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Abstract Knowledge of the environmental corre-

lates of species’ distributions is essential for under-

standing population dynamics, responses to

environmental changes, biodiversity patterns, and the

impacts of conservation plans. Here we examine how

environment controls the distribution of the neotrop-

ical genus Montrichardia at regional and local spatial

scales using species distribution models (SDMs) and

logistic regression, respectively. Montrichardia is a

genus of aquatic macrophytes with two species,

Montrichardia linifera and Montrichardia arbores-

cens, and is often an important component of flooded

habitats. We find that for each species, altitude,

precipitation and temperature of the driest month

figure in the best performing SDMs as the most

important factors controlling large-scale distributions,

suggesting that the range limits of both species are

climatically constrained by plant water-energy bal-

ance and cold intolerance. At small spatial scales,

logistic regression models indicate the species parti-

tion types of aquatic habitat along local gradients of

water pH, conductivity, and water transparency. In

summary, a hierarchy of factors may control Mon-

trichardia distribution from large to small spatial

scales. While at large spatial scales, evolutionarily

conserved climatic niches may control the range limits

of the genus, at small spatial scales niche differenti-

ation allows individual species to grow in environ-

mentally distinct aquatic habitats.
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Introduction

Observed species distribution is biologically rooted in

local demographic processes—survival, growth,

reproduction and dispersal—that can vary widely on

an environmentally heterogeneous landscape (Merow

et al., 2014). As such, an understanding of the factors

that control species distributions from local to regional

spatial scales is of key importance in predicting

species response to global climate change, local

habitat restoration, and conservation programs

(Chambers et al., 2008; Lopes et al., 2015, 2016). At

regional scales, the spatial distribution of plants is

often understood to be limited by climatic factors and

geographical barriers that prevent migration

(Sculthorpe, 1985; Santamarı́a, 2002). At local spatial

scales, both abiotic (e.g., environmental constraints)

and biotic processes (e.g., competition) have been

shown to determine species distribution (Silvertown

et al., 1999; Ferreira et al., 2015). In general, however,

a mechanistic understanding of species distributions

across scales is still lacking for most species (Wiens,

2011).

Improved understanding of the factors controlling

the spatial distribution of freshwater aquatic macro-

phytes may be particularly enigmatic, largely because

of their restriction to wetlands. For example, because

of the patchy distribution of wetlands, the effects of

dispersal limitation on the distribution of aquatic

macrophytes might be expected to be greater relative

to terrestrial plants, leading to more restricted distri-

butions (Lopes et al., 2016). On the other hand,

wetland habitats may facilitate dispersal, by both

serving as migration corridors and buffering species

from adverse climates by generating more favorable

microclimates at local scales (Meave et al., 1991;

Householder et al., 2015). In light of this, some

researchers have tended to emphasize large range sizes

and wide environmental tolerance of aquatic macro-

phytes (e.g., Candolle, 1855; Darwin, 1859; Good,

1953; Santamarı́a, 2002; Lopes & Piedade, 2014),

while others have focused on patterns of rarity,

endemicity, and ecological specificity (e.g., Weddell,

1872; Guppy, 1906; Chambers et al., 2008; Figueroa

et al., 2013). The need to more precisely understand

the environmental drivers of macrophyte distribution

across spatial scales has been increasingly recognized,

especially in light of potentially large economic and

ecological repercussions of changes in macrophyte

distribution, either as a result of climate change or

human-mediated introduction (Piedade et al., 2010;

Lopes et al., 2015).

