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Measuring the impacts of Roundup Original� on fluctuating
asymmetry and mortality in a Neotropical tadpole
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Abstract Amphibian larvae are highly susceptible

to contamination, which can lead to lethal and

sublethal effects. This impact can be measured by

fluctuating asymmetry (FA), which is based on

differences between the sides of organisms with

bilateral symmetry. We evaluated the effect of acute

and chronic exposure to Roundup Original� on

Physalaemus cuvieri tadpoles. We measured tadpole

survival and estimated the LC5096h.We also evaluated

whether a sublethal concentration increases the FA. In

acute exposure, survival was reduced and the LC50

was 2.13 mg a.i./l. In chronic exposure, nostril–snout

distance and eye width had a significantly higher FA in

contaminated tadpoles. The chronic exposure to

contaminants could lead to several sublethal effects,

which would be used in biomonitoring surveys.

Morphological traits affected by contaminants, such

as malformations or FA, would be relatively more

easily measured from field samples. Because it is cost

effective, easy to measure, and can be obtained

without tagging or housing field-caught animals, we

suggest that FA is a promising marker for monitoring

the environmental impacts of contaminants like

Roundup. However, additional studies are necessary

to understand what additional environmental stressors

might impact FA, and how this might alter its utility

for use in biomonitoring.

Keywords Glyphosate � Ecomorphology �
Ecotoxicology � Acute exposure � Chronic exposure �
Fluctuating asymmetry

Introduction

Extensive agriculture plantations demand high levels

of agrochemicals use, resulting in large-scale envi-

ronmental contamination. This contamination can

potentially accelerate population declines of native

species, which are, in general, non-target organisms of

the use of agrochemicals (Davidson et al., 2001, 2002;

Sparling et al., 2001; Clay, 2004; Relyea, 2005a;

Schiesari et al., 2007; Relyea & Jones, 2009; Schiesari

& Grillitsch, 2011). Glyphosate (the active ingredient

of Roundup�, Vision� and others) is a non-selective
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Campus Soane Nazaré de Andrade, Rodovia Jorge
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herbicide that is highly effective against weeds and is

used on the majority of crops in Brazil (Amarante Jr.

et al., 2002). Its commercial formula also includes a

surfactant (e.g., polyethoxylated tallow amine—

POEA), which increases its toxicity (Giesy et al.,

2000). Glyphosate is designed for terrestrial use and is

considered to be inactive when absorbed by the soil,

although this process is not completely understood

(Amarante Jr. et al., 2002). However, several surveys

have detected glyphosate, including formulations with

POEA, in aquatic environments and associated with

riparian vegetation, which probably originated from

overspray in aerial application, lixiviation, and over-

land flow (e.g., Newton et al., 1984; Goldsborough &

Beck, 1989; Feng et al., 1990; Giesy et al., 2000;

Davidson et al., 2001, 2002; Thompson et al., 2004;

Queiroz et al., 2011). According to Giesy et al. (2000),

glyphosate and POEA can remain active in water from

between 7 and 70 days, depending on the environ-

mental conditions.

Fluctuating asymmetry (FA) can be used to eval-

uate the effect of stressful external factors (e.g.,

contamination, environmental disturbance) on the

developmental stability of individuals (Palmer &

Strobeck, 1986; Clarke, 1993; Sanseverino & Nes-

simian, 2008). This method is based on the observa-

tion of random and non-directional deviations in the

theoretical model of perfect symmetry of morpholog-

ical traits in bilateral organisms (Van Valen, 1962;

Palmer & Strobeck, 1986; Sanseverino & Nessimian,

2008). High levels of environmental stress can signif-

icantly increase deviations in the symmetry of traits

(Clarke, 1993; Hogg et al., 2001), making FA a useful

tool for biomonitoring (Clarke, 1993; Johnson et al.,

1993; Sanseverino & Nessimian, 2008). Although

some studies have found no relationship between an

increase in FA and environmental stress (Forbes et al.,

1997; Stige et al., 2004; Reis et al., 2011), Beasley

et al. (2013) demonstrated that FA is a sensitive

biomarker of environmental stress. Furthermore,

many studies have confirmed this relationship in

different taxa, such as dragonflies (Hardersen &

Frampton, 1999; Chang et al., 2007), mammals

(Badyaev et al., 2000), and amphibians (Söderman

et al., 2007; Delgado-Acevedo & Restrepo, 2008).

