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Abstract Research on multi-scale temporal dynam-

ics of lotic algal assemblages remains scarce. In this

study, we analyzed epilithic algae sampled monthly

from a Chinese subtropical mountain river network

from 2004 to 2007, by using a multivariate time series

modeling approach. We hypothesized that (1) multi-

scale temporal dynamics exist within algal communi-

ties; (2) physical and chemical conditions drive algal

temporal dynamics; and (3) tributary sites differ in

algal temporal changes. This study revealed 2–4 site-

specific algal temporal dynamics, contributed by

23–45% component taxa. Among the time-related

taxa, percentages of high profile guild taxa were

higher than both the low profile and the motile guild

taxa. Several algal temporal dynamics were found to

be driven by water temperature, conductivity, or

current velocity, within which influences of conduc-

tivity at two sites resulted in directional changes in

algal communities. Furthermore, tributary sites dif-

fered in algal temporal changes when compared to the

two mainstream sites. Our findings imply that natural

fluctuations and agricultural disturbance together

shaped algal temporal dynamics in the studied river

network. In conclusion, for accurately tracking algal

temporal dynamics, we recommend that long-term and

high-frequency biomonitoring protocols are devel-

oped. Moreover, both the mainstream and tributary

sites should be monitored simultaneously.
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Introduction

Temporal dynamics of algal assemblages are fre-

quently addressed in stream ecology (Kennen et al.,

2012; Miller et al., 2012) because such studies form an

important foundation for answering other complex

questions, such as ecological stability mechanisms,

succession trends, or disturbance responses of lotic

algal assemblages (Angeler, 2009; Angeler et al.,

2010; Virtanen et al., 2011; Baho et al., 2012; Schneck
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& Melo, 2013). Numerous studies have revealed that

temporal variability of lotic algal assemblages is the

results of interactions among biological traits (e.g.,

resistance, resilience, reproductivity ability, etc.) and

environmental factors (e.g., nutrients, irradiance,

hydrodynamic regimes, predatory pressures, etc.)

(Rosemond et al., 2000; Soininen & Eloranta, 2004;

Yang et al., 2009; Graba et al., 2013). Algal short-term

dynamics usually involve two phases: the first, accrual

phase, which is driven by immigration/colonization

and exponential growth, and the second, loss phase,

which is dominated by processes of death, emigration,

sloughing, and grazing (Biggs, 1996). During short-

term dynamics, algal structures are controlled primar-

ily by nutrients supply (Passy & Larson, 2011).

Considering intra-annual and inter-annual dynamics,

algal biomass and biodiversity display distinct sea-

sonal cycles, and community composition changes

among seasons and years (Miller et al., 2012; Tan

et al., 2014). Long-term fluctuation tendencies of algal

assemblages are synchronous with temporal nutrient

dynamics and hydrological and climatic regimes (Reid

et al., 2006; Korhonen et al., 2013).

Hitherto, most studies on temporal dynamics of

algal assemblages focus on community metrics such

as biomass, richness, or biodiversity indices (Rose-

mond et al., 2000). Temporal patterns of community

composition (represented by taxa abundance data) or

temporal turnover (represented by similarity/dissimi-

larity matrices of community compositions across

different sampling times) is also frequently addressed

by treating algal community as a single metric (Passy,

2006; Korhonen et al., 2010, 2013). However, algal

assemblages are composed of species possessing

diverse biological characteristics and distinct environ-

mental optima (Stevenson, 2014). These species differ

in body size, attachment ability, growth rate, dispersal

ability, population abundance, and sensitivity/toler-

ance to disturbances (Virtanen et al., 2011). Therefore,

it is reasonable to expect that different temporal

dynamics among algal species will exist within the

whole community. That is, some species will exhibit

short temporal fluctuation dynamics, and some species

will have relatively long fluctuation periodicities. In

contrast, some species within the same community

will display stochastic, time-unrelated dynamics.

