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Abstract Recent studies have found that the relative

importance of predictors of metacommunity structure

is dependent on different factors. Low explanatory

power of multivariate models is a frequent result. To

increase this power, ecologists have suggested differ-

ent strategies, including the use of functional

approaches. Using a phytoplankton dataset from 17

reservoirs in Southern Brazil, sampled seasonally over

eight years, we tested the hypothesis that the explana-

tory power of multivariate models would be higher

when the analyses were based on functional groups

than when based on a taxonomic approach. We also

modeled the temporal variation in the strength of

species sorting (as given by the adjusted coefficient of

determination derived from environmental variables).

We found high temporal variability in the strength of

species sorting, indicating that results from snapshot

surveys should be interpreted cautiously. When com-

pared to the taxonomic approach, we did not find an

increase in the explanatory power of multivariate

models when the analyses were based on a functional

approach. The main correlates of the temporal vari-

ation in the strength of species sorting were insolation,

water temperature, and environmental heterogeneity,

suggesting that conditions related to productivity and

heterogeneity are important in determining the role of

species sorting in phytoplankton communities.
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Introduction

The metacommunity concept proposes a framework to

understand the roles of niche and dispersal-based

processes in generating different species composi-

tions. Originally, four paradigms were proposed—

neutral, patch dynamics, species sorting, and mass

effects—to emphasize different sets of metacommu-

nity dynamics and provided a useful strategy for

discussing metacommunity scenarios (Leibold et al.,

2004). Patterns should, however, fit within the broader

framework of metacommunity theory as a continuous

and multidimensional space defined according to

species equivalence, dispersal abilities, and environ-

mental heterogeneity (Logue et al., 2011).

Any study seeking the causes of community

variation may consider that the structure of local

communities varies through time (Bengtsson et al.,

1997), as well as the predictors of community

variation (Bellier et al., 2014). Nonetheless, very few

local communities are sampled over long time periods

and are available to test temporal variation in the

predictors of community variation. For instance, one

can expect that correlation with environmental vari-

ables may be higher or lower depending on temporal

fluctuations of key environmental factors. Thus, a

comprehensive understanding of how metacommuni-

ties are organized should consider the temporal

variation in correlates of community structure. In

addition, one can also evaluate the role of earlier

metacommunity data to explain current metacommu-

nity structure (Castillo-Escrivà et al., 2017). This

represents the potential effect of earlier occupation on

current community composition of the set of local

communities that composes the metacommunity.

Predictability of community structure may also

vary depending on species traits. Small-sized aquatic

organisms can show efficient dispersal and they can

thus reach most sites (Finlay & Fenchel, 2004). In this

perspective, differences between local microalgal

communities, for example, may be explained by

species responses to local environmental features

(Martiny et al., 2006; see also Leibold et al., 2004

for the definition of species sorting mechanisms).

Even so, previous studies have reported spatial

structure in microalgal metacommunities; thus, in

addition to the role of local environmental factors,

spatial variables have also been found to be influential,

suggesting some level of dispersal limitation

(Soininen et al., 2007; Vyverman et al., 2007;

Vanormelingen et al., 2008; Heino et al., 2010).

Differences in the responses of different groups of

microalgae to environmental conditions suggest that

taxonomic classification of species may not be suffi-

cient to disentangle community assembly processes.

For instance, planktonic algae responses may be

different from those of attached algae because they

are probably more susceptible to hydrological varia-

tions, resulting in high (passive) dispersal rates

(Wetzel et al., 2012) and possibly lower effects of

earlier occupation. In this sense, analysis considering

traits should also be used as a powerful and comple-

mentary approach to understand community assembly

(McGill et al., 2006; Litchman et al., 2010). Several

classifications of phytoplankton into functional groups

have been proposed (e.g., Reynolds et al., 2002;

Salmaso & Padisák, 2007; Padisák et al., 2009; Kruk

et al., 2010), and such groupings can be used to

understand community assembly processes. In short,

functional groups are based on between-species sim-

ilarity of relevant traits that respond similarly to

community assembly.

