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Abstract Mosquitoes represent a key threat for

millions of humans worldwide, since they act as vectors

for malaria, dengue fever, yellow fever, Zika virus,

filariasis, and encephalitis. In this study, we tested

chitosan-synthesized silver nanoparticles (Ch–AgNP)

using male crab shells as a source of chitosan, which

acted as a reducing and capping agent. Ch–AgNP were

characterized by UV–Vis spectroscopy, FTIR, SEM,

EDX, and XRD. Chitosan and Ch–AgNP were tested

against larvae and pupae of themalaria vectorAnopheles

sundaicus under laboratory and field conditions.

Antibacterial properties of Ch–AgNP were tested on

Bacillus subtilis, Escherichia coli, Klebsiella pneumo-

niae, and Proteus vulgaris using the agar disk diffusion

assay. The standard predation efficiency of themosquito

natural enemy Carassius auratus in laboratory condi-

tions was 60.80 (on larva II) and 19.68 individuals (on

larva III) per day, while post-treatment with sub-lethal

doses ofCh–AgNP, thepredation efficiencywas boosted

to 72.00 (on larva II) and 25.80 individuals (on larva III).

Overall, Ch–AgNP fabricated using chitosan extracted

from the male crab shells of the hydrothermal vent
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species Xenograpsus testudinatusmay offer a novel and

safer control strategy against A. sundaicus

mosquito vectors, as well as against Gram-negative

and Gram-positive pathogenic bacteria.

Keywords Anopheline � Biocontrol agent � Indoor
residual spraying � Mosquito borne diseases �
Nanosynthesis

Introduction

Mosquitoes are responsible for the transmission of

numerous infectious diseases including malaria,

dengue fever, yellow fever, Zika virus, filariasis, and

different types of encephalitis. Malaria is transmitted

by Anopheles mosquitoes and leads to high mortality

rates predominantly in Sub-Saharan Africa and Asia

(Walker et al., 2014; Benelli, 2015a, b; Benelli &

Mehlhorn, 2016). Malaria continues to be a major

global health threat despite more than 100 years of

research since the discovery of malaria parasites in

human blood by Charles Laveran in 1880. Later, the

causal connection of mosquito vectors and the trans-

mission of malaria was made by Sir Ronald Ross in

1898 (Cox, 2010). Malaria is caused by Plasmodium

parasites, vectored to vertebrates through the bites of

infected Anopheles mosquitoes, which mainly bite

between dusk and dawn (Mehlhorn, 2008; Ward &

Benelli, 2017). According to the latest estimates, there

were about 198 million cases of malaria in 2013 and

estimated as 584,000 deaths. Most of the death occurs

among children living in Africa, where a child dies

every minute frommalaria (WHO, 2014; Benelli et al.,

2016). Under the paucity of vaccines and preventive

drugs, malaria control programs are increasingly

dependent on vector control. Currently, the main

control tool against mosquito larvae is represented by

treatments with organophosphates, insect growth

regulators, and microbial control agents (Benelli,

2015a; Murugan et al., 2015a, b, c). In recent years,

many organic products, including plant extracts,

essential oils, and isolated constituents have been

proposed for eco-friendly control mosquito vectors

and other blood-sucking arthropods (Sukumar et al.,

1991; Azizi et al., 2014; Benelli, 2015b; Govindarajan

& Benelli, 2016a, b, c).

Chitosan or chitin is the second most abundant

polysaccharide on the planet (Gooday, 1990). Chitosan

is widely present in many animal tissues, including the

exoskeletons of arthropods, the beaks of cephalopods,

the eggs and gut linings of nematodes (Gohel et al.,

2006), but even in fungi (Castro & Paulin, 2012), and

spines of diatoms (Bartnicki-Garcia & Lippman,

1982). Chitosan is characterized by no toxicity to

vertebrates, high mechanical strength, susceptibility to

chemical modifications, and cost-effective availability.

This has attracted many applications (Sorlier et al.,

2001; Yang et al., 2010), such as wound-healing

agents, drug carriers, chelating agents, membrane

filters for water treatment, and biodegradable coating

or film for food packaging. It is also used as a potential

biomaterial for nerve repair, as food preservative

agent, and in non-viral gene delivery (Gow & Gooday,

1983). In addition, several studies on the antimicrobial

activity of chitosan and its derivatives against plant

pathogens and pests have been conducted (Rabea

et al., 2005; Badawy, 2010; Kaur et al., 2012; El-

Mohamedy et al., 2014). A chitin derivative (N-(2-

chloro-6-fluorobenzyl-chitosan) led to 100% mortality

of larvae of the cotton leaf worm Spodoptera littoralis

(Boisduval, 1833). While chitosan treatments have

been found to be moderately effective against vector

pests and herbivorous insects, it has also been used

successfully as an ingredient in the artificial diet used

for predatory, carnivorous insects reared for the

biological control of arthropod pests (Tan et al.,

2010). This finding suggests that chitin-based products

could potentially be less harmful to non-target insects

if compared to conventional insecticides.

