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Abstract It is crucial to monitor light environments

in large lakes using satellite remote-sensing data.

Many studies have proposed prediction schemes of

transparency information, but most of them were site-

specific. Here, we applied semi-analytical retrieval

procedures of inherent optical properties from in situ-

measured remote-sensing reflectance and then pre-

dicted the Secchi depth (SD) using contrast transmit-

tance theory. Two types of water regions (clear or

turbid waterbodies) were first classified based on

spectral characteristics, and a selection from two

retrieval procedures for clear and turbid water bodies

was made. The relationship between the SD and the

sum of attenuation coefficients (beam and diffuse

attenuation coefficients), which arises in contrast

transmittance theory, was determined by analyzing

the data from the previous research. The predicted SD

values were compared with the observed values in 10

Japanese lakes with a wide variety of turbidity (SD

0.4–17 m). Fairly good agreement between the pre-

dicted and observed SD values was obtained, indicat-

ing the usefulness of this prediction scheme. We then

made an accuracy comparison with the results

obtained by previous studies, and we discuss the

coefficients and the discrepancies between the mea-

sured and predicted SD values in addition to the future

directions of this approach.
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Introduction

Assessing the water clarity of waterbodies is a key

issue for environmental monitoring and management.

The Secchi depth (SD) is an optical measure of water

clarity by human vision and it is determined by all

optically active substances (OASs) in the water, i.e.,

phytoplankton (represented by chlorophyll-a), tripton

[non-planktonic suspended solids (SSs): Tr], colored

dissolved organic matter, and pure water (Mancino

et al., 2009). Despite the ease with which SD data can

be obtained, the collection of these data frequently and

for huge numbers or for large waterbodies is costly and

challenging for monitoring agencies (Nelson et al.,

2003). Remote sensing offers several advantages such

as spatially and temporally extensive coverage and the

possibility of measuring many waterbodies simulta-

neously (Koponen et al., 2002). Therefore, a combi-

nation of remote-sensing techniques with precise

knowledge on water optics could provide an efficient

method to monitor waterbodies.

Many research groups have investigated the rela-

tionships between in situ measurements of SD and the

spectral response of satellite sensors such as Landsat

(Lathrop et al., 1991; Giardino et al., 2001; Kloiber

et al., 2002; Nelson et al., 2003; Sawaya et al., 2003;

Chipman et al., 2004; Hellweger et al., 2004;

Alparslan et al., 2007; Sass et al., 2007; Olmanson

et al., 2008; Kabbara et al., 2008; Mancino et al., 2009;

Hicks et al., 2013; Olmanson et al., 2014), MODIS

(Härmä et al., 2001; Wu et al., 2008), SeaWiFS

(Kratzer et al., 2003; Binding et al., 2007), andMERIS

(Härmä et al., 2001; Koponen et al., 2002; Kratzer

et al., 2008; Giardino et al., 2010). However, most of

these studies focused principally on empirical

approaches, and thus the final applications tended to

be time- and site-specific. For example, if an algorithm

has been developed for an algae-dominant water body,

it is difficult or impossible to apply this algorithm to a

non-algae-dominant water body, because different

OASs in the water bodies will result in different bands

selection and thus different algorithms. Thus, for

example, the SD prediction scheme through chloro-

phyll-a (Chl-a) possibly results in fairly large estima-

tion errors.

In parallel, substantial efforts have been made to

retrieve the inherent optical properties (IOPs) of

waterbodies from spectral measurement of water

color. These efforts have included an empirical

algorithm (Lee et al., 1998), a spectral optimization

approach (Roesler & Perry, 1995), an artificial neural

network (Doerffer & Schiller, 2007), a linear matrix

inversion method (Hoge & Lyon, 1996), and a quasi-

analytical algorithm (QAA; Lee et al., 2002). Among

these approaches, the QAA, which is an inversion

based on the semi-analytical relationship between

remote-sensing reflectance and the IOPs, is quite

effective and simple to implement. Chen et al. (2007)

estimated the SD in Tampa Bay, Florida by processing

SeaWiFS satellite imaginary based on a two-step

process, first estimating the diffuse attenuation coef-

ficient at 490 nm [Kd(490)] using this semi-analytical

approach, and then the SD using as empirical

relationship with Kd(490). This method has provided

an excellent estimate of in situ SD values, but its

applicability is uncertain for wider SD ranges of

waterbodies because of both the empirical relationship

used with Kd(490) estimation and the far lesser

reliability of the semi-analytical approach for inland

waters, particularly turbid and eutrophic waters.

There is another approach—a semi-analytical

approach that uses the contrast transmittance theory

(Tyler, 1968; Preisendorfer, 1986). In this approach,

SD values are expressed using the beam and diffuse

attenuation coefficients in the range of visible wave-

lengths, which could be related to the IOPs (i.e., the

absorption and scattering coefficients) of the targeted

water. This approach has seldom been used to estimate

SDs in lakes because the measurement of attenuation

coefficients and/or IOPs requires a high-level of

technique and a great deal of labor in the field or

laboratory; a similar trial has been done for ocean

transparency using MERIS, MODIS, and SeaWiFS

data, however, showing substantial prediction errors

(Doron et al., 2011). However, it may be possible to

use the IOP-retrieving algorithm from remote-sensing

reflectance, as mentioned above.