Amphibians are the most threatened vertebrate

group and have the highest rates of population decline

in the world (Stuart et al., 2004). Numerous studies

have suggested that contaminants can impact

amphibians at multiple levels of biological organiza-

tion (Boone et al., 2007; Schiesari et al., 2007; Egea-

Serrano et al., 2012), although the mechanisms are

diverse and sometimes difficult to ascertain. Charac-

teristics such as permeable skin and water dependency

increase the susceptibility to pollutants (Schiesari

et al., 2007; Allentoft & O’Brien, 2010), especially for

species with indirect development (Altig & McDiar-

mid, 1999a, b). Tadpoles have high phenotypic

plasticity and can rapidly respond to environmental

changes (Alford, 1999), such as contaminant exposure

(e.g., Bridges, 1999; Griffis-Kyle, 2005, 2007; Relyea,

2005a, b, c; Snodgrass et al., 2008; Jones et al., 2010;

Relyea, 2012; Lajmanovich et al., 2013). According to

Relyea (2012), the majority of studies that have

investigated contaminant effects on tadpoles were

based on experiments with a single species in a short

time period (e.g., 1–4 days), resulting in a lack of

empirical evidence of contaminant impact over a long

exposure time. This chronic exposure can occur at

different levels of disturbance, leading to sublethal

effects, such as changes in behavior and ontogenetic

traits (e.g., Bridges, 1997, 1999, 2000; Griffis-Kyle,

2007; Shin et al., 2008; Snodgrass et al., 2008; Relyea,

2012).

The geographic distribution of ecotoxicological

studies with amphibians is far from uniform. As

observed by Schiesari et al. (2007), the Neotropical

region contains the largest number of amphibian

species and has the highest rates of population decline,

but it is the region with the lowest number of species

considered in ecotoxicological studies. This observa-

tion is quite realistic, especially in Brazil, where

information concerning the effect of glyphosate and

other contaminants on amphibians is lacking. Differ-

ent anuran species have different levels of contami-

nant sensitivity (Boone et al., 2007) and can respond

differently to glyphosate concentrations (Relyea &

Jones, 2009). Thus, the evaluation of lethal and

sublethal effects of contaminants is highly necessary

for native species in Brazil, especially in the Cerrado

biome, which is considered a biodiversity hotspot

(Myers et al., 2000) and has the highest potential for

degradation and agricultural expansion (Diniz-filho

et al., 2007; Klink & Machado, 2007; Schiesari &

Grillitsch, 2011).

Here, we tested the effects of acute and chronic

exposure to a commercial formulation of glyphosate

(Roundup Original�) on tadpoles of Physalaemus
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cuvieri (Fitzinger, 1826). We evaluated the survival

rates at increasing concentrations of the active ingre-

dient (i.e., acute exposure) and estimated the LC5096h.

We also evaluated whether chronic exposure to

glyphosate can result in a higher FA in five morpho-

logical traits of P. cuvieri tadpoles.

Materials and methods

Sample and study system

Physalaemus cuvieri is a very common species found

throughout Brazil, and occurs in landscapes with

different degrees of agriculture disturbance (IUCN,

2014). On 22 March, 2013, we collected four egg

masses from two different ponds (pond 1, three egg

masses: 16�34040.5900S, 48�56000.8200W; pond 2, one

egg mass: 16�39042.2500S, 48�49011.4000W) from Bon-

finópolis municipality, Goiás, Brazil. These ponds are

very similar in physical structure, with a high

percentage of vegetation on their margins, and a low

anthropogenic disturbance in the surrounding matrix.

The egg masses were transported in plastic bags with

water to a laboratory in the Federal University of

Goiás, in the state of Goiás, Brazil, where all egg

masses were combined in a glass tank

(60 cm 9 40 cm 9 40 cm) with 8 l of dechlorinated

water until the tadpoles hatched. All tadpoles used in

the experiments described below were randomly

selected from this glass tank.

