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Abstract We examined trophic dynamics of a

stream food web where invasiveOrconectes neglectus

appear to be displacing native O. eupunctus in the

Spring River drainage of the Ozark Highlands, Mis-

souri and Arkansas, USA. We collected crayfish

species and possible food sources seasonally from a

site of sympatry on the South Fork Spring River. We

determined diet overlap and potential for competition

between O. eupunctus and O. neglectus, and investi-

gated seasonal variation using carbon and nitrogen

stable isotope analyses and gut content analyses. Gut

content analysis showed both species of crayfish

consumed mainly detritus during summer and spring,

with other prey categories varying by species and

season. Stable isotope analysis showed that O.

eupunctus and O. neglectus relied on invertebrates as

a major energy and nutrient source throughout sum-

mer, autumn, and spring, and the two species showed

differences in their stable isotope signatures during

spring and summer, but not autumn. Given the trophic

overlap between O. eupunctus and O. neglectus, there

is a potential for the two species to compete for food

and to be ecologically redundant. Ecological redun-

dancy can lead to reduced effects on ecosystem

function post-invasion, and therefore examining eco-

logical redundancy of potential invaders should be a

conservation priority.

Keywords Orconectes eupunctus � Orconectes
neglectus � Food webs � Diet � Energy and nutrient

sources � Invasive species � Temporal variation

Introduction

Crayfish introductions have elicited drastic changes in

aquatic systems, both to native crayfish faunas

(Capelli, 1982; Berrill, 1985; Momot, 1996) and to

other members of the aquatic communities (Olsen

et al., 1991; Gamradt et al., 1997; Nilsson et al., 2012;

Ercoli et al. 2015). Invasive crayfish can negatively

impact native crayfishes via reproductive interference

(Butler & Stein, 1985; Perry et al., 2001), transmission

of the crayfish plague (Alderman et al., 1990; Evans &

Edgerton, 2002; Westman et al., 2002), interspecific

competition (Hill & Lodge, 1994; Usio et al., 2001;

Gherardi & Cioni, 2004), and habitat displacement

with subsequent selective predation by fish (DiDonato

& Lodge, 1993; Garvey et al., 1994).
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In the Ozark highlands of Arkansas and Missouri,

the crayfish Orconectes neglectus Faxon, 1885 has

recently invaded portions of the Spring River

drainage, apparently displacing two native crayfish

species, Orconectes eupunctus Williams, 1952 and

Cambarus hubbsi Creaser, 1931 (Flinders & Magou-

lick, 2005; Magoulick & DiStefano, 2007). Or-

conectes neglectus is native to the White River

drainage in southern Missouri and northern Arkansas

(Pflieger, 1996) and the likely vector of introduction

was via bait bucket. Research suggests that; (1) O.

neglectus was introduced into the West Fork of the

Spring River between 1984 and 1998 (Flinders &

Magoulick, 2005; Magoulick & DiStefano, 2007), (2)

O. neglectus may be negatively impacting the native

crayfish community, especially O. eupunctus (Rabal-

ais & Magoulick, 2006a, b; Larson & Magoulick,

2009; Larson et al., 2009), and (3)O. neglectus has the

potential to expand its distribution in the Spring River

drainage and may negatively affect other species

including the imperiledOrconectes marchandiHobbs,

1948 (Flinders & Magoulick, 2005; Taylor et al.,

2007). Mechanisms driving this apparent displace-

ment have not been determined, although seasonal

drought and stream drying likely act as at least a partial

mechanism (Larson et al., 2009).

Orconectes eupunctus and O. neglectus show

similar habitat use, mainly selecting riffles, suggesting

interspecific competition as a potential mechanism

involved in the displacement (Magoulick & DiSte-

fano, 2007). In previous studies, habitat use and

selection by O. eupunctus and O. neglectus juveniles

and adults did not shift in sympatry versus allopatry

suggesting the two species did not compete for habitat

(Rabalais & Magoulick, 2006a). Additionally, densi-

ties of adult and juvenile male O. eupunctus and O.

neglectus were manipulated in field experimental

enclosures, but no evidence of interspecific competi-

tion was found (Rabalais &Magoulick, 2006b; Larson

& Magoulick, 2009). However, laboratory experi-

ments showed that O. neglectus aggressively domi-

nated O. eupunctus when food resources were limited

(Larson & Magoulick, 2009). Therefore, it is neces-

sary to examine prey resource use between species

in situ to determine the potential for interspecific

competition.

