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Abstract We analyzed the trophic functioning of

two Caribbean coral reefs with different disturbances,

comparing their biomass flows, ecosystem develop-

ment, and resilience. Cayos Cochinos is a protected

reef impacted by tourism, artisanal fisheries, and

continental river discharges, while Media Luna is an

isolated reef located near to a lobster industrial fishery

zone. Ecopath models were built to (1) estimate the

ecosystem status-related properties; (2) evaluate the

system recovery time; and (3) assess the fishery effects

on species and functional groups. Our results indicate

that the biomass of both systems is dominated by

macroalgae ([75%), mainly at Cayos Cochinos that

exhibit greater total system throughput. We show that

the harvest of herbivores and coastal eutrophication

causes increase in macroalgal biomass. The Media

Luna ecosystem appears to be more mature and

organized (Pp/R = 1.6, FCI = 6.95%), but is also less

resistant to fishery impact (SRT = 10.79 and

21.72 years using bottom-up and top-down flow-

control mechanisms, respectively) than Cayos Cochi-

nos (SRT = 9.30 and 16.89). The benthic autotrophs,

phytoplankton, and soft corals are the most important

functional groups to the trophic functioning, resili-

ence, and development of these ecosystems. However,

fishery simulations also show that snappers and spiny

lobster reduce the resilience of Cayos Cochinos and

Media Luna, respectively.
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Introduction

Coral reef ecosystems present higher values of gross

primary production and biodiversity than any other

ecosystem on the planet (Connell, 1978), as well as

providing ecosystem services for over 100 countries

(Salvat, 1992; Moberg & Folke, 1999). However,

these ecosystems are being degraded by natural and

anthropogenic impacts, such as bleaching, disease,

eutrophication, sedimentation, and overfishing

(Wilkinson, 2000, 2008; Graham et al., 2007; Mumby,

2014). In Honduras, coral reefs are distributed in

patches around the Bahı́a Islands and the archipelagos

of Cayos Cochinos and Honduran Mosquitia (Wilkin-

son & Souter, 2005). The Cayos Cochinos archipelago

is part of the Mesoamerican Barrier Reef System

(MBRS) and contains one of the first protected marine

areas established in this country, the Natural Marine

Monument Archipelago of Cayos Cochinos (SINAPH,

2003). However, fish (i.e., groupers and snappers),

spiny lobsters (Panulirus argus (Latreille, 1804)), and

queen conch (Strombus gigas Linnaeus, 1758) were

intensively exploited before the protection of Cayos

Cochinos and are still extracted today by local

artisanal fishermen of the archipelago (Tewfik et al.,

1998; Sibaja-Cordero, 2009). Furthermore, the archi-

pelago is an important international tourist destination

throughout the year, with hotel services established

some 40 years ago and a majority of international

tourists. Unfortunately, no consistent records are

available regarding the number and types of tourist

in Cayos Cochinos (Andraka et al., 2004; ICF, 2011).

To date, there have been no studies designed to assess

the socio-ecological impact of tourists on this reef

ecosystem (ICF, 2011), although studies have been

performed on the marine and terrestrial taxonomy,

geology, community structure, and coral cover of the

Cayos Cochinos reef (Rodrı́guez-Zaragoza et al.,

2012). During the rainy season, this area is susceptible

to sedimentation and eutrophication because of the

rivers that discharge off the coast of Honduras (Prouty

et al., 2008; Carilli et al., 2009). River plumes are

transported by the bifurcation of the Caribbean current

and impact upon processes such as larval dispersal,

recruitment, and productivity at Cayos Cochinos and

other MBRS reefs (Andréfouët et al., 2002; Soto et al.,

2009). The Honduran Mosquitia is used by both local

people and industrial fishing fleets (Chollet & Stoyle,

2014). These reefs, which are not under government

protection, lie approximately 60 km from the coast,

and the eutrophication generated by the continental

rivers does not affect this area, since the river plumes

are transported by the Caribbean current from East to

Northwest ensuring they do not reach the archipelago.

Fishermen visit these islands for extended periods

(i.e., August-February) in order to fish for spiny

lobster (P. argus). During this period, the fishermen

live in boats and the lobsters caught are stored and

transported by other fishing boats. The size of the

artisanal fishery at Media Luna has diminished;

however, Castellon & Sarmiento (2002) reported that

around Media Luna, there is a high exploitation of P.

argus using industrial fishery practices. To date, no

studies have evaluated the effects of this important

fishery on the Honduran Mosquitia coral reefs. The

only scientific study published from the Honduran

Mosquitia was carried out by Hay (1984), who

evaluated the effects of algal and seagrass consump-

tion by herbivores in the Becerros and Media Luna

reefs, showing the high incidence of seaweed and

seagrass consumption in these coral reefs. With this

study, and the current observations by Chollet &

Stoyle (2014), it is possible to infer that the Media

Luna reef was not affected by the high mortality of

Diadema antillarum (Philippi 1845) and overfishing

of herbivorous fishes, due mainly to the high observed

density of parrotfish (Scarus coelestinus Valenciennes

1840 and Scarus guacamaia Cuvier 1829) and D.