The distribution and growth of aquatic vegetation

have traditionally been understood in terms of plant

ecophysiological response to local environmental con-

ditions (such as light, temperature, nutrient availability,

pH, salinity, water velocity, and water-level variation)

(Barendregt & Bio, 2003; Neiff & Poi de Neiff, 2003;

Piedade et al., 2010; Figueroa et al., 2013). While such

studies have increased our understanding of ecological

function and physiology of aquatic plants, a local-scale

perspective is often not adequate to understand distri-

bution pattern on regional scales. Consequently, species

distribution modeling is increasingly employed to

investigate the factors that control the broader range

limits of aquatic macrophytes, especially with regard to

regional scale applications, such as in the prediction of

the invasive expansion of aquatic plants (Lehtonen,

2009; Loo et al., 2009). Because different factors may

control species distribution at different spatial scales, a

combined approach aimed at elucidating environmental

determinants of species distribution from local to

regional spatial scales can arguably lead to novel

insight.

In this study, we apply distribution models—using

both species distribution modeling and logistic

regression—to identify the environmental factors

controlling the spatial distribution of the genus

Montrichardia (Araceae) at regional and local spatial

scales, respectively. The genus Montrichardia occurs

exclusively in the Neotropics (Mayo et al., 1997) and

contains two species of emergent aquatic macro-

phytes, M. linifera and M. arborescens, both known

popularly as Aroid Marsh or as ‘‘Aninga’’ in Brazil.

The distributions of the two Montrichardia species

overlap in the Amazon Basin, where they often form

monospecific stands along floodplain lakes and

rivers. In this study, we aim to determine (1) what

environmental factors constrain the range limits of

Montrichardia species and how these environmental

associations compare among species and (2) what

environmental factors are associated with the local

distribution patterns of the genus Montrichardia and

how these associations compare among species. We

expect that while climatic factors similarly control

the range limits of Montrichardia species at conti-

nental scales, at local scales, individual species
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distribution may be strongly differentiated by non-

climatic factors.

Materials and methods

Focal region

Our field sampling was restricted to the Amazon basin,

where the distributions of both Montrichardia species

overlap. The Amazon provides a potentially interest-

ing focal region because of the high environmental

diversity of wetland habitat types (Junk et al., 2011).

Indeed, some aquatic organisms in the Amazon Basin

have their distribution restricted to specific wetland

habitat types (Piedade et al., 2010; Lopes et al., 2011,

2014). The most important of these include black-,

white-, and clear-water habitats, differentiated accord-

ing to the geology of the drainage basin (Sioli, 1968).

This simple categorization of water types is possible,

because water color reflects physical and chemical

water characteristics (Sioli, 1968; Furch, 2000; Junk

et al, 2011). White-water rivers are rich in dissolved

minerals and are characterized by intense erosional

and depositional processes resulting in high loads of

suspended matter and muddy-colored water (várzea)

(Furch & Junk, 1997). In contrast, clear and black-

water rivers (igapó) drain geologically old formations

of the Brazilian and Guiana Shields and carry little

suspended sediment (Furch & Junk, 1997). Black-

water rivers are further characterized by high levels of

dissolved humic substances and low pH (acidic

waters) (Junk et al., 2015). Clear-water rivers are

characterized by intermediate pH and a high phyto-

plankton production, comparable to várzea lakes

(Richey et al., 1990; Junk, 1997). Both white- and

clear-water wetlands show higher abundance of

aquatic plants and floating meadows than black-water

wetlands (Piedade et al., 2010). Relatively few species

of aquatic macrophytes occur in black-water flood-

plains, mostly belonging to the families Cyperaceae,

Poaceae, Maranthaceae, and Araceae (Piedade et al.,

2010; Lopes et al., 2014). Because differences among

Amazonian wetland habitat types covary, relatively

few and easily measured variables can be used as

broad surrogates of environmental variation in Ama-

zonian wetland habitats, including pH, conductivity,

water transparency, and even botanical criteria (Junk

et al., 2011, 2012, 2015).