Mosquito larval population can also be controlled

by many aquatic predators, including water bugs,

tadpoles, crabs, copepods, and fishes (Bowatte

et al., 2013; Kalimuthu et al., 2014). Among the

latter, a good example is Carassius auratus (Linnaeus,

1758). Goldfish are among the most popular fishes in

the pet trade and are widely established throughout the

United States and southern Canada (Lee et al., 1980;

Page & Burr, 1991). Also, mosquito fishes are easy to

culture in laboratory settings as well as in the field, and

have been widely used to evaluate the non-target

impacts of mosquitocidals (Rao&Kavitha, 2010; Patil

et al., 2012b; Murugan et al., 2015d). Carassius

auratus auratus Linnaeus, 1758 is a small-sized

member of the freshwater family Cyprinidae (carps

and minnows), typically reaching about 22 cm in

length. There are several subspecies of C. auratus,

which are all indigenous to Asia, including C. auratus
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auratus (Vietnam), C. auratus buergeri Temminck &

Schlegel, 1846, C. auratus grandoculis Temminck &

Schlegel, 1846, and C. auratus langsdorfii (Japan)

(Chandramohan et al., 2016).

The ‘‘green synthesis’’ of silver nanoparticles

(AgNP) is considered an eco-friendly technology

leading to a reduction in the employment or gener-

ation of hazardous substances (Banerjee et al., 2014;

Benelli, 2016a, b). Nanoparticles may cover a vast

application in pharmaceutical, industrial, and

biotechnological fields (Suman et al., 2013; Aroki-

yaraj et al., 2015). In recent years, nanoparticle

composites have become important owing to their

small size and large surface area and because they

exhibit unique properties not seen in bulk materials

with useful applications in photovoltaic cells, optical

and biological sensors, conductive materials, and

coating formulations (Templeton et al., 2000). Silver

ions and silver-based compounds are highly toxic to

microorganisms, including important species of

pathogen bacteria (Zhao & Stevens, 1998). There-

fore, AgNP have emerged with diverse medical

applications including silver-based dressings and

silver-coated medicinal devices, such as nano-gels

and nano-lotions (Rai et al., 2009). In addition, recent

research showed the high efficacy of green-synthe-

sized AgNP also in the fight against malaria vectors

(Arokiyaraj et al., 2015; Muthukumaran et al., 2015;

Govindarajan et al., 2016a, b), even in the field

(Dinesh et al., 2015).

In this scenario, the present study was carried out to

develop chitosan-fabricated AgNP; nanoparticles

were characterized using UV–Vis spectroscopy, Four-

ier-transformed infrared spectroscopy (FTIR), scan-

ning electron microscopy (SEM), energy-dispersive

X-ray spectroscopy (EDX), and X-ray diffraction

(XRD). The multipurpose biological activity of chi-

tosan-synthesized AgNP was studied in the following

experiments (a) evaluation of the larvicidal and

pupicidal potential of AgNP against the costal malaria

vector Anopheles sundaicus (Rodenwaldt, 1925);

(b) assessment of the predatory efficiency of the

goldfish C. auratus against larval of A. sundaicus, in

normal laboratory conditions, and in a nanoparticle-

contaminated aquatic environment, (c) investigation

of the nanoparticle antibacterial activity on Gram-

positive and Gram-negative human pathogenic

bacteria.

Materials and methods

Collection of crab shells and processing

Hydrothermal vent crab Xenograpsus testudinatusNg,

Huang & Ho, 2000 (Decapoda: Brachyura) were

collected from shallow hydrothermal vents at the NE

Taiwan coast. The exoskeletons were placed in Ziploc

bags and frozen overnight and then subsequently cut

into smaller pieces using a meat tenderizer. Wet

samples of 10 g of crushed crab exoskeletons were

placed on foil paper and measured using a metal

balance, with five replications. The labeled samples

were then oven-dried at 65�C for four consecutive

days until they obtained constant weight. The dry

weight of the samples was then determined, and the

moisture content was also measured based on the

differences between wet and dry weight.

Chitosan recovery from crab shell

The chitosan production from native chitin involves

washing of crushed crab exoskeletons in distilled

water. Crushed crab exoskeletons were placed in

1,000 ml beakers and soaked in boiling sodium

hydroxide (2 and 4% w/v) for 1 h to dissolve the

proteins and sugars thus isolating the crude chitin.

Sodium hydroxide (4% NaOH) was used for chitin

preparation, a concentration used at Sonat Corporation

(Lertsutthiwong et al., 2002). After boiling the sam-

ples in sodium hydroxide, the beakers containing the

shell samples were removed from the hot plate, and

allowed to cool for 30 min at room temperature

(Lamarque et al., 2005). The exoskeletons were then

further crushed to pieces of 0.5–5.0 mm using a meat

tenderizer (Murugan et al., 2016).