antillarum, which have remained in greater abundance

than other reefs at Honduran Mosquitia and MBRS

(e.g., Mohammed, 2003; Vidal & Basurto, 2003;

Arias-González et al., 2004). Herbivore activity can be

used as an indicator of changes in the state of coral

reefs (Bellwood et al., 2004). Hughes et al. (1987)

demonstrated that the absence of herbivores, mainly

parrotfish and the sea urchin D. antillarum, caused a

rapid increase in macroalgal coverage and signifi-

cantly reduced the growth of corals and their associ-

ated community structures.

In recent years, the study of ecosystems has been

oriented toward improving our capacity to understand

trophic relationships among different components of

the ecosystem rather than simply assessing the
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dynamics of isolated populations (Scotti et al., 2007).

Macrodescriptors, or emergent properties that allow

changes to be detected within ecosystems, have been

proposed based on the foundations of systems ecology

(e.g., Costanza, 1992). Ulanovicz (1986, 1997) devel-

oped a framework called Ascendency to assess the

level of development and organization of ecosystems

(Costanza & Mageau, 1999). Ascendency estimates

two fundamental attributes of ecosystems: their size

and level of organization. Using these attributes, it is

possible to compare ecosystems subjected to different

levels of human activities (Monaco & Ulanowicz,

1997; Ortiz & Wolff, 2002; Arias-González et al.,

2004; Pinnegar & Polunin, 2004), such as the direct

and indirect effects following disturbances, and system

recovery time (as a measure of system resilience) can

be estimated (e.g., Patrı́cio & Marques, 2006; Ortiz

et al., 2013, 2015). Several coral reef ecosystems have

been studied using multispecies trophic models (e.g.,

Arias-González, 1998; Arias-González et al., 2011;

Alva-Basurto & Arias-González, 2014); however, this

type of study has never been conducted for the coral

reefs of Honduras. For this reason, our objective was

to compare the resistance and resilience to fisheries of

two different coral reef systems: Cayos Cochinos, a

semi-protected site with riverine inputs, and the Media

Luna reef, an unprotected and isolated site with an

industrial lobster fishery. We used Ecopath with

Ecosim software to build two balanced mass trophic

models, and to estimate the following ecosystem

status-related properties: Ascendency, food web topol-

ogy, biomass flows across trophic levels, and pathway

(ecological) redundancy. This latter would be defined

as the existence of functional groups of species with

similar trophic functions in the systems (sensu Law-

ton, 1994). The species and functional groups that

were most affected by fisheries were also evaluated.

Materials and methods

Study areas

We compared two study areas. The first was the Natural

Marine Monument Archipelago of Cayos Cochinos, a

protected area within the MBRS, located between the

northern coast of Honduras and the Bahı́a Islands in the

Caribbean Sea (Fig. 1). The archipelago is composed of

two wooded islands and thirteen coral cays, with a total

area of 485 km2 (Andraka et al., 2004). The benthos

mainly consists of macroalgae, seagrass, corals, and

sandy patches, and the live coral cover has values from 7

to 17% (Rodrı́guez-Zaragoza et al., 2012). To the north of

this archipelago, deep areas of between 30 and 100 m

characterize the seafloor, whereas the southern coast only

reaches depths of 30 m (Bermingham et al., 1998). In this

area, the fishery is primarily focused on fish for self-

consumption (Sibaja-Cordero, 2009), and species such as

S. gigas and P. argus are overexploited (Tewfik et al.,

1998; Castellon & Sarmiento, 2002; Salas et al., 2011).

The second study area is theMedia Luna reef, a portion of

the Honduran Mosquitia located approximately 60 km

off the Northeast Honduran coast facing Nicaragua, with

a total area of 218 km2 (Fig. 1). The deepest area of this

site does not exceed 20 m, so that only shallow coral

reefs are present. Reef habitat is currently dominated by

fleshy macroalgae, followed by the corals Acropora

palmata (Lamarck 1816),Orbicella spp., and Siderastrea

spp; total live coral cover ranges from 4% to 16%,

according to our estimates based on field data. Unfortu-

nately, only limited information exists relating to this

archipelago since the Mosquitia area has not yet been

scientifically explored (Chollet & Stoyle, 2014).