Species-specific temporal dynamics are essential for

sustaining a dynamically stable algal community

because asynchronously temporal variability among

species can buffer environmental stress and fluctuation

effectively. Disentangling multiple temporal scales of

variability patterns within a community, namely

multi-scale temporal dynamics (Legendre & Gauthier,

2014), can provide especially useful information on

temporal changes of an algal assemblage. Such

process-oriented research can elucidate temporal

dynamics of algal communities more comprehen-

sively than previous studies, which is especially

important if we are curious about the stability

mechanisms of lotic algal communities under chang-

ing environments or determining contributions of

component species to temporal dynamics of the whole

algal community. However, research on multi-scale

temporal dynamics within lotic algal assemblages

remains scarce.

In the present study, we applied a multivariate time

series modeling approach to research multi-scale

temporal dynamics within epilithic algal assemblages,

which were sampled monthly from five sites of one

Chinese subtropical mountain river network from

2004 to 2007. Three hypotheses are to be tested: (1)

Multi-scale temporal dynamics exist within algal

communities, and contributions of ecological guilds

to algal dynamics will differ. (2) Several physical and

chemical variables are important driving forces for

algal temporal dynamics. (3) Algal assemblages from

different tributaries will differ in temporal evolution.

Materials and methods

Study region

The Xiangxi River is a tributary of the Three Gorges

Reservoir in Hubei Province of China. The river is

94 km long with three main tributaries, the Jiuchong,

Gufu, and Gaolan River (Wang et al., 1997). This

mountain watershed is located in a subtropical climate

region characterized by hot and rainy summers and

cold and dry winters, with a mean annual air temper-

ature of 16.9�C (range: 5.5–27.7�C) and precipitation

of 900–1,200 mm (Tang, 2003). Woodland is the

dominant land use in the catchment, with a few towns

and farmland distributed along the riverside (Seeber

et al., 2010).

Five sites were selected within the whole river

network, with two sites located in the mainstream (xx1

and xx2, following the water flow direction) and one
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site in each of the three tributaries (named jc, gf, and

gl, respectively) (Fig. 1). For these sites, there was no

visible human disturbance in the stream or riparian

zone of the sample reaches during the study duration.

However, stream water quality of these sites might be

influenced by agricultural activities in upstream

catchments, especially in rainy seasons.

Algal data

Epilithic algae were sampled monthly from September

2004 to June 2007. Three to five moveable stones

(with a diameter range of 15–60 cm) were randomly

selected at each site during each sampling occasion.

The sampling area was confined using a circular lid

(radius: 2.7 cm). For each stone, the surface within the

lid was vigorously scrubbed using a nylon brush and

rinsed 3–4 times with distilled water. All subsamples

from each site were combined into one composited

sample and its volume was recorded. The algal sample

was preserved with 4% formalin for further identifi-

cation and enumeration.

In the laboratory, soft algae were first identified to

the lowest possible taxonomic level (most to genus)

and counted, using a 0.1-ml counting chamber at

4009 magnification under a compound microscope

(Olympus CX21: Olympus Optical Co., Japan). All

diatoms were grouped into one category during this

process. Subsequently, species-level identification and

enumeration of diatoms were conducted, after the

sample was acid cleaned and slide mounted at 1,0009

magnification with an oil immersion objective (Hu &

Wei, 2006). At least 500 valves were counted for each

sample, and relative abundance was calculated for

each taxon. Algal identification was based on Patrick

& Reimer (1966, 1975), Jao (1988), Qi (1995), Li & Bi

(1998), Shi (2004), and Zhu (2007).