Demineralization

The grinded exoskeletons were demineralized using

1% HCl at four times its quantity. The samples were

soaked for 24 h to remove the minerals (mainly

calcium carbonate) (Trung et al., 2006). The deminer-

alized crab shell powder was then treated for 1 h with

50 ml of a 2% NaOH solution to decompose the

albumen into water-soluble amino acids. The remain-

ing chitin was washed with deionized water, which

was then drained off. The chitin was further converted
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into chitosan by the process of deacetylation (Huang

et al., 2004; Murugan et al., 2016).

Deacetylation

Deacetylation process was carried out by adding 50%

NaOH and then boiled at 100�C for 2 h on a hot plate.

The samples were then placed under a hood and cooled

for 30 min at room temperature. Afterwards, the

samples were washed continuously with 50% NaOH

and filtered in order to retain chitosan as solid matter.

The samples were then left uncovered and oven-dried

at 110�C for 6 h. The obtained chitosan then turned

into cream-white in color (Muzzarelli & Rochetti,

1985).

Biosynthesis of nanoparticles

Following the method byMurugan et al. (2016), 2 g of

chitosan powder was taken in a 300-ml Erlenmeyer

flasks filled with 100 ml of double distilled water. The

mixture was boiled for 20 min and filtered using

Whatman filter paper no. 1, stored at-15�C and tested

within 5 days. The filtrate was treated with aqueous

1 mM AgNO3 solution in an Erlenmeyer flask and

incubated at room temperature. A reddish brown

suspension indicated the formation of AgNP, since

aqueous silver ions were reduced by chitosan powder

and thus generating stable chitosan–silver nanocom-

posite in water.

Characterization of nanoparticles

The presence of bio-synthesized AgNP was confirmed

by sampling the reaction mixture at regular intervals,

and the absorption maxima were scanned by UV–Vis,

at a wavelength of 300–800 nm in a UV-3600

Shimadzu spectrophotometer at 1-nm resolution. Fur-

thermore, the reaction mixture was subjected to

centrifugation at 15,000 rpm for 20 min, and the

resulting pellet was dissolved in deionized water and

filtered through a Millipore filter (0.45 lm). The

structure and composition of AgNP were analyzed by

using a 10-kV ultrahigh-resolution scanning electron

microscopy (SEM); 25 ll of the sample was sputter-

coated on a SEM. Surface groups of nanoparticles were

qualitatively confirmed by using FTIR spectroscopy

(Stuart, 2002) with spectra recorded by a Perkin-Elmer

Spectrum 2000 FTIR spectrophotometer. In addition,

XRD and EDAX were also analyzed for the presence

of metals in the sample.

Tested organisms

The eggs of A. sundaicus were collected (using an ‘O’

type brush) from drinking water containers available

in coastal areas of Velankanni (79.8�E, 10.7�N) and
Nagapattinam (79.8�E, 10.7�N), Tamil Nadu, south-

eastern part of India, using a ‘‘O’’-type brush, and

emerging specimens were identified following Gaffi-

gan et al. (2015). Batches of 100–110 eggs were

transferred to 18 cm 9 13 cm 9 4 cm enamel trays

containing 500 ml of water, where eggs were allowed

to hatch at laboratory conditions (27 ± 2�C and

75–85% RH; 14:10 (L/D) photoperiod). Anopheles

sundaicus larvae were fed daily 5 g of ground dog

biscuits (Pedigree, USA) and hydrolyzed yeast

(Sigma-Aldrich, Germany) at 3:1 ratio.

Mosquitocidal potential at laboratory conditions

The mosquitocidal activity of AgNPs against An.

sundaicus was assessed as described by Amerasan

et al. (2016) and Murugan et al. (2015c). 25 An.

sundaicus larvae (I, II, III, or IV instar) or pupae were

placed in 500-ml beakers and exposed for 24 h to

dosages of 25, 50, 75, 100, and 125 ppm (chitosan)

and 5, 10, 15, 20, and 25 ppm (Cs–Ag nanoparticles).

A 0.5-mg larval food was provided for each test

concentration. Control mosquitoes were exposed for

24 h to the corresponding concentration of the sample.

For each experiment, three replicates were made and

percentage mortality was calculated as follows:

Mortality(%) ¼
ðnumber of dead individuals/number of treated individualsÞ
� 100:

Mosquitocidal potential in the field

Mosquitocidal activity of AgNP against An. sundaicus

in field conditions was evaluated by applying six water

reservoirs at the National Institute of Communicable

Disease Centre (Coimbatore, India), using a knapsack

sprayer (Private Limited 2008, Ignition Products,

Town, India). Pretreatment and post-treatments at

24, 48, 72, and 96 h were conducted using a larval
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dipper. Toxicity was assessed against third and fourth

instar larvae. Larvae were counted and identified to

specific level. More than 80% of all surveyed larvae

belonged to A. sundaicus (Gaffigan et al., 2015). Six

trials were conducted for each test site at similar

weather conditions (27 ± 2�C; 79% R.H.). The

required quantity of mosquitocidal was calculated

based on the total surface area and volume (0.25 m3

and 250 l); the required concentration was prepared

using 10 9 LC50 values (Murugan et al., 2003; Suresh

et al., 2015). Percentage reduction of the larval density

was calculated using the formula:

Reductionð%Þ ¼ ðC � TÞ=C � 100;

where C is the total number of mosquitoes in the

control and T is the total number of mosquitoes in the

treatment.