Selection of model compartments and data sources

Species and functional groups used for the construction

of trophic models for both study areas were selected

based on their economic importance and functional

roles within ecosystems. The Ecopath with Ecosim

(Ewe) input parameters—biomass (B), catches (Ca),

turnover rates (P/B), consumption rates (Q/B) and diet

composition—were obtained from the field (for fish,

corals and macroalgae; Appendix C Supplementary

Material) and from the scientific literature. Model

functional groups included piscivorous fish, groupers,

snappers, benthic-pelagic carnivorous fish, mackerel,

benthic carnivorous fish, omnivorous fish, zooplank-

tivorous fish, herbivorous fish, and parrotfish. Inverte-

brate species were classified as large benthic carnivores,

P. argus (spiny lobster), stony corals, soft corals,

medium benthic omnivores, benthic filter feeders,

benthic detritivores, small benthic omnivores, zoo-

plankton, benthic autotrophs, phytoplankton, and detri-

tus. All groups were linked to detritus, as this material

consisted of microorganisms and organic matter

(Sorokin, 1973). Because of the nutritional importance

of zooxanthellae (symbiotic microalgae living in the
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coral tissue) to corals (Pearse &Muscatine, 1971), they

were included in the stony coral group, as per Liu et al.

(2009). To prevent erroneous comparisons among

systemic macrodescriptors, both models were built

using a similar number of components. It is known that

grouper fishes play an important ecological and

economic role in Caribbean reefs. However, we elected

not to include this functional group in the Media Luna

reef, because they are not recorded in the visual census

at this site. In addition, there are no fisheries data with

which to infer the possible biomass based on mortality.

Appendix A Supplementary Material lists the species

within each functional group, the matrix diet compo-

sition, and the data sources used for both study areas.

Ecopath and Ecosim modeling approaches

Trophic mass balance models were constructed using

the software EwE. Ecopathwas initially built following

the approach of Polovina (1984) and was subsequently

expanded by Christensen & Pauly (1992) and Walters

et al. (1997). EwE estimates the biomass and food

consumption of species and functional groups, in

addition to the ecological macrodescriptors proposed

by Odum (1969) and Ulanowicz (1986, 1997) that

include Primary production/community respiration

(Pp/R), Primary production/biomass (Pp/B), Total

system throughput (TST), Ascendency (A), Develop-

ment capacity (C), Ascendency/Capacity (A/C), and

Overhead/Capacity (Ov/C) ratios. Throughput is a

measure of systemmetabolism and describes the size or

vigor of this ecosystem. Ascendency integrates size

with organization (average mutual information) of the

system; organization represents the number and diver-

sity of interactions between system components.

Development capacity quantifies the maximum limit

of Ascendency, and A/C is a ratio of the organization of

ecosystems. Finally, the Ov/C ratio is a measure of

Fig. 1 Locations of the study areas in central north and northeast of Honduras: Natural Marine Monument Archipelago of Cayos

Cochinos and Media Luna Archipelago
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system resistance (redundancy) to disturbances

(Ulanowicz, 1986, 1997). Ecopath describes the flows

of matter and energy in an ecosystem at steady state at a

particular time, whereas Ecosim is used to perform

dynamic simulations based on balanced Ecopath mod-

els. These simulations represent changes in the flow of

biomass over time in response to a disturbance; using

the simulations, the propagation of changes in ecosys-

tem food webs can be estimated. EwE enables the

comparison of ecosystems of different sizes, geograph-

ical locations, and levels of complexity (e.g.,Monaco&

Ulanowicz, 1997; Arias-González et al., 2004; Griffiths

et al., 2010). More details and EwE referred equations

are shown in Appendix B Supplementary Material.

Balancing and calibrating models

For model balancing, the following two criteria were

verified: (1) the ecotrophic efficiencies (EE) \1.0

(Ricker, 1968) and (2) gross efficiency (GE), which

must be physiologically acceptable, with magnitudes

\0.3 (Christensen & Pauly, 1993). When these criteria

were not met, the biomass and P/B values were

slightly modified. In the case of the fishes, stony

corals, soft corals, and benthic autotrophs, changes

were made within ± 1 standard deviation; for the

remaining model components, adjustments were made

based on values in the literature (e.g., Optiz, 1996;

Arias-González et al., 2004; Alva-Basurto & Arias-

González, 2014).

Assessment of direct and indirect effects

and system recovery time in short-term dynamics

An analysis of direct and indirect trophic relationships

was conducted using the routine Mixed Trophic

Impacts (MTI) of Ecopath (Ulanowicz & Puccia,

1990), in which the effects of a species or functional

group on other compartments of the system were

evaluated. The short-term dynamic propagation of

direct and indirect effects and the system recovery time

(SRT, as an internal stability/resilience measure) were

assessed in response to an increase of total mortality

(Z) of each compartment equivalent to 30%, consid-

ering that Production = Biomass x Z. It is relevant to

indicate that Z can be equivalent to just natural

mortality [M] or M ? fishing mortality [F] for not

exploited and exploited species, respectively. This

procedure was performed—as a similar perturbation—

for each component between the first and second year

of the simulation. The propagation of short-term

responses was determined by evaluating the biomasses

of all the compartments of both model systems in the

third year of the simulation, that is, one year after the

increase in fishing mortality (sensu Ortiz et al., 2009).