Field sampling and analysis

To examine the distributions of species along local

physiochemical water gradients field sampling in 45

sites distributed over an area of approximately 3.8

million km2 within the Amazon Basin was undertaken

during the period of 2009–2012 in the Brazilian states

of Roraima, Amazonas, Rondônia, Pará, and Amapá

(Fig. 1). The study sites included the three major

Amazonian water types, white, black, and clear waters

(Table 1). Field sampling was performed in local

populations of isolatedMontrichardia stands that were

located at least 500 meters from a neighboring

Montrichardia population. Each population was geo-

referenced with aid of a GPS Garmin using UTM

coordinates. Water pH (WTW, model pH 315i,

Germany), conductivity (WTW, model cond 315i,

Germany), Secchi disk depth (water transparency),

and water column depth were measured with standard

portable devices. Conductivity, water transparency,

and pH are strong indicators of different Amazonian

water types (Sioli, 1968). The degree of water-level

fluctuation experienced by each population was esti-

mated by measuring the height above ground level of

the most recent annual high-water event, as deter-

mined by watermarks on woody trees near the

sampling area (see more details in Wittmann et al.,

2004; Schöngart et al., 2005).

We used logistical regression to examine how pH,

conductivity, water transparency, and water column

depth influence species occurrence at local spatial

scales. Statistical analyses were performed using R

3.0.1 software. In addition, direct ordination of

presence/absence data along environmental gradients

was analyzed using the software Comunidata 1.6

(Dias, 2009).

Distribution modeling

To examine the neotropical spatial distributions of

Montrichardia species, we gathered georeferenced

data available in online herbaria (Appendix 1 in

Supplementary Material; Fig. 2), totaling 284 records

for Montrichardia arborescens and 114 records for M.

linifera. We used Maximum Entropy Method (MAX-

ENT version 3.3.3 k) to model the potential distribu-

tion of Montrichardia species within the neotropics.

MaxEnt has been identified as one of the most accurate

methods for species niche modeling for
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geographically sparse occurrence records (Elith et al.,

2006; Pearson et al. 2007). The method combines

biological data of species occurrence (presence-only

data) with environmental grid data to estimate the

probability of distribution, subjected to the set of

constraints provided by environmental characteristics

of grid cells where the species has been recorded

(Phillips et al., 2006). For each species, plant records

were split into a 70% ‘‘training set’’ and a 30% model

‘‘test set,’’ for model validation. Duplicate records

were excluded. All other settings were set to default

values.

Fifteen environmental variables were used (aspect,

elevation, annual accumulation flux, direct flux, incli-

nation, digital soil map, wetlands, global vegetation

index-EVI, temperature of hottest month, temperature

of coldest month, temperature of driest month, average

annual temperature, total annual rainfall, rainfall of

hottest, and coolest months) with a resolution of 1 km2,

extracted from public data bases (Appendix 2 in

Fig. 1 Sample areas of Montrichardia linifera and Montrichardia arborescens in the Brazilian Amazon (gray colored area)

Table 1 Occurrence of Montrichardia species in the different

sampled water bodies and water types

Water bodies Water type Species

M. arborescens M. linifera

Rivers Clear 4 8

Black 10 0

White 1 7

Lakes Clear 1 4

Black 4 0

White 1 6

Total 20 25
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Supplementary Material). Variables were used indi-

vidually and in several combinations in the search for

the best MAXENT model with the lowest number of

variables for each species. All models were performed

using 1000 permutations. Model performance was

assessed using two methods: (i) the area under the

curve (AUC) of the receiver-operating characteristic

(ROC) and (ii) the jackknife validation method. The

AUC of ROC is obtained by plotting sensitivity

(proportion of correct prediction true positive, or

absence of omission) and 1-specificity (proportion of

false predicted presence—false-positive or commis-

sion error) for all possible thresholds of probability

(threshold independent evaluation). In presence-only

models, the AUC value represents the probability that

the model scores a presence site (test locality) higher

than a random background site (Phillips et al., 2006).

The value ranges from 0.5 to 1 - a/2, where a is the

fraction of pixels covered by the species’ distribution

that remains unknown (Phillips et al., 2006). An AUC

value closer to 1 indicates that the model predicts better

than a random model, while a value of 0.5 indicates that

the prediction is worse than random (Phillips et al.,

2006). AUC values below 0.8 indicates poor model

performance, 0.8–0.9 moderate model performance,

0.90–0.95 good model performance, and above 0.95

excellent model performance (Guisan & Thuiller,

2005).