In this approach, IOPs are estimated using remote-

sensing reflectance spectra at the first stage, and then

the values of SD are predicted using the contrast

transmittance theory at the second stage. Because both

stages are based on semi-analytical algorithms, this

approach is expected to be applicable to wider water

regions compared to the method based on empirical

relationships. To establish this approach, an algorithm

for retrieving IOPs in turbid waters is absolutely

necessary.
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Yang et al. (2013) proposed a modified algorithm

(enhanced QAA for turbid waters: QAA_turbid) to

retrieve total absorption and backscattering coeffi-

cients based on a semi-analytical estimation model for

turbid inland waters and they described the potential of

this algorithm to accurately retrieve the IOPs using

in situ reflectance spectra. A hybrid scheme could thus

be constructed for the estimation of IOPs: original

QAA for clear waters and QAA_turbid for turbid

waters. However, a classification procedure is neces-

sary for choosing which IOPs estimation method

should be applied.

In the present study, we constructed a semi-analyt-

ical algorithm for estimating SD value using remote-

sensing reflectance spectrum. We then compared the

estimated SD values with the measured values that

were obtained in 10 Japanese lakes with a wide variety

of turbidity. We propose a classification procedure

between clear and turbid states and the coefficient in

the contrast transmittance theory. Then, an accuracy

comparison with the results obtained by previous

studies is made. The coefficients used in the proposed

system and discrepancies between the measured and

predicted SDs are discussed in addition to the future

directions for this approach. In this study, we use

in situ-measured reflectance spectra in the range of

400–780 nm at 1-nm intervals. The application of the

present approach to satellite data is a future challenge.

Methods

In situ data collection

Measurements of SDs and corresponding reflectance

spectra, and collections of water samples were done at

10 lakes in Japan (Table 1; Fig. 1) during the years

2009–2014. Fifteen data collection campaigns were

used for this study: four campaigns in Lake Kasum-

igaura, two campaigns in Lakes Biwa and Shoji, and

one campaign for the other seven lakes. The numbers

of the observation points at the respective campaigns

are shown in Table 1.

SDs were measured using a standard white circular

panel (0.3 m in dia.). Reflectance measurements were

performed between 9:30 and 16:00 h local time. The

upwelling radiance (Lu), the downward irradiance (Ed,

reflected upwards from the SRT-99-100 Spectralon

reflectance panel�), the downward radiance of skylight

(Lsky), and the upwelling radiance from the reflectance

panel shaded from direct sunlight (Lshade) were mea-

sured at each site using a FieldSpec HandHeld spec-

troradiometer (Analytical Spectral Devices, Boulder,

CO, USA) in the range of 325–1075 nm at 1-nm

intervals. ‘‘Lsky’’ refers to the diffused radiation of the

sky, which contains no information on water properties,

and hencemust be eliminated. To avoid the influence of

reflection and shading from the boat, all spectral

observations were measured at the zenith angle of

around 58�. In addition, the direction of each spectral

observation was 90� to the plane of the sun to avoid the
effect of sun glint.

The above-water remote-sensing reflectance (Rrs)

was calculated approximately using the equation

given by Mobley (1999):

Rrs �
Lu

Ed

� FðhÞ � Lsky
Ed

� �
� Cal � 100 ð1Þ

where Cal is the spectral reflectance calibration factor

for the Spectralon reflectance panel (SRT-99-100).

F(h) represents the reflectance of the skylight at the

air–water interface ranging from 0.022 to 0.025, and h
is the measurement view angle (Mobley, 1999). In this

study, a constant value of 0.024 was used for F(h).
At in situ measurements, the surface waves and

clouds affected the obtained reflectance spectra. We

thus removed the campaigns when the influence of

waves seemed considerable. The upwelling radiances

were measured 10 times, and then the lower five data

were averaged to get the value of Lu. Here, we

calculated the coefficient of variation (CV; the stan-

dard deviation divided by the average) of the lower

five radiances averaged in the range of 400–750 nm

and considered the influence of waves insignificant if

the coefficient was\0.07. All of the campaigns shown

in Table 1 satisfied this condition (more than 10

campaigns not shown in Table 1 were unavailable).

The influence of waves surely relates to wind velocity;

for example, the maximum wind velocities (3.3, 4.5

and 3.9 m/s at Hikone, Nagahama, and Imazu near the

lake, respectively) during the excluded campaign in

Lake Biwa (6 September 2010) were higher than those

during the included campaigns (2.6, 2.2, and 2.0 m/s

on 17 August 2009 and 2.2, 2.0, and 2.2 m/s on 12

October 2011 at those stations, respectively) (Japan

Meteorological Agency, 2015).

Next, the influence of clouds was considered using

the value of Lshade divided by (Ed/p). For the
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subsequent calculation, we used the measurement

when this value was\0.25. The numbers of measure-

ments that satisfied this condition are shown in

Table 1 as the number of points. In addition, the

threshold was changed to 0.20 to evaluate the influ-

ence of clouds for estimating SDs. TheRrs spectra used

for the further analysis are shown in Fig. 2.

For the collected water samples, Chl-a was

extracted using methanol (100%) at 4�C under dark

conditions for 24 h. The extract was then centrifuged

at 3,000 rpm for 10 min and analyzed spectrophoto-

metrically to estimate the concentration of Chl-

a according to SCOR-UNESCO equations (1966).