Physical and chemical variables

At each site, conductivity and water temperature (WT)

were measured by using an Environmental Monitoring

System (HORIBA W23: Horiba Co., Japan). Wetted

width and water depth were measured using a tape

measure and current velocity with a current flow meter

(LJD type, Chongqing hydrological instruments fac-

tory, China). A 600 ml stream water sample was

collected and preserved in an acid-proof bottle by

adding concentrated sulphuric acid to regulate pH\2

in the field. In the laboratory, the acidified water

sample was partitioned into two parts. One part was

used to measure concentrations of TN, TP, and SiO2

Fig. 1 Locations of the

study sites in the Xiangxi

River network
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on a Skalar segmented flow analyzer (Skalar Analyt-

ical B.V., The Netherlands) following the user man-

ual. The other part was used to measure alkalinity

using the titration method following the national water

monitoring protocol (Chinese NEPA, 2002). Sum-

mary for physical and chemical variables is presented

in Table 1.

Statistical analyses

To make the results comparable among the five sites,

data collected in November 2006 and April and May

2007 were excluded from analysis because several

sites were not sampled in these months. Therefore, the

time vector is composed of 31 months (i.e., 34

continuous sampling months from September 2004

to June 2007, in which data for three discrete months

were excluded).

All analyses were performed with R software

(version 3.0). Each site was analyzed separately. Time

variables were firstly produced by using the principal

coordinate of neighbor matrices (PCNM) approach,

which converts the linear time vector (31 months) into

various frequency sine waves representing nonlinear

and independent fine to broad temporal scales (Bor-

card & Legendre, 2002; Borcard et al., 2004; Angeler

et al., 2009). Although this method is more frequently

used in spatial analysis, it is also competent to

disentangle temporal structures within multivariate

data (Angeler et al., 2011; Legendre & Gauthier,

2014). Ten PCNM variables were obtained in the case

of our study. Redundancy analysis (RDA) was then

applied to detect relationships between algal relative

abundance and PCNM variables (RDA-PCNM) (Bor-

card et al., 2011), accompanied by forward selection

procedures for selecting important PCNM variables

(Blanchet et al., 2008; Tang et al., 2013b). RDA was

re-run with selected PCNM variables, and significant

RDA axes were identified by the Monte Carlo

permutation test (with 9,999 times). The linear com-

bination scores (lc scores) on each significant RDA

axis are the coordinates of the algal community on

each sampling occasion in the space of selected

PCNM variables (Borcard et al., 2011), representing a

special temporal trend. Therefore, the number of

significant RDA axes represents the number of distinct

temporal dynamics within the whole community

(Angeler & Johnson, 2012). Since RDA axes are

orthogonal to each other, temporal dynamics revealed T
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by RDA-PCNM are independent from each other

(Angeler & Johnson, 2012). RDA-PCNM was per-

formed with function ‘quick PCNM’ in PCNM

package (Legendre et al., 2010a). Algal relative

abundance data were Hellinger transformed prior to

analysis to avoid problems caused by Euclidean

distance (Legendre & Gallagher, 2001).

Correlation between raw relative abundances of

each taxon and modeled temporal trends (lc scores of

algal assemblages on each significant RDA axis) was

analyzed by using Spearman rank correlation with a

test of significance. Taxa that significantly correlated

with a specific temporal trend composed of one

distinct taxa group.

Generalized additive mixed model (GAMM) was

applied to examine the relationship between physical

and chemical variables and each temporal dynamic of

algal communities for each site. GAMM is competent

to model relationships by using smooth function,

where the shape of the relationship between response

and predictor is not known a priori (Zuur et al., 2009).

In addition, GAMM can account for temporal auto-

correlation of model residuals, which is evident in our

data (detected by function ‘acf’). Water temperature,

current velocity, TN, TP, SiO2, conductivity, and

alkalinity were predictor variables, with a response

variable of lc scores of the algal community on specific

significant RDA axis. Cubic regression spline was

used to fit fixed effect for each predictor, with cross-

validation determining the optimal amount of smooth-

ing. Temporal autocorrelation structure in residuals

was fitted with the auto-regressive model of order 1

(Zuur et al., 2009). Because P values for each

smoother estimated from GAMM are approximate,

only predicators with P\ 0.001 were selected as

significant ones. Prior to fitting, all the predictor

variables were examined for extreme values and

collinearity following the steps suggested by Zuur

et al. (2010). Variables were log10 (x ? 1) trans-

formed when extreme values were detected. GAMM

was fitted using function ‘gamm’ in package ‘mgcv’

(Wood, 2014).