Phytoplankton is a group that is particularly

appropriate for investigating determinants of meta-

community organization because it consists of a

diverse group of species that typically respond in a

predictable way to the environment (Reynolds, 1984;

1989). Reservoirs also provide good model systems to

study spatial patterns due to their relative isolation in

the landscape. We explored if such variation has a

seasonal pattern using data sampled over 32 time

periods (i.e., spring, summer, autumn, and winter

seasons from 2005 to 2013). In this study, we used

phytoplankton and environmental data from a set of 17

reservoirs in Southern Brazil, sampled seasonally over

eight years. For each period, we quantified the relative

contributions of local environmental factors, spatial

variables, and earlier community data to the structure

of phytoplankton metacommunities and functional

groups. Mechanisms related to both environmental

and spatial predictors are now accepted as simultane-

ously important for community assembly (Soininen

et al., 2007; Hájek et al., 2011; Chust et al., 2013;

Gallego et al., 2014), as well as the earlier community

structure (Castillo-Escrivà et al., 2017).We expected a

high temporal variation in the relative contribution of

these predictors (i.e., environmental, spatial, and
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earlier community) for both species composition and

functional groups.

We also tested for correlates of the strength of

species sorting (SSS hereafter), estimated by the

variation in community structure that is (uniquely)

explained by environmental variables. We hypothe-

sized that SSS would be higher in trait-based analyses

than in analyses considering species composition. We

anticipated that the SSSwould be relatively stronger in

periods with high environmental heterogeneity given

that a wide environmental gradient may promote

species sorting (Leibold et al., 2004; McCreadie &

Bedwell, 2013). Also, we expected that SSS may be

lower in periods with a high dominance of Cyanobac-

teria. In such periods, dominance of Cyanobacteria

may decrease the community turnover that can be

explained, as a consequence of the well-known

negative effects of Cyanobacteria on other algae

(Suikkanen et al., 2005). SSS may also be low during

periods with high total species richness given the high

amount of information in biological matrices to be

explained (see also Low-Décarie et al., 2014). Bini

et al. (2014) found a negative correlation between SSS

and nutrient concentrations. Also, Chase et al. (2010)

showed that beta diversity was positively correlated

with productivity due to a strong role of stochastic

assembly processes. Based on these findings, we

predicted a negative relationship between SSS and

productivity.

Materials and methods

Study area and survey program

We used a dataset obtained by a water quality

monitoring program run by ‘‘COPEL’’ (The Energy

Company of the State of Paraná, Brazil), consisting of

phytoplankton densities and environmental variables

sampled in 17 reservoirs (Fig. 1) during four austral

seasons (spring, summer, fall, and winter), from 2005

to 2013 (see also Wojciechowski et al., 2017). All the

reservoirs are in the State of Paraná, Southern Brazil.

Paraná State covers an area of 199,727 km2 corre-

sponding to 2.34% of the Brazilian territory. Although

reservoirs vary in level of degradation and uses

(including drinking water supply, recreation, and

hydroelectricity generation), Cyanobacterial blooms

are frequent in most of them (Fernandes et al., 2005;

2014b; IAP, 2009).

Subsurface samples (at ca. 15 cm water depth) for

both phytoplankton density (cell ml-1) and environ-

mental variables were taken simultaneously from the

lacustrine zone of each reservoir. Summer, fall,

winter, and spring samples were taken in January,

April, July, and October, respectively, totalizing 32

sampling periods (=8 years 9 4 seasons). Phyto-

plankton samples were fixed with Lugol’s solution

and stored in amber flasks. Phytoplankton taxa were

identified to the species level, whenever possible. The

estimation of the phytoplankton density was the same

during the period of study. Cellular density

(cells.ml-1) was estimated according to the Utermöhl

(1958) sedimentation technique and by counting

random fields under inverted microscope Olympus

IX70 (600x). All the species present in at least 20

fields or 100 cells of the most abundant species were

counted (Lund et al., 1958). The following environ-

mental variables were obtained according to APHA

(2005): water temperature (�C), dissolved oxygen

(DO, mg l-1), pH, and conductivity (lS cm-1) were

measured in situ; water samples were taken to the

laboratory for analysis of total phosphorus (TP,

mg l-1), total nitrogen (TN, mg l-1), ammonium

(NH4
?, mg l-1), nitrate (NO3

-, mg l-1), and nitrite

(NO2
-, mg l-1) concentration. Water transparency

(m) was obtained using a Secchi disk at the same

sampling sites. These environmental variables varied

widely over time (Table S2; see also Wojciechowski

et al., 2017).