The concentrations of the SSs were determined

gravimetrically. Samples were filtered through pre-

combusted Whatman GF/F filters at 500�C for 4 h to

remove the dissolved organic matter in suspension,

which was then dried at 105�C for 4 h and weighed to

obtain SS. Table 1 provides a summary of the relevant

characteristics of the studied waterbodies together

with the SDs and OASs (Chl-a and SS) concentration

ranges obtained from the in situ data collection.

Development of a semi-analytical model

for estimating SDs

The flow chart of the following proposed method is

shown in Fig. 3.

Table 1 The 10 surveyed lakes in Japan and their dimensions, sampling information, and water quality

Lake names Surface

area (km2)

Maximum

depth (m)

Observation dates Number

of points

Range of

SD (m)

Chlorophyll-

a (mg/l)

SS (mg/l)

Biwa 670.3 103.8 17 August 2009 6 3.2–9.2 0.69–1.3 0.57–1.9

12 October 2011 9 4.2–9.3 1.8–2.9 0.77–2.0

Kasumigaura 167.6 11.9 12 August 2009 3 0.50–0.70 55.4–106 16.2–22.5

1 September 2009 14 0.40–0.70 39.7–106 16.4–55.7

17 March 2010 2 0.59–0.60 80.7–82.4 27.5–27.5

18 May 2010 24 0.50–0.75 37.0–91.7 18.0–30.1

Shirakaba 0.4a 9.1a 22 July 2010 1 3.5 2.3 2.8

Suwa 12.9 7.6 21 July 2010 10 1.6–1.9 9.8–11.3 4.6–6.1

Ikeda 10.9 233.0 5 September 2011 1 9.3 1.4c 0.65c

Unagi-ike 1.2 55.8 5 September 2011 1 12.8 0.53c 0.39c

Akan 13.0 44.8 28 August 2013 1 6.7 0.8 1.5

Motosu 4.7 121.6 11 March 2014 1 16.4 0.57 0.38

Shoji 0.5b 15.2b 11 March 2014 1 3.5 8.5 2.4

22 August 2014 1 4.2 3.2 1.7

Sai 2.1 71.7 22 August 2014 2 6.8–7.1 1.8 1.3

a Ha et al. (2015)
b Wikipedia, other information on lake dimensions: Chronological Scientific Tables
c Measured by sensor and estimated with calibration lines

Fig. 1 The location of the 10 lakes in Japan
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Stage 1: retrieving IOPs from reflectance spectra

As explained below, two algorithms for retrieving

IOPs from reflectance spectra were prepared for clear

and turbid waters, respectively. Since a selection

between them is therefore necessary, we used the

maximum Chl index [MCI: Rrs(709 nm) - Rrs(681 -

nm)], which is a measure of the reflectance peak at

709 nm in water-leaving reflectance. Gower et al.

(2005) have demonstrated use of this index to detect

plankton blooms. This is because the absorption by

Chl reduces radiance at wavelengths shorter than

700 nm, while absorption by water reduces radiance at

wavelengths longer than 720 nm, leading to a radiance

peak at the wavelength of minimum absorption, near

709 nm. This index was used to select the most

appropriate algorithm for estimating Chl-a concentra-

tions among a blue–green algorithm, an algorithm

with a two-band index, and an algorithm with a three-

band index (Matsushita et al., 2015). In this study,

three ranges were set for the selection of Chl-

a estimating algorithms: (1) when the MCI was

B0.0001, then the blue–green algorithm was used,

(2) when 0.0001\MCI B 0.0016, then the two-band

algorithm was used, and (3) when MCI[0.0016, then

the three-band index algorithm was used. The MCI

values 0.0001 and 0.0016 approximately corre-

sponded to the Chl-a values 10 and 25 mg/m3,

respectively, based on a linear relationship between

MCI and Chl-a (R2 = 0.76, P\ 0.001) using the data

taken in five Asian lakes. The results showed that this

hybrid algorithm performed well in these lakes (Lakes

Biwa, Kasumigaura, and Suwa used in this study and

Lakes Dianchi and Erhai in China not used in this

study but explained in Matsushita et al., 2015).

Following the original proposal of the QAA by

Lee et al. (2002), several updates have been presented

(Lee et al., 2005, 2007). For clear waters, we used a

Fig. 2 In situ reflectance spectra used in this study. a Lake Kasumigaura, b Lake Biwa, c Lake Suwa and Lake Shirakaba, d other lakes
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recent version (version 5, denoted QAA_v5 here-

after; Lee et al., 2009) in which four empirical

estimation models have been updated compared to

previous versions. The flow of QAA_v5 is shown in

Table 2, and the steps up to Step 6 were used in this

study. There are mainly three limitations that chal-

lenge the applicability of QAA_v5 in turbid inland

waters. The first limitation regards about the estima-

tion model for total absorption at the reference band

(Step 2 in Table 2), which is empirically derived

from the synthetic dataset. The second limitation

regards the Y estimation model (Step 4), which was

calibrated using the data obtained in oceans or coastal

areas. The third limitation is the algebraic equations

for estimating the phytoplankton absorption (Steps 7

and 8), in which the ratios were empirically deter-

mined in a manner similar to that of Step 4. Yang

et al. (2013) proposed the enhancement of the QAA

for turbid waters in three ways: (1) the extension of

the reference wavelength to the near-infrared band,

(2) the development of a semi-analytical estimation

model for the spectral slope of particle backscatter-

ing, and (3) the development of an empirical estima-

tion model for the phytoplankton absorption

coefficient at 443 nm. The main steps are shown in

Table 3 (denoted ‘‘QAA_turbid’’ hereafter) and the

steps up to Step 5 were used in the present study.