We further detect correlations between ecological

guilds and physical and chemical variables to confirm

algae–environment relationships. That is, algal taxa

were assigned to one of the three ecological guilds:

high profile guild, low profile guild and motile guild

following Passy (2007) and Passy & Larson (2011).

Spearman correlations between percentage of each

ecological guild and physical and chemical variables

that used in GAMM were analyzed for each site, and

significance of correlations was tested. Moreover, we

compared difference in percentages among ecological

guilds for time-related taxa that appeared in the taxa

groups. Considering that number of taxa groups

differed among sites and many taxa appeared in more

than one group at each site, we combined all the time-

related taxa for each site and then calculated percent-

ages for each ecological guild. Differences between

percentages of the three guilds across all the sites were

compared using one-way ANOVA.

Finally, a two-way ANOVA model was applied to

compare the differences of time series of algal relative

abundance data among the 5 sites. Because there is no

replication for individual sites on each sampling

occasion, our dataset belongs to an un-replicated

(each site) repeated-measures (sampling time) design.

Following classical statistical theory, a test of the

space–time (S–T) interaction is impossible due to

lacking of degree of freedom (Zar, 1999). Legendre

et al. (2010b) proposed a new method that codes space

or time using PCNM variables to economize on the

degree of freedom, which makes tests on the effects of

S, T, and S–T interactions all possible. We adopted

this method to our data by using PCNM variables

representing time factor. This analysis was conducted

with TSI models in ‘PCNM’ package, in which

ANOVA Model 5 was selected due to its accurate

assessment of Type I error and powerful detection of

S–T interactions compared with other models (Le-

gendre et al., 2010b). Since this method only provides

general results when more than two sites are included,

pairwise comparisons were then performed given that

significant S–T interactions among all the five sites

existed.

Results

A total of 219 algal taxa, comprising 190 Bacillario-

phyceae, 16 Chlorophyceae, 13 Cyanophyceae, and 1

Xanthophyceae, were identified during the study. The

number of taxa ranged from 144 (jc) to 163 (xx1 and

gf), with mean value of 157. Rossithidium linearis

(Smith) Round & Bukhtiyarova and Cocconeis pla-

centula Ehrenberg were predominant species, occur-

ring in all sites and all months, with mean relative

abundance of 43.9 and 14.0%, respectively. The other
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8 frequently occurring taxa (with mean relative

abundance [1%) included Achnanthes lanceolata

(Brébisson ex Kützing) Grunow (6.2%), Oscillatoria

sp. (3.9%), Stephanodiscus minutulus (Kützing) Cleve

& Möller (3.3%), Achnanthidium minutissimum

(Kützing) Czarnecki (2.5%), Eunotia sp. 1 (2.0%),

Diatoma vulgaris Bory (1.8%), Navicula crypto-

cephala Kützing (1.2%), and Synedra ulna (Nitzsch)

Ehrenberg (1.1%).

Three to six site-specific PCNM variables were

selected as significant time variables in RDA

(Table 2). Algal dynamics in most sites were related

to PCNM1-5 in which PCNM1 and 5 were important

to the all sites. PCNM1 represented a nearly finished

fluctuation during the study duration (34 months)

(Supplementary Fig. 1). PCNM2 displayed unimodal

dynamic with an approximate 24-month periodicity.

PCNM3–5 had periodicities of approximately 18, 16,

and 12 months, respectively. In contrast, PCNM6 and

7, with fluctuation periodicities of *10 months, only

contributed to algal dynamics in 1–2 sites. These

significant PCNM variables totally explained 10%

(xx1) to 32% (gl) of variation in algal abundance

(Table 2).