Biological data

Details of phytoplankton community in the reservoirs

of Paraná have already been described in Woj-

ciechowski et al. (2017). The dataset included 606

phytoplankton taxa in all periods and reservoirs

studied (see also Table S1 in Online Resource for

the most common species recorded). Chlorophyceae

was the predominant class in terms of number of taxa

(273 taxa), followed by Bacillariophyceae (104 taxa),

Cyanophyceae (82 taxa), Zygnemaphyceae (56), and

Chrysophyceae (52). Other phytoplankton classes

were represented by a lower number of taxa, ranging

from 36 to 11 taxa. The most abundant algae were

mainly Cyanobacteria, e.g., Cylindrospermopsis
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raciborskii, some species of the genera Aphani-

zomenon, Dolichospermum, and Microcystis. Most

of the Cyanobacteria (67% of the species) were

considered among the most abundant in at least one

sampling period. Only 51 species were considered

common (i.e., appearing in at least 10% of samples;

Table S1 in Online Resource).

The phytoplankton density (cell.ml-1) data were

classified taxonomically (based on species identities) and

functionally (using functional group classifications). For

functional groups, we used a classification based exclu-

sively on morphology, the ‘‘Morphologically Based

Functional Groups’’ (MBFG) proposed by Kruk et al.

(2010). This decision was made based on the simplicity

of the classification that divides phytoplankton species

into seven groups. This classification is based on the

following traits: volume (lm3), surface area (lm2),

surface/volume ratio (lm-1), maximum linear dimen-

sion (lm), and presence/absence of mucilage, flagella,

gas vesicles, heterocysts, and siliceous structures (Kruk

et al., 2010). The complete list of species composing

each functional group is available in Table S1 (Online

Resource 1). The seven groups are the following:

(I) Small organisms (\2 lm) with high surface/volume

ratio, without siliceous structures (e.g., small species of

Chlorococcales); (II) Flagellated organisms of small size

with siliceous exoskeletons, such as species of the genus

Chromulina; (III) Large filaments containing aerotopes,

mainly represented by species of Nostocales in our

study; (IV) Individuals ofmedium size lackingmucilage,

flagella, or exoskeletons (e.g., species of the genera

Monoraphidium and Scenedesmus); (V) Unicellular

individuals of medium to large size ([2 lm), with

flagella, such as species of Cryptophyceae and Dino-

phyceae; (VI) Non-flagellated organisms with siliceous

exoskeletons (Bacillariophyceae); (VII) Large mucilagi-

nous colonies, such as species of the genera Eute-

tramorus and Microcystis (Kruk et al., 2010).

Fig. 1 State of Paraná with the geographic location of the

reservoirs. Samples were taken seasonally in each reservoir

from 2005 to 2013. Main rivers of each drainage basin are also

shown. AP Apucaraninha (n = 32 samplings), CP Capivari

(n = 32), CV Cavernoso (n = 33), CXI Caxias I (n = 34), CXII

Caxias II (n = 34), CH Chopim (n = 32), GU Guaricana

(n = 34), JO Jordão (n = 33), ME Melissa (n = 31), MO

Mourão (n = 33), PI Pitangui (n = 33), RP Rio dos Patos

(n = 33), SV Salto do Vaú (n = 33), SJ São Jorge (n = 33), SEI

Segredo I (n = 33), SEII Segredo II (n = 33), VO Vossoroca

(n = 34)
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According to our goals, we generated the following

response matrices: reservoirs (rows) 9 density of

species (columns) for each period; reservoirs 9 den-

sity of the seven functional groups for each period; and

reservoirs 9 density of species for each functional

group for each period. Given that functional groups

have different biological traits, we anticipated that

correlates of SSS may differ among them, and some

predictions can be specified. Similar to what is

expected considering the entire community, SSS of

groups with more species may be less predicted than

the SSS of groups with few species. Groups I and III

were those with the lowest number of species, and

groups IV, V, and VI were those with the highest

number of species. The groups I and II, composed of

small algae, may show high dispersal rates and

therefore may be more explained by SSS than groups

III–VII, composed of medium to large organisms. The

SSS for group III, composed of Cyanobacteria, may be

mainly correlated to productivity, given that species of

this group respond quickly to an increase in produc-

tivity, usually resulting in summer blooms over

multiple reservoirs (Paerl, 2014).