As both models (Cayos Cochinos and Median Luna)

have more than 20 compartments (species and func-

tional groups), we had to select only the six compart-

ments that presented the strongest effects on the

remaining components of each system. This selection

was based on a ranking process that assessed the

changes of magnitude at the final biomass following a

disturbance generated for each species and functional

group.

Because historical levels of fishery landings are

unknown for either system, we changed the flow-

control mechanisms (vij) that influence the energy

transfer rate between two groups and represents top-

down, mixed, or bottom-up control (Appendix B

Supplementary Material). We performed three flow-

control simulations: bottom-up (v = 1.0), mixed

(v = 2.0), and top-down (v = 6.0), following the

criteria applied by Ortiz (2010) and Ortiz et al.

(2013, 2015).

Results

The benthic autotroph group presented the highest

total biomass in both systems; biomass was higher at

Cayos Cochinos (75% of the total system biomass)

than at Media Luna (43%) (Fig. 2; Table 1). With

respect to system structure and properties, Media Luna

presented lower values of Pp/R and Pp/B ratios than

Cayos Cochinos (Table 2). The total system through-

put (TST) was 220,232 g m-2 year-1 at Cayos

Cochinos and was 71,305 g m-2 year-1 at Media

Luna (Table 2). The Cayos Cochinos ecosystem had a

higher development capacity (C = 627,897 flowbits)

and Ascendency (A = 296,771 flowbits) compared to

Media Luna (C = 314,370 flowbits, A = 96,334

flowbits). Likewise, Cayos Cochinos had a higher

degree of development (A/C = 47%) and lower

resistance to disturbances (Ov/C = 53%) than was

the case with Media Luna (A/C = 31% and Ov/

C = 69%) (Table 2). Pathway redundancy presented

a similar tendency of Ov/C ratios (Table 2). The sum

of all flow into detritus was higher at Cayos Cochinos
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(90,423 g m-2 year-1) than at Media Luna

(17,881 g m-2 year-1), and Finn’s cycling index

(FCI) indicates that Media Luna reached a higher

magnitude (6.95%) compared to Cayos Cochinos. The

magnitudes of average path length (APL), food web

connectance, and omnivory index (OI) were also

similar for both systems (Table 2). Trophic levels

were lower at Media Luna than at Cayos Cochinos as a

result of the absence of the groupers functional group,

and the mean trophic level of the catch differed

between ecosystems, reaching values of 3.6 at Cayos

Cochinos and 3.0 at Media Luna (Table 2).

The Mixed Trophic Impacts (MTI) analysis showed

the species and functional groups that induced major

direct and indirect effects in the other components were

omnivorous fish (OMF), zooplanktivorous fish (ZOF),

P. argus (SPL), benthic detritivores (DBI), parrotfish

(PAF), and soft corals (SFC) at Cayos Cochinos, and

omnivorous fish (OMF), herbivorous fish (HEF),

benthic-pelagic carnivores fish (BPF), parrotfish

Fig. 2 Food web topology for Cayos Cochinos andMedia Luna

ecosystems. Vertical position approximates trophic level

(numbers on the left). The circle size is proportional to the

compartment (populations and/or functional groups) biomass

(g wet weight m-2). The code in the circle corresponds to the

species or functional groups (Table 1)
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Table 1 Parameter values entered (in bold) and estimated by Ecopath software for Cayos Cohinos (A) and Media Luna ecosystem

(B)