Antibacterial potential

AgNP (1.0 mg) were dissolved in 2 ml of 1.0% (W/V)

aqueous acetic acid solution. From this 0.25, 0.50,

0.75, and 1.0 ml was taken and made up to 1.0 ml by

adding 1% acetic acid to prepare various concentra-

tions containing 100, 150, 200, and 250 lg of AgNP

sample. The bacterial species, namely Bacillus sub-

tilis Cohn, 1872, Escherichia coli (Migula, 1895)

Castellani and Chalmers, 1919, Klebsiella pneumo-

niae (Schroeter, 1886) Trevisan, 1887 and Proteus

vulgaris Hauser, 1885, used in this study were

purchased from the Microbial Type Culture Collec-

tion and Gene Bank Institute of Microbial Technol-

ogy Sector 39-A, Chandigarh-160036 (India). Four

selective species were incubated in the nutrient broth

and incubated at 28 ± 2�C for 24 h. Nutrient agar

medium was also prepared, autoclaved, and trans-

formed aseptically into sterile Petri dishes. On this,

24-h-old bacterial broth cultures were inoculated by

using a sterile cotton swab. An in vitro antibacterial

assay was carried out by the disk diffusion technique

(Bauer et al., 1966) on Whatman filter paper no. 1

disks with 4-mm diameter were impregnated with

known amounts of test samples. The disks were

loaded each with 10 ll of the extract by first applying
5 ll with the pipette, allowing evaporation, and then

applying another 5 ll, then drying again. The petri

plates were kept for incubation at room temperature

(27�C ± 2) for 24 h. After incubation, plates were

observed for zones of inhibition (mm) measured using

a photomicroscope (Leica ES2, Dresden, Germany)

and compared with standard tetracycline positive

control (Jaganathan et al., 2016).

Impact on gold fish predation

As a control, the predation efficiency of gold fish, C.

auratus, was assessed against A. sundaicus larvae

under standard laboratory conditions. For each instar,

500 mosquitoes were introduced, with 1 fish, in a

500-ml glass beaker containing 250 ml of dechlori-

nated water. Mosquito larvae were replaced daily with

new ones. For each mosquito instar, four replicates

were conducted. A control was used of 250 ml

dechlorinated water. All beakers were checked after

1, 2, 3, 4, and 5 days and the number of larval prey

consumed by fishes was recorded. Predatory efficiency

was calculated using the following formula:

Predatory efficiency ¼
ðnumber of consumed mosquitoes/number of predatorsÞ=
total number of mosquitoes� 100:

In a second experiment, the predation efficiency of

golden fish, C. auratus, was assessed against A.

sundaicus larvae, after a mosquitocidal treatment with

Cs–AgNP. For each instar, 500 mosquitoes were

introduced with 1 fish in a 500-ml glass beaker filled

with 249 ml of dechlorinated water and 1 ml of the

desired concentration of Cs–AgNP (2 ppm, i.e.,

about 1/3 of the LC50 calculated against first instar

larvae of A. sundaicus). Mosquito larvae were replaced

daily with new ones. For each mosquito instar, four

replicates were conducted. Control was 250 ml of

water. All beakers were checked after 1, 2, 3, 4, and

5 days and the number of preys consumed larvae by

fishes was recorded. Predatory efficiency was calcu-

lated using the above-mentioned formula (Subrama-

niam et al., 2015, 2016).

Data analysis

Larvicidal and pupicidal data were subjected to probit

analysis. LC50 and LC90 were calculated using the

method by Finney (1971). Chi square values were not

significant (Benelli, 2017). Fish predation data were

analyzed by JMP 7 using a weighted general linear

model with one fixed factor: y = ax ? bwhere y is the

vector of the observations (the number of consumed
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prey), a is the incidence matrix, x is the vector of fixed

effect (the targeted mosquito instar), and b is the

vector of the random residual effect. A probability

level of P\ 0.05 was used for the significance of

differences between values. All experiments were

repeated at least three times. The statistical software

SPSS version 16.0 was used for performing the

analyses. The P values\ 0.05 were considered as

significant.