Most studies that use gut content analysis have

described crayfish as omnivores with detritus, peri-

phyton, sediment, and macrophytes making up the

majority of the diet (Whitledge & Rabeni, 1997;

Whitmore & Huryn, 1999; Helms & Creed, 2005).

This diet composition is further substantiated by

studies on ecosystem level effects of crayfish, specif-

ically their impact on periphyton, macrophytes, and

terrestrial leaf decomposition (Lodge & Lorman,

1987; Olsen et al., 1991; Hart, 1992; Creed, 1994;

Charlebois & Lamberti, 1996; Nyström et al., 1999;

Ludlam & Magoulick, 2010; Lodge et al., 2012).

However, in laboratory experiments crayfish have

been shown to have very little or no growth when fed

only detritus, periphyton, and macrophytes (Hill et al.,

1993). Gut content analysis only provides insight into

a very short time frame and may not be indicative of

what is being assimilated into crayfish tissue growth.

Recent studies have expanded on the use of gut content

analysis by using stable isotopes as a method of

determining energy and nutrient source (Parkyn et al.,

2001). The use of d13C and d15N allows for the

determination of the assimilated fraction of the diet

over an extended period of time as well as identifying

carbon and nitrogen sources not obvious in gut content

analysis (DeNiro & Epstein, 1978; Deniro & Epstein,

1981; Fry & Sherr, 1984; Peterson & Fry, 1987). The

application of stable isotopes in determining crayfish

food web structure has suggested that crayfish may be

assimilating more protein and energy rich food than

has been previously shown with gut content analysis

(Whitledge & Rabeni, 1997; Nyström et al., 1999;

Parkyn et al., 2001; Rudnick &Resh, 2005; Roth et al.,

2006). Therefore, crayfish in many systems may need

animal food sources. If these are in limited supply, or if

less dominant species are unable to secure these food

sources, then it could have a negative effect on

crayfish fitness (Hill & Lodge, 1999).

In most streams, hydrologic regimes vary dramat-

ically temporally which might affect food web struc-

ture (Closs & Lake, 1994). However, most studies

examining food web structure and feeding relation-

ships have ignored temporal variation. In particular,

Ozark streams undergo dramatic seasonal shifts from

high flows in autumn through spring and low flows in

summer and early autumn. This seasonal variation in

flows is likely important in the apparent displacement

of O. eupunctus by O. neglectus (Larson et al., 2009)

and may also effect feeding relationships and food

web structure.

Given that O. eupunctus and O. neglectus use

similar structural habitats but do not appear to compete
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for space, while they may potentially compete for

food, we examined prey use by O. eupunctus and O.

neglectus to determine the potential for interspecific

competition. Additionally, we were interested in

whether the native and invasive crayfish species may

be ecologically redundant in these systems (i.e.,

species or functional groups that have similar effects

on ecosystem structure and function; Walker, 1992).

We also sought to determine how food web structure

and feeding relationships among O. eupunctus and O.

neglectus varied seasonally. Our objectives were to

determine whether (1) O. eupunctus and O. neglectus

used similar prey, and (2) O. eupunctus and O.

neglectus feeding relationships varied temporally. We

used gut content and stable isotope analyses to address

these questions.

Materials and methods

This study was conducted on the South Fork Spring

River in north central Arkansas (36�2705300N,
91�5104800W) where the invasive O. neglectus co-

occurs with the native O. eupunctus. Because O.

eupunctus and O. neglectus select primarily riffle and

run habitats (Rabalais & Magoulick, 2006b; Magou-

lick & DiStefano, 2007) the study site consisted

primarily of riffle and run habitats and associated

stream margin.

Crayfish were collected during summer (August

2002), autumn (November 2002) and spring (April

2003). Crayfish were collected during daylight hours

using a kick net and Smith-Root Model 12 backpack

electrofisher. Collected crayfish were identified to

species, sexed, and carapace length recorded to the

nearest mm before being placed in a sample container.