Species/functional groups B Ca P/B Q/B TL EE

A. Cayos Cochinos Model

(1) Piscivorous fish (PSF) 9.80 4.65E206 0.46 1.90 3.82 0.02

(2) Groupers (GRF) 2.38 0.50 4.68 3.77 0.09

(3) Snappers (SNF) 27.00 8.35E205 1.48 7.00 3.63 0.02

(4) Benthic-pelagic carnivorous fish (BPF) 4.70 2.10 17.70 3.50 0.86

(5) Mackerel (MCF) 22.00 4.67E209 1.86 7.00 3.37 0.02

(6) Benthic carnivorous fish (BCF) 29.60 7.60E207 2.50 10.92 3.36 0.85

(7) Big benthic carnivores (BBC) 67.32 1.43 6.40 3.26 0.91

(8) Omnivorous fish (OMF) 1.85 4.74 17.00 3.03 0.16

(9) Zooplanktivorous fish (ZOF) 9.60 1.90 9.94 3.00 0.60

(10) Panulirus argus (SPL) 52.37 2.34 8.00 2.96 0.19

(11) Stony corals (STC) 263.40 2.50 8.50 2.61 0.87

(12) Soft corals (SFC) 791.04 0.08 2.50 2.50 0.30

(13) Medium benthic omnivores (MBO) 294.30 3.50 12.00 2.47 0.97

(14) Benthic filters feeders(BFL) 246.70 3.00 12.00 2.30 0.90

(15) Benthic detritivores (DBI) 40.16 0.80 3.85 2.25 0.89

(16) Small benthic omnivores (SBO) 9.00 4.90 125.25 2.16 0.93

(17) Herbivorous fish (HEF) 29.61 2.50 26.45 2.15 0.88

(18) Parrotfish (PAF) 47.30 2.40 20.76 2.00 0.56

(19) Zooplankton (ZOO) 72.10 63.00 215.00 2.00 0.77

(20) Benthic autotrophs (BAA) 6300.72 13.25 1.00 0.05

(21) Phytoplankton (PHY) 37.40 409.40 1.00 0.76

(22) Detritus (DET) 100.00 1.00 0.10

B. Media Luna Model

(1) Piscivorous fish (PSF) 0.96 0.25 3.65 4.04 0.00

(2) Snappers (SNF) 14.10 0.40 4.50 3.52 0.11

(3) Benthic-pelagic carnivorous fish (BPF) 3.60 0.98 15.14 3.52 0.24

(4) Benthic carnivorous fish (BCF) 24.63 0.97 10.22 3.32 0.26

(5) Big benthic carnivores (BBC) 51.00 1.43 6.20 3.26 0.66

(6) Mackerel (MCF) 4.15 2.38 9.59 3.09 0.06

(7) Panulirus argus (SPL) 6.50 0.31 2.34 9.07 2.97 0.81

(8) Zooplanktivorous fish (ZOF) 0.02 2.43 10.96 2.85 0.00

(9) Omnivorous fish (OMF) 1.43 2.42 26.23 2.74 0.20

(10) Stony corals (STC) 113.20 3.10 10.50 2.61 0.95

(11) Soft corals (SFC) 392.53 0.08 9.00 2.50 0.37

(12) Medium benthic omnivores (MBO) 215.62 2.79 9.39 2.47 0.95

(13) Benthic filters feeders (BFL) 274.00 1.48 10.23 2.32 0.90

(14) Benthic detritivores (DBI) 65.90 0.80 3.85 2.25 0.28

(15) Small benthic omnivores (SBO) 6.30 4.72 125.25 2.13 0.87

(16) Herbivorous fish (HEF) 21.82 0.36 24.64 2.05 0.40

(17) Parrotfish (PAF) 129.15 0.40 15.23 2.01 0.31

(18) Zooplankton (ZOO) 62.60 63.50 215.00 2.00 0.88

(19) Benthic autotrophs (BAA) 1135.10 13.25 1.00 0.28

(20) Phytoplankton (PHY) 29.20 376.80 1.00 0.93
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(PAF), P. argus (SPL) and mackerel (MCF) at the

Media Luna reef (Fig. 3). It is notable that omnivorous

fish (OMF), P. argus (SPL), and parrotfish (PAF)

propagated changes in both systems, and the

magnitudes of effect were higher in Media Luna

(Fig. 3). In the short-term dynamic simulations with

Ecosim, Cayos Cochinos exhibited major changes

under the top-down simulations when the group benthic

Table 1 continued

Species/functional groups B Ca P/B Q/B TL EE

(21) Detritus (DET) 100.00 1.00 0.45

TL trophic level, Ca catches (g wet weight m-2 year-1), B biomass (g ww m-2), P/B turnover rate (year-1), Q/B consumption rate