Results

Larvicidal and pupicidal toxicity against A.

sundaicus in the laboratory and field conditions

In laboratory conditions, chitosan was toxic against A.

sundaicus larvae and pupae, even at low concentra-

tions, LC50 values after 24 h exposure ranged from

50.763 (larva I) to 100.051 ppm (pupae), respectively

(Table 1). Chitosan-fabricated AgNP were highly

toxic against A. sundaicus with LC50 values ranging

from 7.186 ppm (larva I) to 14.665 ppm (pupae)

(Table 2), respectively. The field applications of

chitosan (10 9 LC50) lead to the larval reduction of

A. sundaicus by 75.33, 42.50, and 100% after 24, 48,

and 72 h, respectively, while chitosan-fabricated

AgNP (10 9 LC50) lead to 63.66, 29.83, and 100%

of larval reduction (Table 3).

Impact of chitosan-fabricated AgNP on goldfish

predation

We observed no detrimental impacts on goldfish

predation, as well as no mortality in treated goldfish

during the whole study period. Under standard labo-

ratory conditions, C. auratus actively predates on A.

sundaicus larval instars. The percentages of predation

were given in Table 4. In the AgNP-contaminated

environment (2 ppm), predation rates reached 82.88%

on first instar larvae, as described in Table 4.

Antibacterial activity

In agar disk diffusion assays, chitosan-synthesized

AgNP showed good antibacterial effect against B.

subtilis, E. coli, K. pneumoniae and P. vulgaris

(Table 5). AgNP tested at 100 ppm provided growth

inhibition zones larger than 13 mm of all tested

bacteria, while inhibition zones reached 17 mm on

E. coli when AgNP were tested at 250 ppm

(Table 5).

Table 1 Larval and pupal toxicity of the crab shell-borne chitosan extract against young instars of the coastal malaria vector,

Anopheles sundaicus

Target LC50 (LC90) (ppm) 95% confidence limit

LC50 (LC90)

Regression equation: y = ax ? b v2 (d.f. = 4)

LCL UCL

I instar 50.763 (133.120) 40.695 (119.569) 58.775 (153.458) a = 0.016

b = -0.790

0.118 n.s

II instar 59.972 (148.334) 50.476 (132.179) 68.031 (173.337) a = 0.015

b = -0.870

0.114 n.s

III instar 69.407 (165.562) 60.135 (145.725) 78.045 (197.577) a = 0.013

b = -0.925

0.047 n.s

IV instar 80.845 (180.482) 71.913 (157.629) 90.470 (218.235) a = 0.013

b = -1.040

0.507 n.s

Pupa 100.051 (198.484) 90.611 (172.532) 112.584 (241.756) a = 0.013

b = -1.303

2.478 n.s

LC50 lethal concentration that kills 50% of the exposed organisms, LC90 lethal concentration that kills 90% of the exposed organisms,

LCL lower confidence limit, UCL upper confidence limit, y mortality (%), x concentration, v2 chi-square value, d.f. degrees of

freedom, n.s. not significant
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Characterization of chitosan-synthesized silver

nanoparticles

UV–Vis absorption spectrum of Cs–AgNP is shown in

Fig. 1, where 426 nm was the maximum absorption

peak. Figure 2 shows various stretching frequency

peaks in the FTIR spectrum of chitosan-fabricated

AgNP. The surface morphology of chitosan-fabricated

AgNP was analyzed using the FESEM. FESEM of

chitosan–silver nanoparticles shows spherical-shaped

particles (Fig. 3) and the size of the particles ranged

from 30 to 50 nm. EDX spectrum recorded from

chitosan-fabricated AgNP showed a strong Ag signal,

confirming the presence of metallic silver (Fig. 4).

The crystalline nature of chitosan-fabricated AgNP

was showed by XRD pattern as depicted in Fig. 5.

Chitosan can exhibit two crystalline structures, and

many diffraction patterns observed by XRD typically

represent mixtures of the two forms. The XRD pattern

of pure chitosan exhibits a strong characteristic peak at

about 2h = 20� for chitosan.

Discussion

From the toxicity results, we noted that early instar

mosquito larvae were more susceptible to the exposure

of chitosan-fabricated AgNP over the later ones;

Table 2 Larval and pupal toxicity effect of chitosan-fabricated silver nanoparticles against young instars of the coastal malaria

vector Anopheles sundaicus

Target LC50 (LC90) (ppm) 95% confidence limit

LC50 (LC90)

Regression equation: y = ax ? b v2 (d.f. = 4)

LCL UCL

I instar 7.186 (19.344) 1.832 (16.098) 10.061 (26.197) a = 0.105

b = -0.758

5.415 n.s

II instar 8.299 (21.867) 2.897 (18.126) 11.291 (30.264) a = 0.094

b = -0.784

5.440 n.s

III instar 9.920 (25.459) 8.001 (22.981) 11.455 (29.103) a = 0.082

b = -0.818

2.151 n.s

IV instar 12.269 (28.197) 10.601 (25.404) 13.731 (32.344) a = 0.080

b = -0.987

1.552 n.s

Pupa 14.665 (31.203) 13.118 (27.965) 16.186 (36.099) a = 0.077

b = -1.136

1.212 n.s

No mortality was observed in the control

LC50 lethal concentration that kills 50% of the exposed organisms, LC90 lethal concentration that kills 90% of the exposed organisms,