Thus, we applied two MCI thresholds for the

selection of IOP-retrieving algorithms, i.e., (1) when

MCI B0.0001, then QAA_v5 and (2) when MCI

[0.0016, then QAA_turbid. In addition, both algo-

rithms were compared in the range of

0.0001\MCI B 0.0016.

Stage 2: estimating SDs from IOPs

Based on the constant transmittance theory (Tyler,

1968; Preisendorfer, 1986), the following SD relation

was developed.

where c and Kd are depth-averaged (from the water

surface to the SD) beam and diffuse attenuation

coefficients, respectively. When these coefficients do

not change vertically, they are expressed simply as

c and Kd, respectively. Hereafter, we assume their

vertical constancy. Eye(k) and Isurface(k) are the

photopic response of the human eye and the down-

welling irradiance at the water surface, respectively,

and they are a function of the wavelength: k. The
denominator of Eq. (2) indicates the sum of c and Kd

weighted toward the wavelength dependency of the

photic response and the downwelling irradiance over

the range of visible wavelengths from k1 to k2
(Preisendorfer, 1986). The photopic function pos-

sesses a maximum of around 550 nm and near zero at

Fig. 3 Flow chart of the semi-analytical prediction of Secchi

depth. Rrs remote-sensing reflectance, MCI maximum chloro-

phyll index, QAA_v5 quasi-analytical algorithm version 5,

QAA_turbid quasi-analytical algorithm for turbid waters,

a absorption coefficient, bb backscattering coefficient, c beam

attenuation coefficient, Kd diffuse attenuation coefficient, C
coupling constant, SD Secchi depth

SD ¼ CR k2
k1

EyeðkÞ � IsurfaceðkÞ½cðkÞ þ KdðkÞ�dk=
R k2
k1

EyeðkÞ � IsurfaceðkÞdk
ð2Þ

10 Hydrobiologia (2016) 780:5–20
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the two ends k1 and k2 (Takami, 2011), as shown in

Fig. 4a. In this study, k1 and k2 were set at 400 and

750 nm, respectively. We used the smoothed ‘‘global

tilt’’ (reference solar spectral irradiance: ASTM

G-173) as the downwelling irradiance at the water

surface as shown in Fig. 4a.

In addition, C is a coupling constant that depends on

variations in ambient conditions during measurements

(Preisendorfer, 1986). In the present study, the value of

C was set at (1) 9.7 in all lakes (hereafter indicated as

Case 1), (2) 9.7 in turbid lakes and 8.2 in clear lakes

(indicated as Case 2), and (3) using the following

Eq. (3) (indicated as Case 3, but as Case 4 when using

the threshold of cloud influence [Lshade/(Ed/p)) = 0.20].

C ¼ 8:12�
Z k2

k1

EyeðkÞ � IsurfaceðkÞ½cðkÞ
�

þKdðkÞ�dk=
Z k2

k1

EyeðkÞ � IsurfaceðkÞdk
�0:1076

ð3Þ

The values of (1) and (2) were obtained by the

statistical analysis in Terrel et al. (2012). Equation (3)

was deduced from the regression analysis between SD

Table 2 Steps of the quasi-analytical algorithm for retrieving IOPs in clear waters: QAA_v5 (Lee et al., 2009)

Steps Properties Derivations Approaches

Step 0 rrs =Rrs/(0.52 ? 1.7Rrs) Semi-analytical

Step 1 lðkÞ � bbðkÞ
aðkÞþbbðkÞ ¼ �0:089þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0892þ4�0:125rrs

p
2�0:125

Semi-analytical

Step 2 a(k0) ¼ awðk0Þ þ 10�1:146�1:366v�0:469v2

v ¼ log
rrsð443Þþrrsð490Þ

rrsðk0Þþ5
rrsð667Þ
rrsð490Þrrsð667Þ

� � Empirical

Step 3 bbp(k0) lðk0Þaðk0Þ
1�lðk0Þ � bb;wðk0Þ Analytical

Step 4 Y ¼ 2:0 1� 1:2 exp �0:9 rrsð443Þ
rrsðk0Þ

� �� �
Empirical

Step 5 bbp(k) ¼ bb;pðk0Þ k0
k

� �Y Semi-analytical

Step 6 a(k) ¼ ð1�lðkÞÞðbb;wðkÞþbb;pðkÞÞ
lðkÞ

Analytical

Step 7 f : aph(411)/aph(443) ¼ 0:74þ 0:2
0:8þrrsð443Þ=rrsðk0Þ

Empirical

Step 8 n : adg(411)/adg(443) =eS(443 - 411)

S ¼ 0:015þ 0:002
0:6þrrsð443Þ=rrsðk0Þ

Semi-analytical

Step 9 adg(443) ¼ ðað411Þ�fað443ÞÞ�ðawð411Þ�fawð443ÞÞ
n�f

Analytical

Step 10 aph(k) ¼ aðkÞ � awðkÞ � adgð443Þe�Sðk�443Þ Analytical

Table 3 Steps of the quasi-analytical algorithm for retrieving IOPs in turbid waters: QAA_turbid (Yang et al., 2013)