(year-1), EE ecotrophic efficiency

Table 2 Summary

statistics after mass balance

process by Ecopath and

Network Analysis flow

indices

Macrodescriptors Ecosystems

Cayos Cochinos Media Luna

(A) Summary Ecopath statistics

Sum of all consumption (Q) (gm-2 year-1) 31,013 27,381

Sum of all exports (gm-2 year-1) (E) 81,700 9779

Sum of all respiratory flows (R) (gm-2 year-1) 17,096 16,264

Sum of all flows into detritus (gm-2 year-1) 90,423 17,881

Total system throughput (T) (gm-2 year-1) 220,232 71,305

Sum of all production (gm-2 year-1) 106,510 31,684

Mean trophic level of the catch 3.64 2.97

Gross efficiency 1.01E-09 1.20E-05

Total net primary production (gm-2 year-1) (P) 98,796 26,043

Total primary production/total respiration (Pp/R) 5.78 1.60

Net system production (gm-2 year-1) 81,700 9779

Total primary production/total biomass (P/B) (gm-2 year-1) 11.82 10.21

Total biomass/total throughput (year-1) (B/T) 0.04 0.04

Total biomass (excluding detritus) (B) (gm-2 year-1) 8358 2552

Total catches (gm-2 year-1) 1.00E-04 3.11E-01

(B) Network Analysis flow indices

Ascendency (Total) (A) Flowbits 296,771 96,334

Overhead (Total) (O) Flowbits 331,127 218,036

Capacity (total) (C) Flowbits 627,897 314,370

Pathway redundancy (of overhead) (%) 41 49

Ascendency/capacity (A/C) (%) 47 31

Overhead/capacity (O/C) (%) 53 69

Throughput cycled (exc. Detritus) (gm-2 year-1) 540 302

Throughput cycled (inc. Detritus) (gm-2 year-1) 3523 4647

Statistical entropy (H’) (Bits) 1.50 3.05

Finńs cycling index (FCI) (%) 1.60 6.95

Number of pathways 5805 1491

Average path length (APL) (dimensionless) 6.65 5.65

Connectance index (CI) (dimensionless) 0.30 0.26

Omnivory index (OI) (dimensionless) 0.21 0.20
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Fig. 3 Mixed trophic

impacts (MTI) (direct and

indirect) as response to the

main impacting functional

groups for Cayos Cochinos

and Media Luna

ecosystems. Note the

numbers on the x-axis

correspond to the species or

functional groups of Table 1
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autotrophs, snappers, medium benthic omnivores, and

benthic filter feeders are fished (Fig. 4). AtMedia Luna,

strong effects were caused by changes to the benthic

autotrophs and medium benthic omnivores, especially

under the top-down simulations, while smaller to no

effects were observed after increasing the mortality of

phytoplankton and benthic filter feeders (Fig. 4).

Unfortunately, system recovery time (SRT) could

only be estimated using bottom-up and mixed flow-

control mechanisms, as the top-down mechanisms

exhibited oscillations (particularly in the Cayos

Cochinos model) (Table 3). Likewise, oscillatory

responses were also observed for soft corals and

zooplankton groups of Cayos Cochinos using the

mixed control mechanism. The results obtained from

the bottom-up control mechanism suggest that the

Media Luna system requires slightly more time to

return to its initial condition (SRT = 10.7 years under

mixed control mechanism) than is the case at Cayos

Cochinos (SRT = 9.3 years using mixed control).

Discussion

One of the main symptoms of the deterioration of coral

reef ecosystems is a significant increase in the

abundance of fleshy macroalgae (Jackson et al.,

2001; Kramer, 2003; Acosta-González et al., 2013).

Fleshy macroalgae hinders coral growth and coral

recruitment (Ruiz-Zarate et al., 2003; Bellwood et al.,

2004). A loss in coral cover and their three-dimen-

sional structural complexity plays an important role in

the settlement potential of fish recruits and provides

habitat to many other coral reef organisms (Knowlton

& Jackson, 2001; Jones et al., 2004; Graham & Nash,

2013). In Cayos Cochinos and Media Luna, the

benthic autotroph group (primarily consisting of fleshy

macroalgae) presented the greatest total biomass of all

groups. This generally undesirable condition is similar

to that reported in several coral reefs of MBRS (Arias-

González et al., 2004; Rodrı́guez-Zaragoza et al.,

2012; Acosta-González et al., 2013). In the Caribbean

Sea, it has been observed that, with a decline in

herbivore populations (e.g., urchins, parrotfish and

other herbivorous fish), the cover of fleshy macroalgal

species can increase (Hughes, 1994; Jackson, 1997;

Jackson et al., 2001; Hughes et al., 2003). These

effects are consistent with the results obtained from

our MTI (Fig. 3; parrotfishes (PAF) and herbivorous

fishes (HEF) panels). Likewise, eutrophication and

sedimentation promotes the growth of macroalgal

species (Lapointe, 1997; Brown, 1997) and limits the

growth and recruitment of corals (Bell, 1990; Hunte &

Wittenberg, 1992). Eutrophication and sedimentation

may affect the coral reef at Cayos Cochinos, given the

proximity of the reef to the coast and the sediments,

metals, and nutrients (i.e., by products of agriculture)

delivered by the Aguan and Papaloteca rivers

(Andréfouët et al., 2002; Carilli et al., 2009).

The catches (Ca) used in our models were estimates

taken from technical reports (Sibaja-Cordero, 2009),

and we believe that these were underestimated, since

fishing is unregulated in Cayos Cochinos. Even though

this activity is practiced exclusively by locals of the

archipelago, according to Andraka et al. (2004): (1)

Fishes are fished from smaller sizes to the first mature

stages, (2) there are few larger or reproductive fishes,

(3) overfishing occurs, (4) the fisheries are supported

by the recruitment and the rapid growth of some fishes,

and 5) the spiny lobster is overexploited. On the other

hand, the stock of spiny lobster at Media Luna is

shared with Nicaraguan fishermen, and there are no

regulations that apply simultaneously to both coun-

tries. Despite this limitation, snappers (fished in Cayos

Cochinos) propagated the highest impacts of all

species when exploited according to our short-term

dynamic simulations using Ecosim with mixed and

top-down controls. The MTI also indicates that

omnivorous fish, parrotfish, and P. argus substantially

influenced the other compartments in both systems.