Potential foods were also collected during each

sampling event. Fish were collected with a kicknet

and electrofisher, and invertebrates were collected

with a Hess sampler. Repeat collections were made

within the site to ensure enough material was collected

for stable isotope analysis. Periphyton were scraped

from rocks using scalpels and placed in sample

containers. Leaf detritus (hereafter detritus), filamen-

tous green algae, wood, and aquatic vegetation were

collected by hand and using forceps. All samples

collected were placed in coolers on ice and transported

to the laboratory within 5 h.

Crayfish were classified as juveniles (B12 mm CL)

and adults ([12 mm CL) for analysis. Adult crayfish

typically ranged 15–27 mm CL. This was based on

length-frequency histograms of O. eupunctus and O.

neglectus collected in a concurrent study (Rabalais &

Magoulick, 2006b). Both species showed similar

growth rates and had similar juvenile and adult sizes

in this system (Larson & Magoulick, 2008).

At the laboratory, all samples were immediately

lyophilized (LabConco Corp.) and frozen. Inverte-

brates were analyzed whole and all other samples were

homogenized using a pestle and mortar. Ground

material was passed through a 4 mm mesh screen to

reduce sample heterogeneity. Samples were stored in a

vacuum desiccator until analyzed at the University of

Arkansas Stable Isotope Laboratory. Individual cray-

fish abdomen muscle tissue was ground and

0.2–0.3 mg/sample used in analysis. Invertebrates

were weighed and analyzed as whole organisms with

the exception of Chironomidae which were sometimes

paired to obtain 0.2–0.3 mg/sample. Filamentous

green algae, periphyton, and detritus samples were

subsampled to obtain 1.5–2.5 mg/sample of material

for analysis. All samples were weighed into tin

capsules on a microbalance (Sartorius) prior to

analysis.

Elemental and isotopic analyses were performed

using an elemental analyzer (Carlos Erba NA 2500)

coupled with an isotope ratio mass spectrometer

(Thermo Finnigan Delta Plus). Stable isotope ratios

are reported in the d notation where d13C or d15-

N = ([Rsample/Rstandard] - 1) 9 1000 where Rsample is
13C/12C or 15N/14N of the sample and Rstandard is
13C/12C of Pee Dee belemnite carbonate or 15N/14N of

atmospheric N2. Internal standards of known relation

to above-listed international standards were used

every six samples. Reproducibility of internal stan-

dards at 2 standard deviations was 0.2% for d13C and

0.4% for d15N.
To determine prey ingested, crayfish from stable

isotope analyses were dissected and foreguts were

removed. Foregut contents were placed in a Petri dish

and distributed evenly across the plate following

Whitledge & Rabeni (1997). Gut contents were

viewed under a dissecting microscope at 920 magni-

fication. Percent of the total area of the dish of detritus,

invertebrates, algae, and inorganic material (i.e., sand

and silt) was estimated. Autumn crayfish stomach
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contents were not determined due to a freezer

malfunction.

We used mixing models in IsoSource (Phillips &

Gregg, 2003) to determine the percent contribution of

various energy and nutrient sources to crayfish. The

potential sources were allochthonous detritus (leaves),

invertebrates, filamentous green algae, and periphy-

ton. We focused on Trichoptera, Ephemeroptera, and

Chironomidae for this analysis because they were the

most abundant invertebrate taxa. Sources were deter-

mined to be isotopically distinct by examining means

and standard errors. We input d13C and d15N signa-

tures of each source (prey) and mixture (crayfish) and

set the increment size to 1% and the tolerance to 0.1%.

Before running IsoSource, values were adjusted for

trophic fractionation from diet items to crayfish (2.3%
for d15N and 0.5% for d13C) based on fractionation

values determined from literature (France & Peters,

1997; Vanderklift & Ponsard, 2003). We report the

ranges of feasible solutions for all possible combina-

tions of source proportions for the population rather

than means and standard deviations because they are

more informative for mixing model stable isotope

analysis (Phillips & Gregg, 2003).

We used ANOVA to determine differences in prey

categories ingested by crayfish species. We used

MANOVA to determine differences in d13C and

d15N signatures of crayfish species by season. Signif-

icant differences in MANOVA were followed by

ANOVA to determine differences in each response

variable. We did not correct for differences in basal

resource signatures among seasons as only filamentous

green algae showed substantial variation in signatures

among seasons and primary consumers varied little

indicating this variation did not carry up the food web.