Data analysis

Our main goal was to explain temporal variation in

SSS, differently from Wojciechowski et al. (2017)

which aimed to explain temporal variation in beta

diversity. Two main steps were undertaken to accom-

plish this task. First, SSS (our response variable) was

estimated, for each sampling period, using a Partial

Redundancy Analysis (pRDA; Borcard et al., 1992;

Legendre & Legendre, 2012) and variation partition-

ing (Peres-Neto et al., 2006). Community structure

may be influenced by local conditions (e.g., abiotic

variables), spatial variables (used as proxy of disper-

sal), and earlier community structure. Therefore, we

partitioned the variation in phytoplankton community

structure in each sampling period in three pure

fractions: (a) proportion of variance explained exclu-

sively by the environmental variables; (b) proportion

of variance explained by the spatial variables; and

(c) proportion of variance explained by earlier com-

munity structure. Fiver other fractions were also

estimated: (d) the variation in biological data

explained by spatially structured environmental vari-

ables; (e) the variation in biological data explained by

the common structure of environmental variables and

earlier community structure; (f) the variation

explained by the earlier community structure that

was spatially structured; (g) the variation in biological

data explained by the common structure of environ-

mental variables, spatial variables, and earlier com-

munity structure; (h) unexplained variation in

biological data.

To increase comparability between sampling peri-

ods, we decided to use the first four PCA axes to

summarize the environmental variables, the first four

Moran’s Eigenvector Maps to represent spatial vari-

ables (Dray et al., 2006), and the first four PCoA

vectors to represent the earlier community structure in

pRDA and variation partitioning, as explained subse-

quently. The first four axes of PCA and PCoA usually

explained a high proportion of the variance in the

original data (from 89.9 to 96.9% for PCA, and from

50.7 to 66.5% for PCoA). Also, the first four Moran’s

Eigenvector Maps (MEMs) were associated with the

highest (and always positive) eigenvalues, describing

positive autocorrelation at global scales (Dray et al.,

2006). PCA axes were calculated using all the

environmental variables described above. Environ-

mental variables were log ? 1 transformed, except

pH, before analysis. The PCA axes were estimated

using the function ‘‘princomp’’ in the package vegan

(Oksanen et al., 2015) for the software R 3.1.3 (R Core

Team, 2015). Moran’s Eigenvector Maps (MEMs;

Dray et al., 2006) were created using the geographic

coordinates of the 17 reservoirs and the function

‘‘pcnm’’ in the R package PCNM (Legendre et al.,

2013). PCoA scores (using Bray–Curtis dissimilarity)

were calculated using all the species present in the

previous sampling period using the function ‘‘pcoa’’ in

the R package ape (Paradis et al., 2004). The sum of all

fractions [a ? b ? c ? d ? e ? f ? g] corresponds

to the total variance explained by environmental,

spatial, and earlier community occupation. Fractions

[a], [b], and [c] were tested for statistical significance

using randomization tests with 999 runs. As the earlier

community structure was measured using the com-

munity data from the previous period, we showed

fractions estimated for 31 periods. Thus, there are no

results for the first sampling period (fall 2005). For

each response matrix (species, functional, and species

separated into different functional groups), we esti-

mated the fractions [a], [b], and [c] for each of the 31

periods separately. Fraction [a] was our measure of

SSS. Phytoplankton density data and environmental
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variables were, respectively, Hellinger-transformed

(Legendre & Gallagher, 2001) and standardized

before the analyses. Our pRDAmodels were estimated

using the function ‘‘varpart’’ in the R vegan package

(Oksanen et al., 2015). We performed a paired

Wilcoxon test to compare the adjusted coefficients of

determination (adjusted R2), estimated by RDA mod-

els, for functional groups matrices and phytoplankton

species matrix, using the function ‘‘wilcox.test’’ in the

stats package. We compared the global adjusted R2

and the adjusted R2 considering the SSS (fraction [a];

see above).

We applied a General Least-Square Model (GLS,

Pinheiro & Bates, 2000) to explain the temporal

variation in SSS. We used the following predictors:

environmental heterogeneity (EH), total species rich-

ness of the period (SR), Cyanobacterial dominance

(CYANO), and an environmental variable indicating

productivity. To estimate EH, we applied an analysis

of homogeneity of multivariate dispersions to the

abiotic matrix in each period, as described by Ander-

son et al. (2006, 2011). All the environmental

variables described above were previously standard-

ized and used to estimate EH. As a proxy of

productivity, we added one of the following climate

variables in alternative models: total insolation (INS,

kWh m-2), precipitation (PRE, mm), or water tem-

perature (WT, �C). It is well-known that all climatic

variables above are positively correlated with produc-

tivity, and also that they vary seasonally in Subtropics

(Ball, 2015). Total insolation and precipitation were

obtained from INMET (National Institute of Meteo-

rology) in BDMEP (Database of Meteorological Data

for Education and Research) from a meteorological

station located in the center of the Paraná State

(-25�460W, -50�630S). We also used the mean

density (cells mL-1) of all the Cyanobacterial taxa

occurring in each period as a predictor of SSS.