Steps Properties Derivations Approaches

Step 0 rrs =Rrs/(0.52 ? 1.7Rrs) Semi-analytical

Step 1 lðkÞ � bbðkÞ
aðkÞþbbðkÞ ¼ �0:089þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0892þ4�0:125rrs

p
2�0:125

Semi-analytical

Step 2 bbp(k0) ¼ lðk0Þawðk0Þ
1�lðk0Þ � bb;wðk0Þ Analytical

Step 3 Y =-372.99b2 ? 37.286b ? 0.84

b = log[l(750)/l(780)]

Semi-analytical

Step 4 bbp(k) ¼ bb;pðk0Þ k0
k

� �Y Semi-analytical

Step 5 a(k) ¼ ð1�lðkÞÞðbb;wðkÞþbb;pðkÞÞ
lðkÞ

Analytical

Step 6 aph(443) =-0.7488a(411) ? 1.392a(443) - aw(443) Empirical
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and (c ? Kd) (Fig. 5) using the data from Davies-

Colley (1988) (eight lakes with the range of SD from

0.42 to 17.7 m). Davies-Colley considered that this

type of tendency resulted from the change in the angle

subtended by the target disk at the eye with SD.

The beam attenuation coefficient c(k) is expressed
as the sum of the absorption and scattering

coefficients:

cðkÞ ¼ aðkÞ þ bðkÞ ð4Þ

Absorption a(k) and scattering b(k) are IOPs, and

thus can be expressed as the sum of the contributions,

e.g., pure water, phytoplankton, tripton, and colored

dissolved organic matter.

The diffuse attenuation coefficient Kd(k) is esti-

mated based on the relationship given by Kirk (1984):

KdðkÞ ¼ aðkÞ2 þ kl � aðkÞ � bðkÞ
h i0:5

=l0 ð5Þ

The coefficient klwas estimated from the following

equation (Bowers et al., 2000):

kl ¼ 0:425 � l0 � 0:19 ð6Þ

where l0 is the cosine of the zenith angle of refracted

solar photons, calculated from the solar zenith angle

(SZA) using Snell’s law with the appropriate index of

refraction for water and air. The SZA was calculated

by feeding the date, time, and latitude into the

algorithm provided by Nakagawa (2015). In addition,

Stage 1 gives the value of backscattering of particles:

bbp, and then we used the following equation for

calculating the value of b:

b ¼ bbp � coefbp þ bbw � coefw ð7Þ

where bbw is backscattering by pure water (Morel,

1974) as shown in Fig. 4b. In the present study, coefbp
was set at 55.6 based on the results of the studies such

as Mobley et al. (1993) and coefw was set at 2 due to

isotropic scattering. When checking the performance

of the present method, we used the absorption

coefficient of pure water as shown in Fig. 4b (aw:

Pope & Fry, 1997 from 400 to 700 nm and Hale &

Querry, 1973 above 700 nm) as the value of a and

considered bbp = 0. Then, the SD of pure water was

calculated to be 34.8 m.

Fig. 4 Optical properties used in this study. a The photopic response of the human eye (broken line) and the downwelling irradiance at

the water surface (solid line). b The absorption coefficient (solid line) and backscattering coefficient of pure water (broken line)

Fig. 5 Relationship between (c ? Kd) and SD using the data by

Davies-Colley (1988). Solid line the regression line. Dotted line

the line of the negative first power of (c ? Kd)

12 Hydrobiologia (2016) 780:5–20
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Accuracy assessment

We used the root-mean-square error (RMSE), the

mean normalized bias (MNB), and the normalized

RMSE (NRMS) to assess the model performance,

defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðXpred;i � Xmeas;iÞ2

N

s
ð8Þ

MNB ð%Þ ¼ �e ¼
PN

i¼1 ei
N

ð9Þ

NRMS ð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðei � �eÞ2

N

s
ð10Þ

where Xpred,i and Xmeas,i are the predicted and

measured values, respectively, N is the number of

measurements, and ei ð%Þ ¼ 100 � ðXpred;i�Xmeas;iÞ
Xmeas;i

is the

percent difference between the predicted and mea-

sured values. The RMSE values depend on the range

of SD; in contrast, MNB and NRMS are independent

of it, indicating appropriate indicators for evaluating

the prediction model in a wide variety of lake light

conditions. The standard error (se) of the regression

equation (independent variable: measured, dependent

variable: predicted) could be calculated as RMSE 9

((N - 2)/N)0.5. When comparing the errors in a

logarithmic form, we did not calculate MNB and

NRMS. This is because the values of ei in a logarithmic

form are meaningless.