The experiments were carried out in laboratory

conditions, with a controlled air temperature

(28 ± 2�C) and photoperiod (12 h light/12 h dark).

For both experiments, we used a commercial glypho-

sate formula (Roundup Original�) with 48% glypho-

sate. In the majority of ecotoxicological studies, the

glyphosate concentrations are shown in mg a.i./l

(a.i. = active ingredient) or mg a.e./l (a.e. = acid

equivalent), where 1 mg a.i./l is equivalent to 0.75 mg

a.e./l (Relyea, 2006). We used the notation mg a.i./l

and determined the concentrations based on CON-

AMA 357 (2005), which permits a mean glyphosate

concentration of 280 lg/l (i.e., 0.28 mg a.i./l) in class

III freshwater types in Brazil. To determine higher

concentrations for experimental treatments, we

increased the glyphosate concentrations by uniform

increments based on recent studies of toxicity in

tadpoles (Relyea, 2012; Lajmanovich et al., 2013;

Simioni et al., 2013). All glyphosate concentrations

were calculated using the informed quantity of

glyphosate included in the Roundup Original� for-

mulation, as presented in the leaflet of the product.

As experimental units, we used glass aquaria with

2 l of dechlorinated water, without substrates and with

aquarium air compressors. In both experiments, the

tadpoles were acclimatized in these aquaria for 24 h

before exposure to herbicide. During the experimental

trials, the tadpoles were fed ad libitum every 2 days

with ornamental fish food and tadpoles found to be

dead were removed from the aquaria every 24 h.

Surviving tadpoles were sacrificed with benzocaine

solution (300 mg/l) and all tadpoles were preserved in

10% formalin. The specimens were deposited in the

Herpetological Collection of the Federal University of

Goiás/ZUFG (ZUFG 1509: tadpoles of acute expo-

sure/ZUFG 1756 and ZUFG 1757: tadpoles of chronic

exposure).

Acute exposure experiment

Wemaintained the tadpoles in the storage tankuntil they

reached developmental stage 25 (sensu Gosner, 1960).

Subsequently, we randomly collected 10 tadpoles for

each experimental unit. We prepared treatment-specific

solutions with five nominal concentrations (Con-

trol = 0 mg a.i./l; T1 = 0.38 mg a.i./l; T2 = 2 mg

a.i./l; T3 = 4 mg a.i./l; T4 = 6 mg a.i./l) that were

applied in a single pulsed dose in each experimental

unit. Considering that each experimental unit contains 2

L of water, we added 25, 16.66, 8.32, and 1.55 ll of
Roundup Original� to treatments to represent the

nominal concentrations 6, 4, 2, and 0.38 mg a.i./l,

respectively; in the control,weadded25 ll ofwater.We

replicated each treatment nine times, totaling 45 exper-

imental units and 450 tadpoles. The tadpoles were

exposed to the herbicide for 96 h (4 days) and, during

this period, we removed any dead tadpoles every 24 h

and recorded the survival rates for each treatment. There

was a little variation in water temperature (ran-

ge = 22.9–23.7�C) and pH (range = 7.0–7.2) between

treatments.

Chronic exposure experiment

The tadpoles were maintained in the storage tank for

22 days for growth. After this period, we randomly

collected five tadpoles to assign to each experimental
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unit and applied a Control (0 mg a.i./l) and a Chronic

(2 mg. a.i./l) treatment. These treatments were estab-

lished by adding 8.32 ll of water to the Control and

8.32 ll of Roundup to the Chronic. Solutions were

applied by a single pulsed dose without the renewal or

replacement of water in aquaria. The lower concen-

tration of glyphosate in the Chronic treatment (i.e.,

lower than LC50) ensured a reduced mortality rate and

allowed an increased exposure time to the herbicide,

allowing us to evaluate the herbicide effect on

morphology. The tadpoles remained exposed to the

experimental treatments for 15 days. We replicated

each treatment 10 times, totaling 20 experimental

units and 50 tadpoles were exposed to each treatment.