Results

Feeding relationships

Gut content analysis showed all species-age classes of

crayfish consumed mainly detritus, with other prey

categories varying by species and season (Fig. 1).

Percent of each prey category consumed did not differ

significantly among species in either season (ANOVA

P[ 0.250).

Invertebrates appeared to be the main energy and

nutrient source for both species of crayfish (Fig. 2).

Mixing models showed that invertebrates were the

largest contributing source to all crayfish stable

isotope signatures, although there was an overlap

among invertebrates, algae, and periphyton for O.

eupunctus in summer (Table 1). Periphyton was the

second largest crayfish energy and nutrient source in

spring. In autumn, invertebrates made up a greater

proportion of prey of O. eupunctus than of O.

neglectus (Table 1).

Species and Age-Class
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Fig. 1 Mean (±SE) percent gut contents ofO. eupunctus adults

(A) and O. neglectus juveniles (J) and adults (A) in South Fork

Spring River during summer 2002 and spring 2003. Sample

sizes were 10, 10, 8 in summer and 3, 10, 3 in spring,

respectively
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Temporal variation

Percent detritus consumed decreased and percent

inorganic material consumed increased from summer

to spring (Fig. 1). Adult crayfish showed a significant

species by season interaction in d15N and d13C stable

isotope signatures (MANOVA Pillai Trace

P = 0.029) driven by differences in d15N of O.

eupunctus among seasons (Fig. 3). Orconectes

eupunctus d15N signatures were significantly greater

in autumn than in summer or spring (Tukey’s test

P\ 0.001), whereasO. eupunctus d13C signatures did

not differ among seasons (ANOVA P = 0.123).

Orconectes neglectus d15N and d13C signatures did

not differ significantly among seasons (MANOVA

Pillai’s Trace P = 0.288).

When examined on a seasonal basis, adult O.

eupunctus and O. neglectus d15N and d13C combined

signatures differed significantly in summer (Pillai Trace

P = 0.013) and spring (Pillai TraceP = 0.011), but not

in autumn (Pillai Trace P = 0.063). In summer, O.

neglectus adults had significantly greater d15N
(ANOVA P = 0.048) and d13C (ANOVA P = 0.037)

than O. eupunctus adults (Fig. 3), whereas in spring

only d13C (ANOVA P = 0.004) was significantly

greater (Fig. 3). Although the combined d15N and

d13C signatures did not differ in autumn, O. eupunctus

adults had significantly greater d15N (ANOVA

P = 0.016) than O. neglectus adults in autumn

(Fig. 3). The d15N difference between O. eupunctus

andO. neglectus in autumnwasmainly due to increased

consumption of invertebrates by O. eupunctus from

summer to autumn (Table 1). Stable isotope signatures

of O. eupunctus and O. neglectus were significantly

different in autumn (Pillai Trace P = 0.002), but not in

summer (Pillai TraceP = 0.063; Fig. 3). In autumn,O.

eupunctus juveniles had significantly greater d15N
(ANOVA P = 0.001) than O. neglectus juveniles

(Fig. 3). We collected no O. eupunctus juveniles in

spring.

Discussion

Gut content analysis showed that native O. eupunctus

and invasive O. neglectus consumed mainly detritus,

whereas stable isotope mixing models showed that

both species gained most of their nutrients from

invertebrates. Statistical analysis showed that O.

eupunctus and O. neglectus adults differed in their

stable isotope signatures in some seasons. Therefore,

the former two analyses indicate thatO. eupunctus and

O. neglectus prey resources overlap and show the

potential for competition, whereas the latter analysis

suggests that prey resources of O. eupunctus and O.

neglectus did not overlap during some seasons and

may not show potential for competition. The

Fig. 2 Mean (±SE) d13C and d15N signatures (%) of O.

eupunctus and O. neglectus juveniles and adults and those of

other consumers (central stonerollers and rainbow darters) and

potential food sources in South Fork Spring River during

summer 2002, autumn 2002 and spring 2003
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discrepancy between the analyses may be due to subtle

seasonal changes in diet between the two species that

are not picked up by gut content analysis. It is also

possible that the differences in stable isotope concen-

trations between the species in some seasons may not

indicate differences in prey categories, but rather may

be due to subtle differences in proportion of prey

types. The d15N difference between O. eupunctus and

O. neglectus adults in autumn appears to be an

exception with increased consumption of invertebrates

byO. eupunctus leading to increased d15N values from

summer to autumn. On the other hand, gut contents

analysis and stable isotope mixing models provided

strong evidence that native O. eupunctus and invasive

O. neglectuswere consuming similar diets and gaining

the majority of their energy and nutrients from similar

prey types.