Fig. 2 Distribution of Montrichardia genus according to the records of consulted herbarium (list at the Appendix 1 in Supplementary

Material)
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Jackknife tests were used to estimate which of the

variables contributed more to the model (Efron, 1981).

The percent contribution of each variable was calcu-

lated on the basis of how much the variable con-

tributed to an increase in the regularized model gain as

averaged over each model run. Individual variable

contribution is determined by randomly permuting the

values of that variable among the training points (both

presence and background) and measuring the resulting

decrease in training AUC. A large decrease indicates

that the model depends heavily on that variable.

Values are normalized to give percentages (MaxEnt

Tutorial; http://www.cs.princeton.edu/*schapire/

MaxEnt/).

Results

Logistic regressions indicate that physiochemical prop-

erties of water are important determinants of the local

distribution of both species. The occurrence of M.

arborescens is significantly associated with low pH

(AUC = 0.87; P\0.0001), low conductivity (AUC =

0.87; P\0.0001), and high water transparency

(AUC = 0.77; P = 0.003). In contrast, the occurrence

of M. linifera is significantly associated with higher pH

values (AUC = 0.87; P\0.0001), high conductivity

(AUC = 0.80; P\0.0001), and low water trans-

parency (AUC = 0.70; P = 0.04) (Fig. 3). Occurrence

of neither species was related to water column depth or

maximum flood level (P[0.05, Fig. 3d).

MAXENT models demonstrated low rates of

omissions and high statistical significance (Table 2).

The same combination of factors resulted in the

highest values of AUC in both species (Table 2, model

1; presented in Fig. 4). The Jackknife test for model 1

revealed that the variables altitude (alt) and total

precipitation (rain_tot) were the most important vari-

ables for modeling the distribution of the two species

(Table 2; Fig. 5). While altitude was the most impor-

tant variable influencing the distribution of M.

arborescens, total precipitation was the most impor-

tant variable influencing the distribution of M. linifera

(Fig. 5). The variables ‘‘soil’’ and ‘‘veg 2002’’ (com-

post by EVI = Global vegetation index) commonly

used to predict the distribution of species (Brown,

1994) had only little importance in model performance

(Fig. 5) but remained in the final models to refine the

forecast area of species occurrence.

Generated distribution maps based on the averages

of the MAXENT models showed that M. arborescens

has a Neotropical distribution, with the central part of

the Amazon and the North of Amazonas State being the

areas with highest probability of species occurrence

(Fig. 4a). On the other hand, M. linifera has a fairly

wide distribution in Central and South America and

along the coastal region of Brazil. The Maxent models

demonstrated a good (AUC[ 0.9) and excellent

(AUC[ 0.95) forecast of species occurrence, con-

firmed by observations made in the field (Fig. 6a, b).

Discussion

At a regional spatial scale, both Montrichardia species

were restricted to neotropical lowlands, with prefer-

ence for hot and per humid tropical climates. Altitude

and precipitation were important variables influencing

the distribution of both species in all ten best models,

while temperature of the driest months was an

important variable for the distribution of both species

in six of the ten best models. Temperature, and its

strong effect on plant water-energy balance, is known

to be one of the most important climate factors

affecting the distribution range of many aquatic and

wetland plant species (Sculthorpe, 1985; Santamarı́a,

2002; Bornette & Puijalon, 2011). It affects plant

physiology, including germination and the periodicity

and rate of seasonal growth (Short & Neckles, 1999).

In addition, both Montrichardia species were detected

to occur in regions where high annual precipitation

(usually[1800 mm/year) is coupled with the absence

of a distinct dry season. This becomes especially

evident in extra-Amazonian regions, such as in

Northeastern Brazil and the Gulf of Mexico, where

the genus Montrichardia is restricted to per humid

climates of coastal regions and absent in adjacent

semi-arid or arid continental climates toward the

interior (Fig. 4).