There was no difference in the pH of the water

(Chronic = 7.175 ± 0.259; Control = 7.135 ±

0.218, range = 6.4–7.5; t = -0.181, d.f. = 18,

P = 0.858) and water temperature (Chron-

ic = 23.875 ± 0.267�C; Control = 23.830 ±

0.267�C, range = 23.2–24.3�C; t = -0.408,

d.f. = 18, P = 0.687) between treatments.

After 15 days, we randomly collected 30 surviving

tadpoles from the control (Control) and 30 surviving

tadpoles from the treatment (Chronic). Each tadpole

was positioned against a millimeter ruler in a Petri-

dish using ultrasound gel, and submerged in water. We

then obtained images in a dorsal view with a Sony

a230, 10.2 megapixel camera, equipped with an ocular

macro Sigma Zoom 24–70 mm lens, supported on a

tripod at a height of 30 cm.We measured five bilateral

morphological traits for each tadpole to calculate the

FA indices (Fig. 1), with ImageJ 1.46r software. We

also measured the total length (TL) and development

stage of tadpoles (Gosner, 1960).

Statistical analyses

In the acute exposure experiment, we performed an

ANOVA using the survival rate of tadpoles as a

response variable and the concentration level of

glyphosate as an experimental factor, followed by an

a posteriori Tukey test, to verify the prediction that a

higher glyphosate concentration increases tadpole

mortality. To estimate the LC5096h value, we used

Probit regression analyses (Bliss, 1935; Fisher, 1935).

We assessed the glyphosate effect in the chronic

exposure experiment by measuring FA of P. cuvieri

tadpoles. We opted to use FA as a measure of

environmental stress (Beasley et al., 2013) because

FA can be calculated as an instant measure, i.e., an

investigator can collect a tadpole in the field and

estimate the FA value without housing the specimens.

We used the index FA = (R - L) (Palmer & Stro-

beck, 1986), where R and L represent the right and left

sides, respectively. The outlier values, either negative

or positive, were kept, because these are expected in

FA studies and can have biological significance

(Palmer & Strobeck, 1986; Leung & Forbes, 1997;

Hardersen, 2000). Following the approach suggested

by Palmer & Strobeck (1986), we repeated all

measurements of morphological traits three times,

separated by at least 1 month between measurement

sessions and applied a general linear mixed model,

using each morphological trait as a response variable,

with side as a fixed factor and individuals as a random

factor to estimate human measurement errors. We

estimated the variation of random factors (variance

component of the model) according to the ANOVA

method (Searle et al., 1992), which provides an

estimate for the variance of random factors, for the

variance in the dependent variable affected by random

factors, and also to test whether variance components

were different from zero. This analysis was applied to

control and measure the potential contribution of

confounding factors (measurement errors, directional

asymmetry, and anti-symmetry) on the variation

between the left and right sides of the studied organism

(Palmer & Strobeck, 1986), increasing the reliability

of the AF index to hypothesis test (Palmer & Strobeck,

1986). If our general mixed model did not show any

significant error in measurements, we tested which

type of FA each morphological variable presents using

a single sample Student’s t test to verify whether the

means differed significantly from zero (Palmer &

Strobeck, 1986). A Kolmogorov–Smirnov test (K–S)

was used to evaluate whether the FA indices were

normally distributed and a Spearman Correlation test

to verify whether FA indices were independent of the

TL and developmental stage of the tadpoles.

Our hypothesis that the chronic exposure to

glyphosate increases the FA was tested using the

module of FA index [FA = (|R - L|)], to include only

the absolute values of the differences between right

and left sides in each trait. Finally, a Student’s t test

with separate variance estimates was used to test the

prediction that developmental deviations (i.e., the

module of FA index) for each trait were higher in

tadpoles submitted to chronic exposure to glyphosate
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(Chronic) than in those tadpoles not exposed to

glyphosate (Control). These analyses were performed

according to Zar (1999).