However, we did not use this predictor for Group III,

given that this group is composed entirely of

Cyanobacteria species. For our GLS model, we

assumed an autoregressive model of order 1 (Pinheiro

& Bates, 2000). This model was estimated using the

nlme package in R (Pinheiro et al., 2015). The best

approximating model for our data was selected using

the Akaike Information Criterion (AIC), following

Burnham & Anderson (2004). In this case, we

considered plausible models those with DAIC lower

than 5.

Results

Variation partitioning of community data

The relative importance of environmental, spatial, and

historical predictors (i.e., pure fractions [a], [b], and

[c]) varied widely over time (Table S3 in Online

Resource), and significant predictors were found in

some sampling periods (Table S3 in Online Resource).

The average total variance (all fractions summed)

explained by our predictor matrices ranged from 21%

(Group IV) to 54% (Group I and III). Data on earlier

community structure were, in average, the best

predictor matrix of phytoplankton community struc-

ture, except for two cases (groups I and II). The

environmental and spatial matrices were the main

predictors of groups I and II, respectively. These

matrices were unrelated to group IV, and no significant

relationships were found between matrix group VI and

earlier community structure (Table S3 in Online

Resource).

In general, the total variation in phytoplankton

community structure was better explained when the

response matrix was organized according to a func-

tional approach instead of a traditional (taxonomic)

approach (Table S4 in Online Resource, Fig. 2).

However, we found a higher total adjusted coefficient

of determination among the different functional

groups when compared to the species response matrix

(Table S4 in Online Resource, Fig. 2). Groups I and III

showed significant higher median values of SSS when

compared to species response matrix (Table S4 in

Online Resource, Fig. 2).

The highest SSS values were found, in general,

when the response matrix was organized by the

density vectors of the functional groups (Fig. 3).

Similar results were found for Group I and III (Fig. 3).

GLS models

There were no significant relationships between our

predictor variables and our measure of the SSS for

phytoplankton group and for most functional group (I,

II, III, VI, and VII) composition (Table S5 in Online

Resource). SSS estimated for species composition was

positively related to INS (Table 1). Another predictor

variable representing productivity (WT) was posi-

tively related to SSS for group IV, whereas the SSS for

group V was positively related to EH. The next two
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best models (with delta AIC\ 5; Table 1) provided

similar results.

Discussion

A simultaneous role of environmental and spatial

drivers has been recorded for several phytoplankton

communities (Soininen et al., 2007; Hájek et al., 2011;

Chust et al., 2013; Gallego et al., 2014). Yet, debate on

the most important community assembly mechanism

for a certain metacommunity is highly criticized and

unproductive when not related to clear expectations

(e.g., relative roles depend on organisms’ dispersal

ability, spatial scale, and environmental gradients

studied; Heino et al., 2015; see also Brown et al.,

2017). Indeed, it is hard to conclude that environmen-

tal or spatial drivers are the most important predictors

of a certain metacommunity given that considering all

relevant variables in predictor matrices is highly

difficult if not impossible (see also Vellend et al.,

2014). Even so, we found that the earlier community

composition was an important predictor set of the

present community composition. Such ‘historical’

influences are rarely analyzed in studies on the

composition of phytoplankton metacommunities.

Thus, we suggest earlier occupation is included in

future studies on correlates of phytoplankton commu-

nity structure.

Our results also corroborated the view that deter-

minants of community structure are highly variable

over time (Heino & Mykrä, 2008; Er}os et al., 2014;

Fernandes et al., 2014a). Studies have demonstrated

that explaining spatial patterns in microalgal meta-

communities based on snapshot samplings may be

biased (Vyverman et al., 2007; Verleyen et al., 2009;

Heino et al., 2010; Hájek et al., 2011). Such assess-

ments of metacommunity structure, despite being

conducted over large spatial extents, do not capture the

temporally dynamic nature of phytoplankton meta-

communities (Beisner et al., 2006). Complementarily,

we have already demonstrated in a previous study that

beta diversity of phytoplankton in the same reservoirs

also varies temporally (Wojciechowski et al., 2017).