LCL lower confidence limit, UCL upper confidence limit, y mortality (%), x concentration, v2 chi-square value, d.f. degrees of

freedom, n.s. not significant

Table 3 Field treatment of storage water tanks with crab shell-borne chitosan extract and chitosan–silver nanoparticles against

larvae of the malaria vector Anopheles sundaicus

Treatment Mosquito larval density (n)

Before treatment 24 h 48 h 72 h

Chitosan extract (10 9 LD50) 121.33 ± 18.23a 75.33 ± 14.61bc 42.50 ± 9.89c 0.0 ± 0.0d

Chitosan-fabricated Ag nanoparticles (10 9 LD50) 104.16 ± 16.30a 63.66 ± 13.54a 29.83 ± 9.21b 0.0 ± 0.0c

The larval mortalities are expressed as mean ± SD of five replicates

No mortality was observed in the control

Within a row means followed by the same letter(s) are not significantly different at 5% level by ANOVA, Tukey’s HSD test
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simultaneously, pupae were not much affected by

chitosan-fabricated AgNP. These results are compara-

ble to previous reports studying green pesticides on

mosquitoes (Prasanna Kumar et al., 2012), demonstrat-

ing the toxic effects of methanolic extracts of Sargas-

sum wightii Greville ex J.Agardh, 1848, together with

the microbial insecticide from Bacillus thuringiensis

var. israelensis Berliner, 1915 against A. sundaicus,

with LC50 values of 0.88% (I instar), 0.73% (II instar),

1.34% (III instar), 1.56% (IV instar), and 1.71%

(pupae). Regarding chitosan toxicity on arthropod

pests, besides our earlier research on mosquito vector

control (Murugan et al., 2016), Sahab et al. (2015)

studied the effect of nano-chitosan against eggs of

Aphis gossypii Glover, 1877, under laboratory and

under semi-field conditions. Furthermore, Mohamed

et al. (2012) elucidated the toxicity of chitosan

compounds on larval mortality, growth inhibition, and

antifeedant activity against III instar larvae of S.

littoralis. Sabbour (2013) noted the insecticidal activity

of chitosan against various aphids at a concentration

ranging from 600 to 6,000 mg/l. In addition, chitosan

exhibited a 70–80% insecticidal activity against aphid

pests Rhopalosiphum padi (Linnaeus, 1758), Me-

topolophium dirhodum (Walker, 1849), and A. gossypii

(Zhang et al., 2003). Furthermore, chitosan of different

molecular weights and chitosan–metal complexes

showed significant mortality against Aphis nerii Boyer

de Fonscolombe, 1841 (Badawy & EI-Aswad, 2012).

The effect of chitosan-fabricated AgNP against A.

sundaicus was comparable with the toxicity of

Metarhizium anisopliae (Metschnikoff) Sorokin,

1882-synthesized AgNP against the rural malaria

vector A. culicifacies, with LC50 values of 28.3 ppm

(I instar), 35.1 ppm (II), 41.2 ppm (III), 47.1 ppm

(IV), and 54.8 ppm (pupae) (Amerasan et al., 2016).

Furthermore, Datura metel L. leaf- fabricated AgNP

were also found toxic against A. stephensi at very low

doses (Murugan et al., 2015b). Aristolochia indica L.-

synthesized AgNP showed LC50 ranging from 3.94

(I) to 15.65 ppm (pupae) towards A. stephensi (Mu-

rugan et al., 2015a). The larvicidal potential of

chitosan-fabricated AgNP may be linked to structural

deformations evoked by nanoparticles on DNA (Feng

et al., 2000) and digestive tract enzymes, as well as by

the generation of reactive oxygen species (Patil et al.,

2012a). The broad larvicidal spectrum of chitosan-

fabricated AgNP may also be due to a synergistic

combination of AgNP and chitosan-borne cappingT
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agents, which adhere to elemental silver during the

reduction and stabilization of AgNP (Benelli, 2016b).

The effectiveness of chitosan-fabricated AgNP has

been elucidated also in the field. In agreement with our

work, Panneerselvam et al. (2013a) reported that the

leaf extract of Euphorbia hirta L. was highly effective

in field trials against A. stephensi, as it led to larval

density reductions of 13.17, 37.64, and 84.00% after

24, 48, and 72 h, respectively. Recently, Suresh et al.

(2015) reported that the field application of Phyllan-

thus niruri L. extract (10 9 LC50) leads to a larval

reduction in Aedes aegypti (Linnaeus in Hasselquist,

1762) of 39.9, 69.2, and 100%, after 24, 48, and 72 h,

respectively. In case of chitosan-fabricated AgNP, we

hypothesize that the high mortality rates exerted

against A. sundaicus may be mainly due to the small

size of AgNP, which allowed these nanoparticles to

pass through the insect cuticle and even into individual

cells, where they interfere with molting and other

physiological processes (Madhiyazhagan et al., 2015;

Subramaniam et al., 2015). In addition, for silica NP,

the mode of action for insecticidal activity has been

reported through the desiccation of the insect cuticle

by physicosorption of lipid and is also expected to

cause damage in the cell membrane, resulting in cell

lysis and death of the insects (Tiwari & Behari, 2009).