Results

The effect on survival

When exposed to acute concentrations of glyphosate,

the survival rates of P. cuvieri tadpoles decreased

[F(4) = 3.945,P = 0.008, d.f.error = 38],mainly in the

highest concentration treatment (T4), where survival

was reduced to approximately 25% when compared to

the control (PTukey HSD = 0.004) (Fig. 2). The esti-

mated LC5096h for P. cuvieri was 2.13 mg a.i./l.

The effect on Fluctuating Asymmetry

In this experiment, no mortality was observed in the

control. However, seven tadpoles died in the chronic

treatmentduring the15 daysof exposure.Tadpolesdidnot

differ in total length [TLChronic = 23.388 mm (range:

29.631–15.815), TLControl = 24.015 mm (range:

28.731–19.302), t = 0.912, d.f. = 57, P = 0.365] or in

developmental stage [DevChronic = 35.76 (range: 39–33),

Devcont = 35.89 (range: 39–30), t = 0.266, d.f. = 57,

P = 0.791] between treatments.

TheFAresults are shown inTable 1. For all traits, the

means were not significantly different from zero and we

assumed that all traits displayed FA, because they

showed a small, random and non-directional variation

between symmetry planes. The FA indices were

normally distributed. No correlation was observed

between the FA indices and TL, indicating that the

measurements are independent of tadpole size. Simi-

larly, no correlation was observed between FA indices

and the development stage of tadpoles. The absence of

correlation invalidated the need to calculate FA indices

relative to body size and developmental stage. We

observed that the measurement error was significantly

smaller than the FA (Table 2), which increases the

reliability of the measurements. We observed no

directional asymmetry (i.e., no difference between

sides) and no anti-symmetry (i.e., FA is independent

of the individual and the deviations are random).

Tadpoles exposed to the herbicide had a higher FA in

the nostril–snout distance (NSD) and eye width (EW)

than control tadpoles (NSD: tseparate variances = -3.365,

d.f. = 57, P = 0.001, Fig. 3; EW: tseparate variances =

-2.233, d.f. = 57, P = 0.029, Fig. 4).

Discussion

We observed lethal and sublethal effects of glyphosate

contamination (i.e., Roundup Original�) on P. cuvieri

tadpoles. The survival rate following acute exposure

was reduced in tadpoles in stage 25, but only showed

statistical significance at a high glyphosate

Fig. 1 Morphological traits used to calculate the fluctuating

asymmetry indices (solid lines). NSD nostril–snout distance,

ESD eye–snout distance, EL eye length, EW eye width; the

variable RPN (relative position of the nostrils) is obtained by the

equation: PRN = ESD/NSD. Dashed lines demonstrate an

example of asymmetric (right) and symmetric (left) individuals

for NSD
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concentration (T4 = 6 mg a.i./l). The reduction in

survival was observed in two congeneric species of P.

cuvieri. Simioni et al. (2013) exposed tadpoles of P.

albonotatus to sublethal concentrations of Gliz 480 SL

(25, 50, and 75% of LC50) and observed a reduction in

survivorship at higher glyphosate concentrations.

Figueiredo & Rodrigues (2014) observed a similar

effect for P. centralis on mortality in chronic

glyphosate concentrations (25, 50, and 75% of

LC50), although the mortality was always

Fig. 2 Mean survival rates of P. cuvieri tadpoles exposed to an acute concentration of Roundup Original�. Letters A and B represent

significantly different treatments (Tukey HSD test). The closed circles are the means and the bars are confidence interval ±95%

Table 1 Results of tests to

evaluate fluctuating

asymmetry for all measured

traits in P. cuvieri tadpoles

K–S Kolmogorov–Smirnov,

TL total length, Dev.

developmental stage

Traits N t test (single sample) K–S Spearman–TL Spearman–Dev.

t d.f. P d P r P r P

NSD 60 -0.691 58 0.491 0.101 [0.20 0.131 0.321 -0.012 0.925

ESD 60 0.382 58 0.703 0.071 [0.20 0.133 0.314 0.062 0.640

EL 60 -1.529 58 0.180 0.111 [0.20 0.206 0.116 0.004 0.971

EW 60 -1.354 58 0.180 0.061 [0.20 0.068 0.607 0.028 0.833

RPN 60 1.050 58 0.298 0.129 [0.20 -0.015 0.908 -0.059 0.654

Table 2 Results of general

linear mixed model for all

measured traits in P. cuvieri

tadpoles

MS mean square, F F-

statistic, d.f. degrees of

freedom

* P\ 0.001

Traits Side Individual Side 9 individual Error

MS F d.f. MS F d.f. MS F d.f. MS d.f.