Results

The comparison between measured and predicted SDs

is summarized in Fig. 6 and Table 4. In order to

evaluate the influences of the value of C and cloud on

prediction accuracy, Cases 1–4 are classified based on

these values as explained in ‘‘Methods’’ section. In

addition, Cases 4-1 and 4-2 are the special cases which

used QAA_v5 and QAA_turbid for all lakes, respec-

tively, and Case 4-3 is corresponding to Case 4 but

accessed after logarithmically transformed. The

threshold MCI is 0.0016 for all cases. In regards to

the value of C, better results were obtained by

changing it with the range of SDs (Case 2: Fig. 6b

and Case 3: Fig. 6c) compared to the constantCmodel

(Case 1: Fig. 6a). When we set C = 8.2 and 9.7, the

values R2 = 0.925 and 0.925, P\ 0.001 and\0.001,

RMSE = 1.20 and 1.53 m, MNB = -22.0 and

-14.4%, and NRMS = 37.5 and 41.1% were

obtained, respectively, indicating worse agreements

(figures not shown). In the comparison of the two

changing Cmodels, Case 3 gave better agreement than

Case 2.

When we removed seven data obtained in bad light-

measurement (by cloud) conditions (Case 4: Fig. 6d),

the R2 (P\ 0.001) and RMSE were worse, but the

MNB and NRMS were better compared to the original

dataset (Case 3). The removal of the largely underes-

timated data in this bad cloud conditions (0.55/0.31,

0.65/0.24, 0.50/0.35, 0.50/0.32, 0.58/0.29, 0.60/

0.27 m, except one overestimation 0.70/0.89 m; mea-

sured SD/predicted SD) resulted in improvement of

MNB and NRMS.

In all cases from Cases 1 to 4, the values of MNB

were negative, which indicated underestimation on

the whole. When we separated the results into the

group with SD[1 m and the group B1 m using the

conditions of Case 4, the former showed overestima-

tion (R2 = 0.838, P\ 0.001, RMSE = 1.62 m,

MNB = 17.0%, NRMS = 34.3%, and N = 34),

while the latter indicated underestimation (R2 =

0.390,P\0.001, RMSE = 0.20 m,MNB = - 27.7%,

NRMS = 28.3%, and N = 36 as shown in Fig. 6e).

In addition, the evaluation in a logarithmic trans-

formation form gave a higher R2 value (P\ 0.001;

Case 4-3).

All of the cases shown above used hybrid predic-

tion algorithms with the MCI threshold = 0.0016

(when MCI B0.016, then QAA_v5 was used, and

whenMCI[0.0016, then QAA_turbid was used). We

compared the cases with two individual algorithms

for retrieving IOPs for clear or turbid waters against

all lakes. Both individual algorithms gave worse

results (Case 4-1: Fig. 7a only the Lake Kasumigaura

data shown by the clear water algorithm and Case

4-2: Fig. 7b by the turbid water algorithm). In

particular, the turbid water algorithm sometimes

gave quite improbable SDs.

When we changed the threshold MCI to 0.0001,

the selection of the retrieving algorithms was altered

for nine data (eight for Lake Suwa and one for Lake

Akan). The changes in the results were slightly

worse (R2 = 0.915, P\ 0.001, RMSE = 1.18 m,

MNB = -12.9%, NRMS = 31.1%), but not so large

compared to the results of threshold MCI = 0.0016.
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Fig. 6 Measured SDs versus predicted SDs. a Case 1 in Table 4, b Case 2, c Case 3, d Case 4, and e lakes with SD\1 m (i.e., Lake

Kasumigaura) in Case 4 [magnifying the data shown in the circle in (d)]
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Discussion

Comparison with previous SD prediction research

To evaluate the prediction accuracy of our approach, we

compared our results with those of nine previous results

published in seven papers (Table 5). Härmä et al.

(2001) used satellite data simulated based on airborne

measurements. Lakes were targeted except Tampa Bay

(Chen et al., 2007) and Himmerfjärden, a fjord-like bay

(Kratzer et al., 2008). Values of se or RMSE were

shown for accuracy assessment except Binding et al.

(2007) andKratzer et al. (2008). Our results have higher

regression coefficients (Cases 1–4 in Table 4) and a

similar level of se (Case 4-3 in Table 4) compared to

those studies, although the studies cited in Table 5 used

space-born reflectance data containing atmospheric

disturbances except Härmä et al. (2001).

Table 4 Summary of the accuracy assessment for predicting SDs

Case 1 Case 2 Case 3 Case 4 Case 4-1 Case 4-2 Case 4-3

C C = 9.7 in

all lakes

C = 9.7 in turbid

lakes and C = 8.2

in clear lakes

Equation (3) Equation (3) Equation (3) Equation (3) Equation (3)

Lcloud/(Ed/p) \0.25 \0.25 \0.25 \0.20 \0.20 \0.20 \0.20

R2*1 0.925 0.925 0.926 0.923 0.920 0.063 0.957

RMSE (m) 1.88 1.20 1.09 1.14 1.21 10.3 (se = 0.37)

MNB (%) -7.8 -16.9 -8.7 -6.0 58.0 -14.5

NRMS (%) 44.3 34.7 32.2 31.4 81.4 146.8

n 77 77 77 70 70 70 70

Cases 1–3 are classified based on the use of C values shown in this table. Case 4 uses the same equation for C as Case 3, but different

thresholds for cloud influence as described by (Lshade/(Ed/p)). Cases 4-1 and 4-2 are the special cases which use QAA_v5 and

QAA_turbid for all lakes, respectively, and Case 4-3 is corresponding to Case 4 but accessed after logarithmically transformed. The

classification of clear: MCI ^0.0016 and turbid: MCI[0.0016 is used for all cases

*1 P\ 0.001 except for Case 4-2 (P = 0.036)