From a non-target perspective, we observed no

detrimental impact on goldfish predation, as well as no

mortality in treated goldfish during the whole study

period. However, Chobu et al. (2015) observed that the

mosquitofish Gambusia affinis Baird and Girard, 1853

is an efficient predator of A. gambiae third instar larvae

if compared to C. auratus. Recently, Chandramohan

et al. (2016) noted that the predation efficiency of the

goldfish, C. auratus, was rather high against II and III

instar larvae of A. aegypti. In agreement with our

results, Pergularia daemia (Forssk.) Chiov.-synthe-

sized AgNP have been reported as non-toxic against the

non-target fish Poecilia reticulata Peters, 1859,

whereas they are able to provide substantial mortality

rates against the mosquito vectors A. stephensi and A.

aegypti (Patil et al., 2012c). Furthermore, Twu et al.

(2008) did not find any toxicity effects of Vinca rosea

(synonyms: Catharanthus roseus (L.) G.Don, 1837)-

synthesized AgNP against P. reticulata after 72 h of

exposure to concentrations toxic against A. stephensi

and Culex quinquefasciatus Say, 1823. Recently,

Subramaniam et al. (2015) reported that Mimusops

elengi L.-synthesized AgNP did not affect predation

Table 5 Antibacterial activity of chitosan-fabricated silver nanoparticles

Concentration (lg) Zone of inhibition (mm)

Bacillus subtilis Escherichia coli Klebsiella pneumoniae Proteus vulgaris

Nanoparticles, 100 ppm 7.6 ± 0.69a 13.9 ± 0.52a 4.0 ± 0.40a –

Nanoparticles, 150 ppm 10.6 ± 0.52b 14.0 ± 0.40a 6.9 ± 0.50b –

Nanoparticles, 200 ppm 11.5 ± 0.50bc 16.3 ± 0.57bc 7.3 ± 0.63b –

Nanoparticles, 250 ppm 13.0 ± 0.70c 17.4 ± 0.51c 7.9 ± 0.60b –

Tetracycline, 100 ppm 16.0 ± 0.40d 18.0 ± 0.50c 11.7 ± 0.32c 9.0

– no zone of inhibition

Values are given as mean ± SD of three replicates

Within each column, different letters indicated significant differences (ANOVA, Tukey’s HSD test, p B 0.05)

Fig. 1 a Crab shell-borne chitosan extract. b Color change of

the chitosan extract after reduction of silver ions. c UV–Vis

absorbance spectrum of the chitosan-synthesized silver

nanoparticles after 180 min from the reaction
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rates of the mosquitofish G. affinis against A. stephensi

and A. albopictus.

We also showed good antimicrobial effectiveness

of chitosan-fabricated AgNP. Very recently, compa-

rable results have been obtained while testing Aloe

vera (L.) Burm.f.-synthesized AgNP against these

three bacterial species (dose: 300 ppm), where A.

vera-fabricated AgNP led to zones of inhibition higher

than 19 mm in all tested bacteria (Dinesh et al., 2015).

Furthermore, Jaganathan et al. (2016) reported that the

earthworm-synthesized AgNPs showed good antibac-

terial properties against B. subtilis, K. pneumoniae,

and Salmonella typhi Le Minor and Popoff, 1987.

Also, plant-mediated synthesis of silver nanoparticles

using Petroselinum crispum (Mill.) Fuss showed

appreciable antibacterial efficacy against three bacte-

ria, K. pneumoniae, E. coli, and Staphylococcus

aureus Rosenbach 1884 (Roy et al., 2015).

Concerning the biophysical characterization of

chitosan-fabricated AgNP, the characteristic UV

absorption peak at 426 nm for chitosan and AgNP in

the present study was comparable with the other

researchers recording it at a range of 410–420 nm

(Chen et al., 2007; Murugadoss & Chattopadhyay,

2008; Sanpui et al., 2008; Twu et al., 2008; Wei et al.,

2009). Comparing the results of UV–Vis absorption

Fig. 2 Fourier transform

infrared spectroscopy of

vacuum-dried chitosan-

synthesized silver

nanoparticles

Fig. 3 Scanning electron microscopy showing the morpholog-

ical characteristics of silver nanoparticles synthesized using

crab shell-borne chitosan
Fig. 4 EDX spectrum of silver nanoparticles synthesized using

chitosan
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spectra, the characteristic SPR band center of the Cs–

AgNP composites was observed at about 417 nm,

because chitosan can interact with silver ions origi-

nating from the amino and hydroxyl groups present in

the b-1,4-glucosamine units of the polymer (Wazed

Ali et al., 2001).