RDA-PCNM detected 2–4 significant RDA axes,

indicating site-specific number of time-related taxa

groups (Fig. 2). The dynamics associated with the first

two taxa groups were most important for all the sites,

which contributed on average 53 and 21% of

explained variation in algal community compositions,

respectively. The patterns associated with the third and

fourth taxa groups each explained approximately 12

and 10% of the explained variation in the algal

community compositions (Table 3). Additional anal-

ysis detected significant S–T interactions among study

sites (R2 = 0.21, F = 1.587, P\ 0.001). Pairwise

comparisons further showed that algal communities

differed in temporal changes among tributaries, while

the difference between xx1 and xx2 was not significant

(Supplementary Table 1).

Among all observed algal taxa, 23% (xx1) to 45%

(gl) contributed significantly to temporal dynamics of

the whole community (Supplementary Table 2). Each

time-related taxon associated with one or more taxa

groups, in which more than half of the taxa were

associated with the first taxa group (Supplementary

Table 3). Water temperature was the unique signifi-

cant predictor for four temporal dynamics of algal

assemblages in site xx2, jc and gl. Conductivity was

important to the first temporal dynamic of xx1. The

third temporal dynamic of site gf was highly related to

both conductivity and current velocity (Table 4).

Similar to GAMM results, temporal dynamics of

ecological guilds were also significantly correlated to

WT, conductivity, or current velocity (Supplementary

Table 4). Considering time-related taxa, the percent-

ages of high profile guild taxa (with the mean value of

46.0% for the all sites) was significantly higher than

that of the low profile (mean: 29.3%) and the motile

guild taxa (mean: 24.7%) (F2,12 = 10.38, P = 0.002).

Discussion

Multi-scale temporal dynamics of algal

communities and driving forces

Multi-scale temporal dynamics within lotic epilithic

algal communities were observed in our study. For xx1

and xx2, algal dynamics were dominated by relatively

long temporal trends (with periodicities[12 months);

in contrast, relative short temporal trends (with

periodicities \12 months) were also important to jc,

gf, and gl. This result indicates that temporal trends of

algal assemblages differed among mainstream and

tributaries sites. Curves displaying lc scores of algal

communities along time axis on significant RDA axes

fluctuated in amplitudes and frequencies (Fig. 2);

therefore, it is difficult to draw distinct fluctuation

cycles. Additionally, we did not find directional trends

Table 2 Percentage of variance explained (adjusted R2) by

significant principal coordinates of neighborhood matrices

(PCNM) variables for epilithic algal relative abundance data

from September 2004 to June 2007 at each study site of the

Xiangxi River network

PCNM variable Site

xx1 xx2 jc gf gl

1 3.3 9.7 2.7 8.5 10.7

2 4.0 9.1 3.6 7.8

3 3.3 3.3 2.9

4 2.8 6.0 2.5 4.3

5 3.8 7.4 2.9 5.5 4.8

6 4.7

7 2.5 3.4

Total 10.4 27.3 26.1 23.5 32.4
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in most curves. It implies that temporal dynamics of

algal assemblages in Xiangxi River network were not

dominated by any single periodic factor or external

process during the study duration. Since PCNM1 was

important to all sites, some observed temporal patterns

may be parts of long-term periodic dynamics.

Less than 50% of taxa were found to contribute to

temporal dynamics of algal assemblages, and the ten

dominant taxa (with mean relative abundance [1%)

all appeared in time-related taxa groups of more than

three sites (Supplementary Table 3). This finding

indicates that only small part of taxa within algal

assemblages had time-related dynamics, and abundant

taxa were highly possible to contribute to such

dynamics. Owing to inadequate autecological infor-

mation, it is difficult to interpret why these taxa

displayed time-related dynamics. However, when they

were categorized into ecological guild groups, a

clearer trend was discovered. We found that nearly

half of time-related taxa belonged to the high profile

guild, indicating that this ecological guild was an

important intrinsic trait in shaping temporal dynamics

of algal assemblages. This can be attributed to the fact

that the high profile taxa have relatively low growth

rates, lower dispersal, and smaller population size due

to their tall stature, compared to the low profile guild
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Fig. 2 The linear

combination scores (lc

scores) of algal communities

on the space of significant

principal coordinates of

neighborhood matrices

(PCNM) variables along the

temporal axis for each study

site of Xiangxi River

network (the red dotted line

represents the equilibrium

line where the lc score = 0)