Fig. 7 Measured SDs versus predicted SDs. a Lake Kasumi-

gaura by the algorithm for clear waters and Eq. (3) correspond-

ing to Fig. 6e by the algorithm for turbid water. b Lakes other

than Lake Kasumigaura by the algorithm for turbid water and

Eq. (3) corresponding to Fig. 6d by the algorithm for clear water

Hydrobiologia (2016) 780:5–20 15

123



The dynamic range (0.4–17 m) of SD estimation in

the present study is much greater than those of the

previous studies, which were usually done in limited

waterbodieswithSDvalues\10 m.Because themodels

shown in Table 5 are classified as empirical model

based on field data, they are so site-specific that an

application of the obtainedmodel to other lakes is rather

questionable. The determination of the model parame-

ters is a prerequisite for using the models. In contrast,

our prediction scheme is almost analytical and therefore

probably applicable to any other lakes in the world. In

addition, there is no need to determine the model

parameters. In this context, our scheme is promising as

one of the universal algorithms for SD prediction. The

value of C, only one parameter, which possibly seems

rather empirical, will be discussed below.

In this study, we used in situ reflectance data at the

intervals of 1 nm to investigate the possibility of the

semi-analytical prediction of SD for lakes with a wide

range of turbidity. In the future, it will be necessary to

use the reflectance data at limited satellite bands and

check the applicability of the IOP-retrieving algorithm

to space-born data. The influence of atmospheric

correction should be also evaluated in the process of

SD prediction.

In the field, we sometimes observe the variability of

observed SD due to differences in observer eyesight

and/or observation experience. Here, the precision of

SD measurement was evaluated based on the field

survey in three lakes by 12 individuals. At the same

point in these three lakes, each examiner reported his/

her observation on SD successively without informa-

tion on the other examiner’s reports. The results

showed the following CVs: 13.2% for Lake Sohara

(average SD = 3.2 m), 15.1% for Bishamon Pond

(average SD = 5.5 m), and 5.6% for Lake Onogawa

(average SD = 3.5 m), indicating rather large scatter

on SD measurements, due probably to eyesight and/or

differences in experience among the examiners. In

light of these results, the superiority of SD estimation

using reflectance measurement (theoretically zero

CV) over direct SD measurement could be expected.

Parameters used in this algorithm

There are many reports about the values of C. Tyler
(1968) indicated C = 8.69 semi-theoretically based

on CR (the apparent contrast as seen by an obser-

ver) = 0.0066 and C0 (the inherent contrast of aT
a
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Secchi disk against its background) = 40. Holmes

(1970) reported averaged C = 9.42 using 13 mea-

surements in Goleta Bay, California. Preisendorfer

(1986) showed that C is related to a psychophysio-

logical parameter of the human eye–brain system, the

reflectance of the medium, and the submerged disk

reflectance, and he suggested that its reasonable

estimates were found at approx. 8–9. Terrel et al.

(2012) reported C = 10.1 for Lake Kasumigaura by

parameter fitting using long-term data of measured SD

and C = 9.3 for the same lake using the limited

dataset with an IOP analysis. We used C = 9.7 for all

10 of the lakes as the first trial (Table 4, Case 1), but it

gave quite large overestimation values of SDs for the

clear lakes. Then, we set C = 8.2 for the clear lakes

based on the parameter-fitting result for Lake Biwa

(Terrel et al., 2012) similar to the method mentioned

above. Nevertheless, C = 9.7 was used for the turbid

lakes because underestimated results were mostly seen

for the turbid lakes even using C = 9.7. The results

showed better agreement (Table 4, Case 2), but a

scientific basis for changing C is needed.

Holmes (1970) compared SD values with disks of

20-, 30-, or 50-cm dia. and showed its increasing

tendency with diameter. However, the statistical

significance of SD differences was denied. In contrast,

Davies-Colley (1988) indicated a trend of W with

clarity.W is defined as z divided by (c ? Kd), where z

is black-disk visibility (i.e., corresponding to C in the

case of SD). As the angle subset by the target at the eye

decreased with increased range, W apparently also

decreased. Davies-Colley gave the equation ofW with

black-disk visibility. A similar trend is expected for C,
and thus we determined the relationship as shown in

Fig. 5 using the data by Davies-Colley (1988) and then

obtained the relation between C and (c ? Kd) as

expressed by Eq. (3). This equation gives C = 12.87

at SD = 0.2 m, C = 10.59 at SD = 1 m, C = 9.74 at

SD = 2 m, C = 8.01 at SD = 10 m, and C = 7.37 at

SD = 20 m. Since the influence ofC on SD prediction

is considered fairly large for lakes with a wide variety

of turbidity, a careful and elaborate measurement on

the relationship between C and SDs is necessary.

In addition, the maximum SD was calculated to be

34.8 m with the use of the absorption and backscat-

tering coefficients of pure water as mentioned in the

‘‘Methods’’ section. However, for example, Larson

et al. (2007) reported the maximum around 41.5 m

(June 1997) in Crater Lake, Oregon. Although there is

a possibility of champion data obtained by a person

with particularly good eyesight, a value of C in such a

lake and the IOPs should be reexamined together with

checks on Eqs. (5)–(7).