At local scales, our results are consistent with the

idea that aquatic macrophytes are, in general, sensitive

to the physical and chemical attributes of water

(Ferreira et al., 2015). In the Amazon, Montrichardia

species demonstrate the ability to colonize environ-

ments with distinct water characteristics, including

wetlands with low amounts of nutrients, such as clear-

and black-water river floodplains, as well as wetlands

with high nutrient levels, such as white-water river
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floodplains. The occurrence of M. arborescens in the

Brazilian part of the Amazon seems to be related to

black- and clear-water rivers, although some records

for white-water rivers are available in herbaria. M.

linifera does not occur along black-water rivers and is

likely to be limited to environments with high nutrient

availability and neutral pH. M. linifera individuals are

located in open, non-shaded areas along rivers and

lakes and were more aggregated than those of M.

arborescens, the latter being more sparsely distributed

on the floodplain (Lopes et al., 2016). M. linifera can

be observed on mineral substrates of floodplains as

well as on organic substrates of floating islands, called

‘‘Matupás’’ in the várzeas of the Amazon basin (Junk

& Piedade, 1997; Freitas et al., 2015). In sum, our

results are consistent with the notion that local habitat

variation along strong environmental gradients can

lead to phenotypic differentiation and diversification

in the Amazon basin and thus ultimately could lead to

niche differentiation among closely related, co-exist-

ing species (i.e., Gentry, 1988; Fine et al., 2005).

Although the model predicted a potential overlap in

the distribution of both Montrichardia species, both

field observations and field data indicated that local

habitat variation strongly segregates Montrichardia

species along physical and chemical water gradients in

the Amazon basin. While species segregation by

physical and chemical water characteristics within the

Amazon basin is evident, the species distribution

model was not able to predict the segregation of local

niche differences adequately. For example, soil vari-

ables that are commonly of high importance for the

prediction of species distributions (Brown, 1994) had

only little importance for the prediction of the

Fig. 3 Distribution of species in gradients: a pH, b conductivity, c water transparency (Secchi depth), d maximum flood level of plot.

ML = Montrichardia linifera, MA = Montrichardia arborescens
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distribution of both Montrichardia species. While it

might be argued that in aquatic habitats plants might

not be expected to respond strongly to soil attributes,

the physical and chemical attributes of their aquatic

habitat often reflect basin-wide soil properties, espe-

cially in the Amazon region. Also, Montrichardia is

firmly rooted in the soil. Likely, the resolution of the

soil layer in the present model is not sufficient to detect

the contrasting differences in nutrient conditions

between nutrient-rich and nutrient-poor alluvial sub-

strates. We thus call attention to the fact that variations

in physical and chemical soil variables may influence

species distributions in the Amazon basin at very small

spatial scales (\1 km), which are yet not

detectable with the available resolution. Very likely,

this is also the case for the global vegetation index

(EVI), which had only little influence in our models.

IPCC (2013) predicts a 1.5–5.5�C increase of mean

annual temperatures in most parts of the Amazon basin

by 2100, coupled with a continuous increase in

atmospheric CO2 concentrations. In our models, both

Montrichardia species showed potentially wider spa-

tial distribution under moderately increased tempera-

ture scenarios (average 33–35�C). However,

contracting distributions would be indicated in the

case of reduced annual precipitation, as predicted by

IPCC (2013) for most regions of Northeastern South

America for the dry season (April-September). In

another approach, a recent experimental study by

Lopes et al. (2015) subjected M. arborescens to

elevated temperature and atmospheric CO2 concen-

trations in microcosms. Results indicated that primary

productivity of M. arborescens was negatively

affected when temperature and CO2 surpassed 33�C
800 ppm respectively, indicating the presence of

physiological stress and the sensitivity of this species

to climate change (Lopes et al., 2015). Such findings,

and how they translate to determine species distribu-

tions at large scales are not clear, but they do indicate

that a stronger mechanistic basis for understanding

species distributions is essential if we are to accurately

model the future ranges of species under different

climate scenarios.