Table 3 Proportion of variance explained by each significant

RDA axis for epilithic algal relative abundance from Septem-

ber 2004 to June 2007 at each site of the Xiangxi River

network

Site Proportion of variance explained

RDA1 RDA2 RDA3 RDA4

xx1 52.1 36.8

xx2 53.1 20.0 12.3 10.8

jc 51.8 16.3 11.2

gf 45.2 21.4 15.1

gl 62.4 12.7 10.8 9.0
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(Passy, 2008; Virtanen et al., 2011). The high profile

taxa consequently are more susceptible to flow-related

disturbances and prefer relative nutrient-rich condi-

tions, resulting in more distinct temporal patterns than

those of the low profile guild taxa. The motile guild

taxa can escape from unfavorable environments owing

to their mobility (Stevenson & Bahls, 1999), and

therefore had the lowest proportion in time-related

taxa groups. Our results imply that ecological guilds

are good indicators for algal temporal dynamics.

Stenger-Kovács et al. (2013) also drew similar con-

clusions in research on Hungarian streams (but see

Virtanen et al., 2011).

Multi-scale temporal dynamics of algal communi-

ties in the present study were mainly determined by

WT, conductivity, and current velocity. Water tem-

perature is an essential driving force for most algal

autecological traits such as enzymic activities, photo-

synthetic processes, growth rates, interactions among

species, etc. (DeNicola, 1996; Allan & Castillo, 2007).

Periodical fluctuations of solar radiation induce tem-

poral variability of stream water temperatures. Corre-

spondingly, taxa-specific temperature optima cause

different temporal dynamics within the entire algal

community. In addition to WT, conductivity also was

another influential environmental factor. Conductiv-

ity, indicating total ionic concentrations in river water,

influences algal physiologic and biochemical pro-

cesses. Also, each algal taxon has specific optimum for

conductivity (Potapova & Charles, 2003; Philibert

et al., 2006). Therefore, algal responses to temporal

changes in conductivity concentration of stream water

were also taxa specific, resulting in different temporal

dynamics among algal communities. Lastly, current

velocity also showed significant influence on algal

temporal dynamics. Algal taxa with different mor-

phological forms and attaching capabilities prefer or

tolerate specific current velocity conditions (Tornés

et al., 2015). Temporal changes in hydrodynamic

conditions induce different algal temporal dynamics.

These important physical and chemical variables,

however, only had an influence on six within the 16

observed algal temporal dynamics. This finding can

be explained in two ways. First, we set a conser-

vative P value of 0.001 in GAMM analysis follow-

ing the suggestion of Zuur et al. (2010) because this

method only provides an approximate estimation for

the significance of each independent variable. This

borderline excluded several variables with margin

P values between 0.05 and 0.001. Second, several

likely important environmental variables have been

omitted due to procedural limitations. For example,

climatic and water flow fluctuations may affect

temporal patterns of algae (Hering et al., 2010; Tang

et al., 2013a). However, such variables are difficult

to characterize for each site in this remote mountain

river network with only one gauge station and one

meteorological station. Simulated values from

watershed modeling technique may be an appropri-

ate remedy for these parameters. Moreover, pH is

also an important environmental variable for algal

pattern (Andrén & Jarlman, 2008; Smucker & Vis,

2011), but this variable was excluded in our analysis

due to insufficient data. Obviously, the development

of more robust and flexible approaches to analysis

that can handle missing values is needed in the

future for more accurate modeling of temporal

monitoring data.