Regarding MCI, the data shown in Fig. 7 and

Table 4 clearly indicated that the clear and turbid

water algorithms should be used for lakes with MCI

B0.0001 and those with MCI[0.0016, respectively.

The problem is the selection of the threshold between

0.0001 and 0.0016. A comparison of predicted SDs

between the two algorithms is shown in Fig. 8 for

Lakes Suwa and Akan. A better agreement was seen

for clear water prediction (i.e., using the threshold

MCI = 0.0016), but the observed SD is usually

between the two values predicted by the clear and

turbid water algorithms. The use of the threshold of

MCI = 0.0016 is recommended based on the present

study, but more data are necessary to accurately

determine the threshold value. In addition, a blended

model would be a further challenge to overcome

because Moore et al. (2014) successfully used blended

retrievals of Chl-a based on an optical water-type

classification. As for MCI, Matsushita et al. (2015)

indicated a relationship between MCI and Chl-a as

mentioned in the ‘‘Methods’’ section.

Similarly to MCI, Matthews et al. (2012) proposed

a comparison of reflectance peak height between 681

Fig. 8 Comparison of predicted SDs obtained using the clear

and turbid water algorithms for Lakes Suwa and Akan, whose

MCI values are in the range of 0.0001–0.0016
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and 709 nm in order to separate oligotrophic/me-

sotrophic (peak at 681 nm) and eutrophic/hyper-

trophic waters (peak at 709 nm) using MERIS

images. These peaks correspond to Chl-a fluorescence

and particulate backscattering, respectively. Using

this criterion, we obtained similar judgement results;

peaks at 681 nm in Lakes Biwa, Shirakaba, Suwa,

Ikeda, Unagi, Motosu, Shoji, and Sai, and peaks at

709 nm in Lakes Kasumigaura and Akan, and thus

selection using the MCI is considered general and

trustable.

Lastly, an exclusion of data for analysis is consid-

ered. A comparison between Cases 3 and 4 indicated

that the meteorological conditions (i.e., waves and

clouds), affected the SD prediction accuracy. We then

investigated the statistical relationship between [Lshade
divided by (Ed/p)] and the absolute value of ei for the
dataset of Case 4 [i.e., (Lshade divided by (Ed/p))
\0.20], which was, however, judged to be insignif-

icant (R2 = 0.078, P[ 0.05). In any case, a careful

in situ measurement of reflectance spectra is needed.

Discrepancies between the measured and predicted

SDs

Rather large discrepancies between the measured and

predicted SDs were sometimes observed; especially,

an underestimation, an overestimation, and scatters

were revealed in Lake Kasumigaura (Fig. 6e), Lakes

Sai and Shoji (Fig. 6d), and Lake Biwa (Fig. 6d),

respectively. The IOP-retrieving algorithm for turbid

waters was developed using the data taken in Lake

Kasumigaura, and high accuracy was confirmed

(Yang et al., 2013). Because the bias of the retrieving

algorithm in visible wavelengths was particularly

small, other factors would make an underestimation.

When applying the method for the discrimination of

cyano-dominant waters (SICFpeak\0 and SIPAFpeak
[0; Matthews et al., 2012), the presence of cyano-

dominance was detected in most of the reflectance

spectra in Lake Kasumigaura except for an observa-

tion in March. A dominance of cyanobacteria has been

observed in this lake from late spring to autumn

(Fukushima & Arai, 2015), resulting in horizontally

and vertically inhomogeneous patchy distributions of

algae. Thus, such an accumulation (i.e., surface scum

and patches of cyanobacteria), could probably affect

the observation of SD, but the details and the effects on

both SD observation and prediction should be

investigated. In addition, the prediction scheme for

the diffuse attenuation coefficient Kd [Eq. (5)] should

be reexamined by other schemes for turbid waters

(e.g., Yang et al., 2014).

In Lake Biwa, scatters were often observed for

noisy reflectance spectra (7 August 2009; Fig. 2b).

Noisy spectra were also obtained in Lakes Ikeda and

Unagi (Fig. 2d), but good agreement between the

measured and predicted SDs was observed. It thus

seems unlikely that scatters are attributable to noisy

reflectance spectra. In the case of Lakes Shoji and Sai,

a relatively large overestimation was obtained. In

these lakes, non-uniform vertical distributions of

OASs are expected. Odermatt et al. (2012) indicated

the importance of the vertical distribution of various

parameters in a stratified lake to evaluate the MERIS

observations of phytoplankton blooms. Phytoplankton

blooms occur in different stratification layers, allow-

ing the assessment of their influence on remote-

sensing estimates. Such an influence should be inves-

tigated by both modeling and in situ measurements.

Conclusion

In the present study, we constructed a semi-analytical

algorithm for estimating SD value using a remote-

sensing reflectance spectrum. We compared the pre-

dicted SD values with the observed values in 10

Japanese lakes with a wide variety of turbidity. A

fairly good agreement between the predicted and

observed values was obtained indicating the useful-

ness of this prediction scheme. Our prediction

scheme is almost analytical and therefore applicable

to any lake in the world. In this context, our

scheme promises to be one of the universal algorithms

for SD prediction. However, further investigations are

required on the relationships between C and SDs,

blending algorithm, the influence of algal patchy

distribution and/or a vertically non-uniform distribu-

tion of OASs on SD observation and prediction, the

use of space-born data and more in order to improve

the algorithm and its application.
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