Moreover, herbivorous fish also caused major impacts

at Media Luna, while parrotfish maintained a strong

influence on benthic autotrophs. This herbivory con-

trol mechanism has been reported for coral reefs in the

Caribbean Sea, where parrotfish and herbivorous fish

harvesting provokes a phase-shift from coral to

seaweed that affects communities within the ecosys-

tem (Hixon & Beets, 1993; Hughes, 1994; Jackson

et al., 2001). Our short-term dynamic simulations

partially corroborate this role of the herbivores, and

the negative impact on benthic autotrophs generates

cFig. 4 Dynamical responses of the main impacting functional

group subject to 1 year of increased fishing mortality (between

year 1 and 2 of the simulation) under three flow-control

mechanisms using Ecosim. The biomass responses were

obtained for the third year of the simulation. Note: the numbers

on the x-axis correspond to the species or functional groups of

Table 1
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Table 3 Summary of the system recovery time (SRT) (years) for Cayos Cochinos (A) and Media Luna (B) ecosystems using bottom-

up, mixed, and top-down flow-control mechanisms (v)

Ecosystems Bottom-up control (v = 1.0) Mixed flow control (v = 2.0) Top-down control (v = 6.0)

A. Cayos Cochinos model

Harvest on

(1) Piscivorous fish 8.90 18.10 Oscillations

(2) Groupers 11.42 14.92 Oscillations

(3) Snappers 10.67 14.30 Oscillations

(4) Benthic-pelagic carnivorous fish 8.67 10.00 Oscillations

(5) Mackerel 7.08 20.25 Oscillations

(6) Benthic carnivorous fish 8.92 14.25 Oscillations

(7) Big benthic carnivores 8.25 12.83 Oscillations

(8) Omnivorous fish 6.83 10.42 Oscillations

(9) Zooplanktivorous fish 7.50 11.80 Oscillations

(10) Panulirus argus 7.68 13.08 Oscillations

(11) Stony corals 8.50 16.58 Oscillations

(12) Soft corals 8.50 Oscillations Oscillations

(13) Medium benthic omnivores 11.75 15.25 Oscillations

(14) Benthic filters feeders 9.67 17.50 Oscillations

(15) Benthic detritivores 8.92 12.58 Oscillations

(16) Small benthic omnivores 6.75 8.92 Oscillations

(17) Herbivorous fish 9.00 14.17 Oscillations

(18) Parrotfish 9.25 13.17 Oscillations

(19) Zooplankton 11.08 Oscillations Oscillations

(20) Benthic autotrophs 14.17 35.60 Oscillations

(21) Phytoplankton 11.83 47.17 Oscillations

Average 9.30 16.89 –

B. Media Luna model

Harvest on

(1) Piscivorous fish 9.10 21.01 37.17

(2) Snappers 10.50 18.75 38.33

(3) Benthic-pelagic carnivorous fish 8.50 11.25 35.83

(4) Benthic carnivorous fish 10.92 21.33 47.30

(5) Big benthic carnivores 10.50 15.83 Oscillations

(6) Mackerel 10.67 22.75 71.30

(7) Panulirus argus 11.75 18.17 Oscillations

(8) Zooplanktivorous fish 8.00 5.50 Oscillations

(9) Omnivorous fish 7.58 12.80 Oscillations

(10) Stony corals 11.83 23.83 Oscillations

(11) Soft corals 8.66 40.42 Oscillations

(12) Medium benthic omnivores 13.50 28.17 Oscillations

(13) Benthic filters feeders 12.33 35.42 Oscillations

(14) Benthic detritivores 9.17 17.92 45.33

(15) Small benthic omnivores 7.00 18.00 Oscillations

(16) Herbivorous fish 10.25 18.58 Oscillations

(17) Parrotfish 12.00 30.25 Oscillations

(18) Zooplankton 12.58 34.00 Oscillations
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small positive effects on the stony corals at Media

Luna reef, mainly in mixed and top-down scenarios.