Table 4 Important physical and chemical predictors for temporal dynamics of algal assemblages (represented by linear combination

scores on each significant RDA axis) for each study site of the Xiangxi River network selected by generalized additive mixed models

Site RDA Predictor(s) df F P value Radj
2

xx1 1 s(conductivitya) 1.00 14.127 0.0014 0.212

xx2 1 s(WT) 1.00 18.176 0.0003 0.018

jc 3 s(WT) 1.00 14.552 0.0009 0.332

gf 3 s(conductivitya) 3.17 26.008 0.0001 0.894

s(velocity) 1.00 31.542 0.0007

gl 1 s(WT) 1.00 35.557 \0.0001 0.198

3 s(WT) 1.00 14.725 0.0009 0.139

a Log10 (x ? 1) transformed
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Potential implications in stream biomonitoring

Our findings have several applied implications. First,

variations in lc scores of algal communities on each

RDA axis can be used to identify whether the

assemblages have been impacted by anthropogenic

disturbances when the information on influential

environmental variables is also considered. Direc-

tional changes of lc scores along a time axis indicate

that variations in community composition are mainly

driven by human disturbance. Conversely, if there is

no directional change of lc scores, the data suggest that

environmental effects are minor (Angeler & Johnson,

2012). In our study, most lc scores fluctuated around

the equilibrium line (lc score = 0), implying that algal

assemblages were mainly influenced by natural vari-

ation. However, the difference between the beginning

and ending lc scores of xx1 on RDA1 and of gf on

RDA3 is relatively large. Subsequent GAMM analysis

suggests that conductivity had a significant influence

on these lc scores. Because agricultural activities in

the watershed often increase conductivity of stream

water (Potapova & Charles, 2003), this parameter is

commonly used as an indicator of agricultural distur-

bance. We hence infer that agricultural activities in the

watershed had partly changed algal temporal dynam-

ics of xx1 and gf. We can therefore see that RDA-

PCNM, accompanied with other statistical techniques

(GAMM in our study), can be used to determine which

environmental forces have driven directional changes

of algal assemblages, which is unobtainable when

using other temporal analysis methods, such as time-

lag analysis (Collins et al., 2000; Kampichler & van

der Jeugd, 2013).

Furthermore, important PCNM variables with dis-

tinct fluctuation frequencies can be detected by using

RDA-PCNM, which can be used to quantify monitor-

ing duration and frequency (Angeler et al., 2009). For

example, PCNM1 indicated that our study duration of

34 months was inadequate for detecting algal tempo-

ral dynamics completely, and a longer monitoring

period should be employed in future studies. In

addition, PCNM6 and 7 suggested the shortest fluc-

tuation frequency (*10 months) of algal assemblages

in the three tributary sites, which is informative for

setting sampling frequency. To capture the complete

process of the shortest fluctuation, the minimum

sampling frequency should be every *3 months (at

the beginning, middle and ending time of the

frequency). To obtain algal temporal dynamics more

accurately, the sampling frequency may less than

3 months. A more frequent sampling schedule, such as

monthly in our study, is even better for characterizing

fluctuation processes of algal communities with

greater accuracy.

Finally, results of RDA-PCNM and S–T interaction

tests are helpful for selecting locations of monitoring

sites. We found that algal assemblages at the main-

stream sites (xx1 and xx2) had similar fluctuation

dynamics in the study duration. However, algal

assemblages from the three tributary sites changed

distinctly. We thereby suggest simultaneous sampling

of both mainstream and tributary sites in algae-based

stream monitoring.

In conclusion, time series modeling is an effective

approach for disentangling multi-scale temporal

dynamics within lotic epilithic algal assemblage. The

discovered temporal dynamics imply that the algal

assemblages of the Xiangxi River network were

influenced by both natural fluctuations and directional

changes driven by agricultural disturbance. To effec-

tively track variation processes of algal assemblages

from fine to broad scales, we recommend a long-term

monitoring duration (3 years minimum) with a high

monitoring frequency (i.e., monthly). Moreover, both

the mainstream and tributaries sites should be mon-

itored simultaneously.
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