As inventories of aquatic macrophytes are still poor

and sparse in the Amazon Basin (Piedade et al., 2010),

the possibility of species niche modeling with few

occurrence data opens a large potential for the

interpretation of biogeographic patterns. Moreover,

with just three or four independent variables, it was

possible to develop reliable distribution models, which

may be of advantage in remote areas such as the

Amazon basin, where environmental data are still

scarce. For example, one possible use of potential

species distribution maps could be their use in

sustainable management plans, in order to discover

new populations and to select priority areas for

conservation (Kumar & Stohlgren, 2009; Adams

et al., 2015).

Table 2 Ten best models for each tested species and their AUC (area under the curve)

Mode Variables AUC (median)

M. arborescens M. linifera

1 alt, rain_tot, soil, veg2002 0.961a 0.878 a

2 alt, temp_dry, rain_tot, soil, veg2002 0.922a 0.842a

3 alt, rain_coolest, soil, veg2002 0.917a 0.862a

4 alt, rain_tot, slope, temp_avg 0.908a 0.860a

5 alt, rain_coolest, temp_dry, veg2002 0.906a 0.807a

6 alt, rain_coolest, temp_dry 0.903a 0.816a

7 alt, temp_dry, soil, veg2002 0.886a 0.816a

8 alt, dem, rain_tot, temp_dry 0.882a 0.820a

9 alt, rain_coolest, soil, veg2002, wet 0.869a 0.741a

10 All variablesb (15) 0.904a 0.863a

a P\ 0.0001. Permutation = 1000. Here, alt (altitude), rain_tot (rain total), soil (map of soil), veg2002 (Global Vegetation Index,

2002), temp_dry (temperature of the driest month), temp_coolest (temperature of coolest month), wet (wetlands map)
b See Table 2
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Fig. 4 Actual distribution

by herbarium data (black

dots) and potential

distribution (colored area)

calculated by average of

Model 1 (Table 2) of:

a Montrichardia

arborescens and

b Montrichardia linifera

Hydrobiologia (2017) 789:45–57 53

123



Conclusions

Our results suggest that a hierarchy of environmental

factors may control Montrichardia species distribu-

tion from large to small spatial scales. While at large

spatial scales climatic factors may similarly control

the range limits of the genus, at small spatial scales

individual species may colonize very different aquatic

habitats. Both species of Montrichardia prefer envi-

ronments with tropical climates with comparatively

high temperature and elevated precipitation. Water

chemistry influences the distribution of Montrichardia

species at local scales where species distributions

overlap in the Amazon basin. While M. linifera occurs

mostly in white-water rivers, M. arborescens prefer-

entially occurs in black-water rivers and upland

streams. These findings indicate that in Mon-

trichardia, an evolutionarily conserved climatic niche

co-occurs with a strong capacity for niche differenti-

ation among types of wetland habitats.

Distribution models were able to predict the large-

scale distributions of species and their probable

climatic determinants. However, they were not able

to predict the segregation of the two species across

different types of aquatic habitat types in the Amazon.

We thus call attention to the need of environmental

Fig. 5 Jackknife analyses

of individual predictor

variables important in the

development of the full

model for Montrichardia

spp. in relation to the overall

model quality or the

‘‘regularized training gain.’’

Black bars indicate the gain

achieved when including

only that variable and

excluding the remaining

variables; gray bars show

how much the gain is

diminished without the

given predictor variable.

Alt altitude, rain_tot rain

total, soil map of soil,

veg2002 global vegetation

index, 2002.

a Montrichardia

arborescens;

b Montrichardia linifera
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Fig. 6 Model 1 results

(Table 2) overlaid with field

data of a Montrichardia

arborescens and

b Montrichardia linifera
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data at small scale resolution in vast areas such as the

Amazon basin.
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Lopes, A., F. Wittmann, J. Schöngart & M. T. F. Piedade, 2014.
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