In theory, the least disturbed ecosystems should be

more mature and developed (Odum, 1969; Ulanowicz,

1986). Unfortunately, in this study, the Odum’s and

Ulanowicz’s indices show contradictory trends to

indicate which system (i.e., Cayos Cochinos or Media

Luna) is more mature and developed. Media Luna

appears to exhibit properties of a mature ecosystem,

based on a Pp/R ratio close to 1 (sensu Odum, 1969;

Christensen & Pauly, 1993). This Pp/R ratio may be

the result of reduced fishing and the lack of riverine

inputs in this ecosystem. Additionally, the Sum of all

flow into detritus (non-assimilated food flows) in

Media Luna was considerably lower than Cayos

Cochinos. In addition, Finn’s cycling index (FCI)

indicates that energy is best used in Media Luna reef.

As a consequence of natural and human disturbances,

Cayos Cochinos may be a less mature or organized

ecosystem, and in turn may be more resistant than the

Media Luna reef to perturbations. However, A/C ratio

and Ov/C ratio indicate that the opposite is true. This

may be because Cayos Cochinos is a larger system in

terms of flow—i.e., Total system throughput (TST)—

than Media Luna and other coral reefs of the

Caribbean Sea (e.g., Mohammed, 2003; Vidal &

Basurto, 2003; Arias-González et al., 2004). This is

mainly explained by the high accumulation of benthic

autotroph biomass that possibly benefited from low

herbivory and nutrient supplementation from the

Aguan and Papaloteca rivers (Carilli et al., 2009).

However, Patrı́cio et al. (2004) noted that systems

exposed to high levels of nutrients exhibit a marked

increase in TST as a result of microalgal blooms. This

may be also the case of the Cayos Cochinos reef, but

with an increase in the fleshy macroalgae. The latter is

correlated with a higher value of Pp/R. On the other

hand, Cayos Cochinos has both shallow and deep

habitats that increase its biodiversity and, in turn, that

of the prey. This generates a more complex food web

topology in terms of number of pathways, average

path length, and connectance index. These features

perhaps lead to decreased energy cycling and

increased system entropy. Nevertheless, the strong

influence of TST on Ascendency may be negatively

correlated with ecosystem maturity (Christensen,

1995). According to Pp/R, sum of all flow into detritus

and FCI, Media Luna should therefore be more mature

or organized, but less resistant to the impact of

fisheries than Cayos Cochinos.

The functional groups, benthic autotrophs, phyto-

plankton, and soft corals, are the compartments that

contributed most in terms of Ascendency (sensu

Ulanowicz, 1997), suggesting they are the most

important to the structure and trophic functioning of

both systems. These results correlated with the short-

term simulations of Ecosim, since these functional

groups were the most important for increasing the

System recovery time (SRT), mainly in the mixed

scenario. Furthermore, the short-term Ecosim’s

dynamic simulations also show that in Cayos Cochi-

nos and Media Luna, other species and functional

groups increased their SRT. For example, when total

mortality is increased by 30% in snappers at Cayos

Cochinos and in P. argus in Media Luna (actually

exploited in both reefs), the systems take over 10 years

to recover. It is important to note, however, that Cayos

Cochinos also takes less time to recover than Media

Luna in both the bottom-up scenario and mixed

scenario. So this indicates that Cayos Cochinos should

be the most resilient system. The most of simulations

for SRT using a top-down control mechanism showed

oscillatory responses, which is explained by the non-

linear Lotka-Volterra’s behavior of this control (see

Walters & Martell, 2004).

This study represents the first attempt to quantita-

tively estimate trophic interactions of two coral reef

ecosystems in the southwestern Caribbean off the

Honduran coast. We show that the Media Luna reef is

the more mature or organized system, but is less

resistant and resilient to the impact of fisheries than

Cayos Cochinos. We therefore suggest the

Table 3 continued

Ecosystems Bottom-up control (v = 1.0) Mixed flow control (v = 2.0) Top-down control (v = 6.0)

(19) Benthic autotrophs 17.42 37.35 Oscillations

(20) Phytoplankton 13.50 42.92 Oscillations

Average 10.79 21.72 –
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implementation of new management strategies in

Cayos Cochinos that address not only the exploitation

of natural resources, but also other processes, such as

the increase of sediment input during the rainy

seasons, in order to control seawater eutrophication

and fleshy macroalgal blooms. In both reefs, it is also

necessary to establish ecosystem-based fishery man-

agement strategies, adopting bans for target fish

species and spiny lobster, mainly in the Media Luna

reef that has no current government protection.

However, and despite the fact that Ecopath with

Ecosim were used to generate models to assess the

trophic functioning and development and organization

of ecosystems, the limitations of this theoretical

framework are well-known. We also therefore suggest

that future research should aim to clarify the relative

importance of bacteria, DOM, and POM in trophic

webs, particularly in the Cayos Cochinos ecosystem.

Likewise, these studies should be complemented with

the use of qualitative and/or semi-quantitative models

that include other types of ecological relationships, as

well as the identification of keystone species com-

plexes to further the knowledge regarding ecosystem

resistance and resilience under a conservation view.
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