The present study adds to this knowledge because it

shows that not only beta diversity, but also the

determinants of metacommunity organization vary

temporally.

We hypothesized that, using the same sets of

predictors, phytoplankton composition would be bet-

ter explained in trait-based analyses than in taxonomic

ones. This hypothesis was based on the assumption

that species within a functional group would have

similar responses to environmental variation. How-

ever, we found limited support for this hypothesis.

One explanation for this result may simply be that, in

terms of community structure predictability, the

deconstructive approach (based on functional groups;

Fig. 2 Median of the total adjusted coefficient of determination

(Total Adjusted R2) from RDAmodels considering the response

matrices of phytoplankton species density (Species), functional

groups density (Groups), and deconstructed into different

phytoplankton group densities (Group I—VII). SSS = Strength

of species sorting. ‘‘?’’ significantly higher than species data;

and ‘‘-‘‘ significantly lower than species data according to

Wilcoxon test

Hydrobiologia (2017) 800:31–43 37

123



Marquet et al., 2004) is not so superior to the

traditional, taxonomic-based, approach. Also, it is

important to emphasize that we used literature data to

create our functional groups. Thus, higher coefficients

of determination could be obtained for the decon-

structive approach, in comparison to the taxonomic

Fig. 3 Time series of the adjusted coefficient of determination

(Adjusted R2) from RDA models considering environmental

variables as explanatory variables and phytoplankton data as

response matrices: species densities, functional groups density,

and species density in each functional group (Group I—VII).

SSS = Strength of species sorting

38 Hydrobiologia (2017) 800:31–43
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approach, with the use of local data for the formation

of the functional groups. The functional group clas-

sification used here uses basically morphology to

classify species and were proposed using phytoplank-

ton data from temperate sites very different from those

studied here (e.g., Reynolds et al., 2002; Salmaso &

Padisák, 2007; Padisák et al., 2009). Also, a better

elucidation of how environmental variables related to

functional traits could be obtained if ‘true’ functional

composition was analyzed, e.g., either assessing traits

responses to environmental gradients in a combination

of RLQ and forth-corner analysis (Dray et al., 2014) or

using community-weighted mean (CWM) response

matrices (Lavorel et al., 2007) in pRDA instead of

classifying taxa into functional groups proposed by

experts. In this case, meaningful phytoplankton traits

must be measured for all species in the dataset (Kleyer

et al., 2012). However, we still do not have a set of

meaningful traits for the phytoplankton species

recorded here that allows us to use RLQ and forth-

corner analysis or CWM-RDA.

We found, however, that SSS values over the time

period were frequently higher when we used the

density vectors of the functional groups instead of the

total species composition. Furthermore, groups I

(small organisms with high surface/volume ratio)

and III (filamentous Cyanobacteria, mainly Nosto-

cales) showed higher environment-related variation.

These results suggest that, even with the limited

support for our general hypothesis, trait-based

Table 1 Generalized least squares regression coefficients, standard errors (SE), t, and P values of best models (DAIC\ 5) pre-

dicting the SSS for the phytoplankton metacommunity in the Paraná State reservoirs

Phytoplankton data Model rank (AIC/DAIC) Predictor variables Coefficient SE t P

Species #1 (-23.96/0.00) (Intercept) 0.074 0.014 5.179 0.000

EH 0.028 0.017 1.702 0.101

CYANO 0.018 0.016 1.091 0.285

SR 0.009 0.017 0.546 0.590

INS 0.035 0.017 2.002 0.056

Group IV #1 (-42.25/0.00) (Intercept) 0.050 0.011 4.683 0.000

EH -0.010 0.012 -0.800 0.431

CYANO 0.004 0.013 0.341 0.736

SR -0.011 0.014 -0.825 0.417

WT 0.030 0.015 2.018 0.054

Group V #1 (-24.08/0.00) (Intercept) 0.085 0.010 8.308 0.000

EH 0.050 0.015 3.240 0.003

CYANO -0.007 0.015 -0.461 0.648

SR -0.013 0.013 -0.993 0.330

PREC -0.030 0.016 -1.858 0.075

#2 (-21.90/2.18) (Intercept) 0.085 0.011 7.480 0.000

EH 0.040 0.016 2.473 0.020

CYANO 0.005 0.015 0.338 0.738

SR -0.013 0.016 -0.801 0.430

INS 0.015 0.017 0.849 0.404

#3 (-21.70/2.38) (Intercept) 0.084 0.012 7.049 0.000

EH 0.037 0.016 2.236 0.034

CYANO 0.008 0.017 0.472 0.641

SR -0.016 0.017 -0.961 0.345

WT -0.008 0.020 -0.413 0.683

EH environmental heterogeneity; CYANO Cyanobacterial density; SR species richness; INS total insolation; PRE precipitation; WT

water temperature. Only models with significant variables (in bold) are shown. Phytoplankton groups are detailed in Table S1 in

