences between leaf litter species were high-

lighted by the different models describing the

temporal variation of leaf litter N concentrations

between species. These results suggest that, regard-

less of the stream conditions, leaf litter quality is a

relevant factor controlling the dynamics of microbial
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colonization on leaf litter. Microbial colonization

may be faster in high-quality leaves, such as alder,

than in low-quality leaves, such as sycamore. These

results are in agreement with previous studies about

microbial colonization patterns of leaf litter differing

in nutrient concentration (Webster et al., 2009) or in

the content of recalcitrant compounds (Gessner &

Chauvet, 1994), which are factors that can limit

growth of fungi on leaf litter (Canhoto & Graça,

1999).

The influence of nutrient gradient on enzyme

activities

The variability of cbh and phos enzyme activities was

remarkable among streams and observed patterns

were consistently similar for the two leaf litter

species, suggesting that water column characteristics

can influence the enzymatic activity of microbial

assemblages coating leaf litter. We found that cbh
and phos increased as DIN concentration increased;
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leaf litter (left panels) was best fitted by an asymptotic-type

model, where %MLmax is the maximum alder mass lost

among streams from the model
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however, at DIN concentration [ 1mgN L−1 the two

enzymatic activities were significantly depressed.

Cbh and phos are catabolic enzymes, and their

expression can be regulated by organic compounds

from the leaf litter as well as by chemical compounds

from stream water column (Sala et al., 2001; Romanı́

et al., 2004, 2012). In fact, Sinsabaugh et al. (2005)

found that increases in DIN availability lowered cbh
activity in leaf litter, which is to some extent, in

agreement with our results. A similar trend was also

found for stream water SRP availability and phos
activity (Romanı́ et al., 2004, 2012; Allison &

Vitousek, 2005). Overall, these results suggest that

enzymatic responses depend on the nutrient avail-

ability. In addition, other compounds such as

pollutants coming from the WWTPs inputs could

also affect extracellular enzyme activities of micro-

bial assemblages (Webster & Benfield, 1986;

Freeman & Lock, 1992). In COL, the presence of

these compounds could have lowered the cbh and

phos activities and by extension the decomposition

rates (Pascoal & Cássio, 2004; Woodward et al.,

2012).

The activity associated to cellulose and organic

phosphorus decomposition was consistently lower in

microbial assemblages growing on sycamore leaf

litter than in those growing on alder leaf litter. This

pattern also supports the clear effect of leaf litter

quality on the activity of the microbial assemblages

decomposing organic matter. This agrees with previ-

ous studies showing lower values of cbh activity in

sycamore leaf litter in comparison to alder leaf litter

(Artigas et al., 2004) or other nutrient-rich leaf litter

species such as black poplar (Artigas et al., 2011).

Other studies have attributed the lower values of

enzyme activities in sycamore to the higher lignin

and tannin concentration of these leaves (Gessner &

Chauvet, 1994).

We found that enzyme activities were related with

leaf litter mass loss only for alder. This result

suggests that leaf litter quality could regulate the

enzyme efficiency involved in the leaf litter mass loss

across streams. Nevertheless, the highest values of

both activities observed in GUAL stream were not

related to higher mass loss on alder. In this stream,

microbial enzymatic activity could be fueled by a

combination of leaf litter resources and water column

nutrients, which may explain why the increase of

microbial activity did not result in a stimulation of

leaf litter mass loss (Suberkroop & Chauvet, 1995).

In contrast, the weak relationship between enzyme

activities and mass loss in sycamore leaf litter

suggested that other enzymes, such as phenol

oxidases, may be a limiting step for the decomposi-

tion of the leaf tissues. Overall, these findings suggest

that enzymatic activity of cbh and phos of microbial

assemblages developing on sycamore leaf litter could

be also fueled by dissolved organic sources from

water column. Additionally, results suggest that the

decomposition of sycamore leaf litter is more limited

by the quality of this leaf litter than by the availability

of external resources.

Conclusions

Alder and sycamore leaf litter consistently showed

different decomposition rates, temporal dynamics of

leaf litter N concentrations, and enzyme efficiency of

microbial decomposers across the stream nutrient

gradient. These results suggest that the influence of

stream environmental characteristics on particulate

organic matter decomposition may depend on the

quality of leaf litter where microbial assemblages

develop. Nevertheless, our study suggests that stream

characteristics can also negatively influence organic

matter decomposition, especially in those streams

affected by pollution from WWTP effluents. Overall,

the present study suggests that the riparian species

composition may play a relevant role on leaf litter

decomposition in streams. However, this role could

be less clear in polluted streams such us those

receiving inputs from WWTPs where leaf litter

decomposition and associated microbial activity seem

to be inhibited. In conclusion, vegetation with high-

quality leaf litter (i.e., alders)-dominating riparian

forest could provide a more bioavailable leaf litter

substrate for in-stream microbes. In contrast, vegeta-

tion with low-quality leaf litter (i.e., sycamore) may

provide a less bioavailable decomposing substrate for

microbial assemblages, which could grow and

develop their enzymatic activity uncoupled to leaf

litter mass loss and, thus, to the dynamics of organic

matter decomposition across streams.
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