Others have found strong overlap between native

and invasive crayfish diets. In Scandinavia, stable

isotope analysis showed that native noble crayfish and

introduced signal crayfish did not differ in their niche

widths in boreal streams (Olsson et al., 2009) and lakes

(Ercoli et al., 2014) and isotopic niches of the two

species strongly overlapped in lakes (Ercoli et al.,

2014). Using stable isotope analysis in an Australian

river, Beatty (2006) found that the native marron and

introduced yabbie occupied similar predatory trophic

positions in summer, but the two species differed in

their trophic positions in winter.

We also found temporal variation in crayfish gut

contents and d15N and d13C stable isotope signatures.

Few studies have examined temporal variation in

freshwater food webs based on gut contents and stable

isotope analysis, especially related to crayfish trophic

Table 1 Ranges of percent

prey consumed by crayfish

species in South Fork

Spring River during

summer, autumn 2002 and

spring 2003 based on

IsoSource mixing models

Sample sizes are as in

Fig. 2

Season Species Prey categories

Invertebrates Algae Periphyton Detritus

Summer O. eupunctus 27–77 16–46 0–28 0–9

O. neglectus 53–93 2–26 0–22 0–6

Autumn O. eupunctus 79–91 0–10 0–12 0–11

O. neglectus 59–79 0–16 2–25 0–20

Spring O. eupunctus 89–90 0 10–11 0

O. neglectus 83–84 0 16–17 0

δ1
3 C

-33.2

-32.8

-32.4

-32.0

-31.6

-31.2

-30.8

-30.4

Summer Autumn Spring

δ1
5 N

7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4

Seasons

Summer Autumn Spring
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4

-33.2

-32.8

-32.4

-32.0

-31.6

-31.2

-30.8

-30.4

O. eupunctus 
O. neglectus 

Adult Juvenile
Fig. 3 Mean (±SE) d13C
and d15N signatures (%) of

O. eupunctus and O.

neglectus adults and

juveniles during summer,

autumn and spring at middle

site in South Fork Spring

River. Sample sizes are as in

Fig. 2
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dynamics. Stenroth et al. (2006) found that d15N and

d13C signatures of Pacifastacus leniusculus Dana,

1852 did not differ between August and September or

between 2001 and 2003 in lentic systems. Beatty

(2006) found that native marron and introduced yabbie

showed strong trophic overlap in summer, with most

of their energy coming from fish, whereas in winter the

yabbie trophic position shifted to herbivory.

Although O. eupunctus and O. neglectus were often

using similar prey resources in the South Fork Spring

River, competition will not occur unless food is limiting

in this system and that has not been established. Field

experiments have shown that adult and juvenile maleO.

eupunctus and O. neglectus did not compete for space

and food when enclosed at typical densities in the South

Fork Spring River (Rabalais & Magoulick, 2006b;

Larson & Magoulick, 2009). Fortino & Creed (2007)

also found no evidence for competition between two

native crayfish species in Appalachian streams and

suggested that predation was more important in struc-

turing these communities. Competition for shelter has

also been suggested as an important mechanism in

structuring some crayfish communities (Bovbjerg, 1970;

Rabeni, 1985; Garvey et al., 1994; Gherardi et al., 2004;

Gherardi & Cioni, 2004), but little evidence exists for

food competition among crayfish. Food and space may

not be limiting crayfish populations in the Spring River.

Our finding that crayfish consume mostly detritus,

but gainmost of their energy and nutrients fromanimals

or algae has been found in other systems (Whitledge &

Rabeni, 1997; Parkyn et al., 2001;Hollows et al., 2002).