Online Resource for the common species
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analyses are central to understanding the likely causes

underlying community assembly. Indeed, while spe-

cies compositions were mainly affected by productiv-

ity, species composition in certain groups was affected

by productivity or environmental heterogeneity.

Functional group classification was also useful with

regard to our expectation that communities with high

species richness would be less well explained by

environmental predictors (Low-Décarie et al., 2014).

Although we did not find a significant correlation

between SSS and total species richness, species-rich

groups (e.g., groups IV and V) exhibited higher SSS

than species-poor groups (e.g., groups I and III). This

observation also highlights that community responses

to environmental variation are better elucidated by

investigating groups of species that respond similarly

to environmental gradients (i.e., the functional groups).

We also observed that variation in SSS among the

different functional groups is commonly unpre-

dictable (Soininen, 2014), and explanatory power for

certain functional groups is higher than for the others

(Fig. 2). Therefore, it seems that community assembly

mechanisms may be more evident for some functional

groups than for others. This was the case of the

relationship with productivity, as proxied by temper-

ature. A likely positive relationship between produc-

tivity and SSS was observed for group IV (composed

of organisms of medium size lacking specialized traits,

i.e., very common Chlorophytes, as Monoraphidium

and Scenedesmus). Although we did not use a proxy

for eutrophication as a predictor, this is in line with a

previous study suggesting that eutrophication deter-

mines community assembly (Donohue et al., 2009) if

more productive periods coincide with occurrences of

eutrophication.

Phytoplankton communities can be structured by

several factors, such as water chemical characteristics

(especially nutrients; Reynolds, 1984, 2006), morpho-

logical, physical and hydrological variables (i.e.,

water column mixing dynamics and water retention

time; Domitrovic, Domitrovic 2003; Jones & Elliott,

2007), climate (Paerl & Huisman, 2008), and biolog-

ical interactions (i.e., top-down control and viral

infection; Lazzaro et al., 2003; Brussaard, 2004). This

multiplicity of factors may contribute to low explana-

tory power of multivariate models. In addition,

although we do not have data to test, we speculate

that specific management strategies (e.g., flushing and

dredging), which differ among the reservoirs, may also

be of paramount importance to predict phytoplankton

community structure (see Rangel et al., 2012). Also,

phytoplankton metacommunity in the Paraná State

reservoirs was predominantly composed of rare

species (the few common species are shown in

Table S1). Distributions of rare species are difficult

to model (Heino & Soininen, 2010; Siqueira et al.,

2012), also contributing to the low variation explained

in our analysis. Finally, the possibility of phytoplank-

ton metacommunities being regulated by stochastic

processes (De Meester et al., 2005; Chase, 2007;

Vellend et al., 2014) should not be ignored.

To conclude, we showed that the strength of species

sorting of phytoplankton metacommunities was highly

variable in time. This finding prevailed irrespective of

the dataset used (i.e., all species, species in each

functional group, or aggregate functional groups), and

suggest that the effects of species sorting in structuring

metacommunities may be dependent on the time of

sampling (Er}os et al., 2014; Fernandes et al., 2014a).

Hence, we strongly encourage researchers to go

beyond snapshot sampling, as the mechanisms con-

trolling local communities may be temporally variable

and to some degree unpredictable. Finally, we have

also demonstrated that SSS and its likely determinants

depend on the functional group, highlighting the

importance of trait-based analyses for studies aiming

to understand the causes of community assembly in

metacommunities.
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river floodplain (Argentina). Hydrobiologia 510: 175–193.

Donohue, I., A. L. Jackson, M. T. Pusch & K. Irvine, 2009.

Nutrient enrichment homogenizes lake benthic assem-

blages at local and regional scales. Ecology 90: 3470–3477.

Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial mod-

elling: a comprehensive framework for principal coordinate

analysis of neighbour matrices (PCNM). Ecological Mod-

elling 196: 483–493.
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