NSD 0.0018 0.515 1 0.1267* 36.435 58 0.0035* 27.110 58 0.0001 236

ESD 0.0010 0.193 1 0.1857* 35.231 58 0.0053* 99.334 58 0.0001 236

EL 0.0006 1.437 1 0.0969* 21.568 58 0.0004* 2.688 58 0.0002 236

EW 0.0066 0.787 1 0.0561* 6.649 58 0.0084* 23.684 58 0.0004 236

RPN 0.033 1.251 1 0.661* 25.217 58 0.026* 15.371 58 0.002 236
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Fig. 3 Fluctuating asymmetry values for nostril–snout distance (NSD) in P. cuvieri tadpoles exposed to herbicide. The closed circles

represents means, the boxes the standard error, and the bars, the confidence interval ±95%

Fig. 4 Fluctuating asymmetry values of eye width (EW) in P. cuvieri tadpoles exposed to herbicide. The closed circles represent the

mean, the box the standard error and the bars, the confidence interval ±95%
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significantly higher than that of the control treatment.

Worldwide, records of contamination levels in fresh-

water environments, including streams, lakes and

wetlands, range from 1.4 to 7.6 mg a.e./l (Edwards

et al., 1980; Mann & Bidwell, 1999; Giesy et al., 2000;

Solomon & Thompson, 2003; Thompson et al., 2004).

Brazil is the largest pesticide consumer in the world,

but few studies have evaluated the presence of

pesticides in water carried because of inappropriate

application, resulting in a lack of official records

regarding glyphosate use (ABRASCO, 2012). For

different contaminants, such as Atrazine and

Monocrotophos, concentrations ranging from 0.01 to

75.43 lg/l have been reported in rivers, lakes, artesian
wells, and rainwater (Bortoluzzi et al., 2006, Silva

et al., 2009, Moreira et al., 2012) as a consequence of

the inappropriate use of agrochemicals. In some

Brazilian regions, this amount of contamination can

be related to a pesticide and herbicide use that is up to

3.2 times higher than the global mean (Pignati &

Machado, 2007). Thus, it is not unrealistic for tadpoles

to be exposed to glyphosate contamination levels

comparable to the concentrations used in our exper-

iments and in toxicity bioassays conducted with

amphibian eggs and tadpoles in the wild (e.g., Mann

& Bidwell, 1999; Lajmanovich et al., 2003; Relyea,

2005b, c; Relyea & Jones, 2009; Jones et al., 2010,

2011; Relyea, 2012; Simioni et al., 2013; Figueiredo

& Rodrigues, 2014).

The LC5096h for P. cuvieri was 2.13 mg a.i./l,

which is considered moderately toxic according to

glyphosate toxicity classification on aquatic organisms

(Giesy et al., 2000; U.S.EPA., 2008) and was lower

than that recorded for other congeneric species (P.

albonotatus, LC5096h = 5.38 mg a.i./l, moderately

toxic, Simioni et al., 2013; P. centralis,

LC5096h = 19.7 mg a.i./l, slightly toxic, Figueiredo

& Rodrigues, 2014). These differences in LC50 values

might highlight interspecific differences in the toler-

ance to contamination levels (Bridges & Semlitsch,

2001; Simioni et al., 2013), but one component of the

variation might be due to methodological variation

and differences in the formula of the herbicide used in

the bioassay, complicating the designation of which

species are more tolerant to contamination (Mann

et al., 2009; Simioni et al., 2013). For example,

different commercial formulations of glyphosate (such

as Roundup Ultra Max�, Gliz 480 SL and Glyphosate

480 Agripec�), used in bioassay studies (e.g.,

Lajmanovich et al., 2011; Simioni et al., 2013;

Figueiredo & Rodrigues, 2014) with different con-

centrations of surfactant substances, could interact

with glyphosate, affecting its toxicity (Relyea, 2006).