Momot (1995) suggested that animal nitrogen is

important in the diet of all crayfish, but that juvenile

crayfish should require more animal protein than adult

crayfish. We found that diets and isotopic signatures of

juvenile and adult crayfish were similar and that both

age classes gained most of their energy and nutrients

from consumption of invertebrates. Some studies have

found that juvenile crayfish consume more inverte-

brates and adult crayfish consume more detritus (Whi-

tledge & Rabeni, 1997; Parkyn et al., 2001; Hollows

et al., 2002). However, Bondar et al. (2005) found that

both juvenile and adultP. leniusculus consumedmainly

detritus when presented a choice of detritus and insects

even though they grew faster on insects. Stenroth et al.

(2006) found that juvenile and adultP. leniusculuswere

both dependent on animal matter in their diet based on

stable isotope analysis. Although crayfish function as

omnivores, their high use of animal matter as an energy

and nutrient source has led some to suggest that crayfish

occupy the trophic role of predators (Parkyn et al., 2001;

Roth et al., 2006). Conversely, Stenroth et al. (2006)

suggested that carbon andnitrogenmay followdifferent

pathways in omnivorous crayfish with plant material

contributing to the carbon budget and invertebrates

contributing to the nitrogen budget. Therefore, crayfish

could be viewed as detritivores with respect to carbon

and predators with respect to nitrogen. Our results

support the idea that crayfish function as omnivores

consuming mainly detritus, but act as trophic predators

being relatively enriched in d15N, placing them as

predators in the food web along with omnivorous

central stonerollers (a grazing minnow) and below

insectivorous rainbow darters.

Additionally, overlap in the food resources of native

O. eupunctus and invasive O. neglectus suggests

potential for ecological redundancy. This has impor-

tant implications because if native and invasive species

are ecologically redundant then species replacement

should have little, if any, effects on ecosystem structure

and function. In a stream mesocosm experiment,

Magoulick (2014) found that native O. eupunctus and

invasiveO. neglectuswere largely ecologically redun-

dant, although subtle differences in crayfish effects on

periphyton and sediment could potentially cascade

through the food web. Usio et al. (2006) also found that

the functional roles of a native and exotic crayfish were

similar in Japan streams. In boreal lakes, Ercoli et al.

(2015) found that introduced signal crayfish and native

noble crayfish were ecologically equivalent in their

effects on littoral macroinvertebrate assemblages. In a

study on these two species in Swedish streams, Olsson

et al. (2009) suggested the two species are likely to

have similar impacts at the stream scale, but the invader

is likely to have greater impacts at the regional scale

due to their ability to occupy a greater range of stream

conditions. Others have found that crayfish that replace

native species can have large direct and indirect effects

on ecosystem structure and function (Wilson et al.,

2004; Lodge et al., 2012).Magoulick (2014) suggested

that most studies that have found large effects of

invasive species relative to native species have exam-

ined extraregional (invaded another continent or

crossed major drainage boundaries within a continent)

versus extralimital (invaded a drainage or state adja-

cent to their native range) invasions (Larson & Olden,

2010). Therefore, it is possible that extraregional

invasions fundamentally differ from extralimital
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invasions in terms of ecological redundancy. Further

research is needed to address this question.

Identifying crayfish gut contents has associated

error and it is possible that this led to part of the

discrepancy between gut contents and stable isotope

analysis. However, given the large differences in the

importance of detritus versus invertebrates it is

unlikely that this source of error was responsible for

the substantial differences we found using these two

approaches. Whitledge & Rabeni (1997) found that

Orconectes spp. had high assimilation efficiencies on

insects (92%) and low assimilation efficiencies on

detritus (14%) and this likely explains the discrepancy

between gut content and stable isotope mixing models

for crayfish. However, even using higher assimilation

efficiencies for animal matter (70%) than leaf detritus

(15%), detritus contributed most to production of

Orconectes spp. (45%) followed by animal matter

(30%) in a Kansas stream (Evans-White et al., 2003).

We found that native O. eupunctus and invasive O.

neglectus consumed mainly detritus, but both species

gained most of their energy and nutrients from inverte-

brates and this was the case during three seasons. Our

results support the idea that crayfish function as omni-

vores consuming mainly detritus, but act as trophic

predators in the food web. In our study stream and

elsewhere, the trophic role of crayfish is not easily

generalized, as omnivorous crayfish may function as

detritivores orpredators dependingon techniques used to

analyze feeding relationships.Given this trophic overlap,

there is a potential for the two species to compete for food

in this system as well as display ecological redundancy.
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