FTIR spectroscopy was carried out to identify the

biomolecules responsible of the reduction of Ag? ions

toAgNP aswell as of capping of the bio-reducedAgNP

synthesized using chitosan. The FTIR spectrum of the

present study showed some differences if compared to

the earlier FTIR report by Murugan et al., (2016).

However it was comparable with the reports by

Govindan et al. (2012) who has shown major peak at

3,441 and 2,929 cm-1 and N–H bending at 1,639 cm-1.

The FTIR spectrum of chitosan shows O–H stretching at

3,433 cm-1, C–H andC–N stretching at 2,920 cm-1, N–H

bending at 1,647 cm-1, N–H angular deformation in

the CO–NH plane at 1,536 cm-1, and C–O–C band

stretching at 1,109 cm-1 which matches well with the

Fig. 5 XRD pattern of

silver nanoparticles

synthesized using chitosan
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reports by Saraswathy et al., (2001) and Wazed Ali

et al., (2001). The spectra of Ag/chitosan composites

exhibited a few alternations in comparison with that of

chitosan. The characteristic bands of chitosan at 1,658

and 1,600 cm-1, corresponding to the stretching

vibrations of amide C–O bonds, shifted to

1,628 cm-1 with a significant decrease of transmit-

tance in this band region. Additionally, the intensity of

the O–H and N–H stretching band at 3,434 cm-1

originated from the hydroxyl and primary amino

groups decreasing and shifting to 3,426 cm-1, sug-

gesting the chelation of Ag with both amino and

hydroxyl groups of chitosan (Chen et al., 2014).

Furthermore, many peaks of chitosan were observed

which shows a broad-OH stretching absorption band

between 3,450 and 3,100 cm-1. Another major

absorption band was between 1,220 and 1,020 cm-1

that represents the free amino group (–NH2) at C2

position of glucosamine, a major peak present in

chitosan. The peak at 1,384 cm-1 represents the –C–O

stretching of the primary alcoholic group. The peak at

1,184 cm-1 is due to a ketone group present in the

isoniazid (Muhammed Rafeeq et al., 2010).

Chitosan-fabricated AgNP show a mixture of chi-

tosan and Ag, whereas the AgNP are enveloped by a

chitosan polymer (Yoshizuka et al., 2000). The chi-

tosan-fabricated AgNP FESEM image shows spheri-

cally shaped particles (see also Govindan et al., 2012).

SEM micrographs of chitosan-fabricated AgNP illus-

trate the formationof definednanostructures ofAg in the

chitosanmatrices (Fig. 3). This indicates that AgNP are

formed alongwith the polymer chains rather than just by

entrapment of Ag in the gel matrix (Krishna Rao et al.,

2012). Chitosan-fabricated AgNP-treated E. tarda

showed a gradual increase of structural damage on

surface and cell morphology with increasing concen-

trations of AgNP at 12.5, 25, and 50 lg/ml during a 6-h

incubation period (Dananjaya et al., 2014). Our samples

showed an optical absorption peak at 3 keV due to the

surface plasmon resonance, which is typical of Ag

nanostructures (Magudapathy et al., 2001; Fayaz et al.,

2010; Kaviya et al., 2011). Furthermore, EDX also

showed the presence of Ca, Si, O, and Mg, suggesting

that mixed precipitates were present in the chitosan

(Usha & Rachel, 2014). With reference to XRD results,

chitosan shows two diffraction peaks, one at

2h = *10� corresponding to the (010) diffraction

plane of the crystalline structure I of chitosan (Julkapli

et al., 2009; Souza et al., 2010). XRD patterns of

chitosan-fabricated AgNP synthesized with 0.04 and

0.06 M AgNO3 showed another peak at about 38�C,
corresponding to Ag nanoparticles in addition to the

chitosan at 20�C (Ruparelia et al., 2008;Ali et al., 2011).

Conclusions

This study explored the promising potential of

chitosan-fabricated AgNP, a synthetic product

obtained using shell powder from the hydrothermal

vent crab X. testudinatus, in controlling the coast-

al malaria vector A. sundaicus. We present a detailed

synthesis of chitosan-fabricated AgNP. The produced

AgNP were hydrophilic, dispersed uniformly in water,

and exhibited significant larvicidal as well as pupicidal

activities against the vector A. sundaicus. The char-

acterization results recorded from UV–Vis spec-

trophotometry, FESEM, XRD, and EDX analyses

support the effective biosynthesis of chitosan-fabri-

cated AgNP. This research highlighted that chitosan-

fabricated AgNP are easy to produce, stable over time,

and can be employed at low dosages to strongly reduce

populations of the malaria vector, A. sundaicus,

without detrimental effects on the predation of natural

mosquito enemies, such as goldfishes. It also effec-

tively inhibits important bacterial pathogens of public

health relevance.
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