Thus, we were able to find studies with different

formulations of POEA that reported glyphosate effects

varying from highly toxic (0.1–1 mg a.i./l) to slightly

toxic (10–100 mg a.i./l) for amphibian larvae (e.g.,

Mann & Bidweel, 1999; Relyea, 2005a; Relyea &

Jones, 2009; Relyea, 2012; Lajmanovich et al., 2013).

Differences in the number of individuals per treatment

unit, together with variations in laboratory conditions

and nominal concentrations of glyphosate applied to

each treatment (e.g., Mann & Bidweel, 1999; Relyea,

2005a; Relyea & Jones, 2009; Relyea, 2012; Laj-

manovich et al., 2011, 2013) are also confounding

factors that limit comparisons among studies and

increase the difficulty of delineating general implica-

tions of glyphosate impacts on non-target species,

such as tadpoles.

Most analyses of water contamination reflect the

dynamic chemical and physical conditions of water

bodies, and exclude the temporal and biological

responses of organisms. The non-selectivity and

frequency of agrochemical application can increase

the persistence of toxic substances in the aquatic

environment, submitting amphibian species to chronic

exposure throughout larval development (Bridges,

2000; Jones et al., 2010). This chronic exposure can

cause a reduction in growth (Jones et al., 2010),

external malformations (Lajmanovich et al., 2003),

reduce hatching success and delay metamorphosis

(Griffis-Kyle, 2005, 2007). However, many of these

sublethal effects of chronic exposure to contaminants,

such as reduction in growth, reduced hatchling

success, and delayed metamorphosis, would require

tagged individuals in the field to be used as environ-

mental evaluation tools, because they are rate mea-

surements or require more than one measurement

during an arbitrary time frame. Conversely, morpho-

logical traits, especially those that were demonstrate to

be affected by contaminants, such as malformations

and FA, would be relatively more easily measured

from field samples. Here, we observed an increase in

deviations in ontogenetic development in the bilateral

characteristics of P. cuvieri tadpoles as a consequence

of chronic exposure to Roundup Original�, especially

in NSD and EW. These morphological traits are

associated with the sensory capabilities of tadpoles
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and, as suggested by Bosch&Márquez (2000), FA in a

sensory structure can affect an individual’s fitness and

reduce survival or reproduction rates. In a theoretical

population, developmental stability can be used as an

indirect estimation of fitness (Clarke, 1995), despite

the difficulty in measuring how developmental home-

ostasis contributes to population fitness (Clarke, 1995;

Møller, 1997). We suggest that the increase in

developmental deviations of sensory traits affects

tadpole fitness, which leads to a reduction in their

competitive potential and increased predation risk,

although further empirical studies are required to

confirm this hypothesis.

Characteristics such as high abundance, a wide

distribution, a resolved taxonomy, and low dispersal

ability increase the potential of an organism as a

bioindicator (Hellawell, 1986; Rainio & Niemelä,

2003). This potential is greater in species that respond

to environmental stress via changes in morphological

attributes (Johnson et al., 1993). Amphibians are good

bioindicators of environmental stress, but their effec-

tiveness can vary among species and with the type of

stress (Blaustein, 1994; Blaustein & Wake, 1995).

Also, the response variable to be measured from the

bioindicator organism should be carefully selected.

Ideally, we can assume that a target variable should be

relatively easy to be measured and to be taught how to

measure, have low cost and be a direct consequence of

the impact being evaluated. Physalaemus cuvieri is

widely distributed in South America, within stable and

abundant populations (Frost, 2014; IUCN, 2014), and

is commonly found in ponds that are directly affected

by crops and pastures. We observed that long-term

exposure to glyphosate contamination can result in an

increase in FA values of P. cuvieri within a relatively

short time period. This effect of contamination on

tadpoles of P. cuvieri, associated with the facility and

low operating costs of measuring FA (Clarke, 1993),

make these tadpoles a useful and economic approach

compared to physiological and genetic approaches, to

evaluate the impacts of anthropogenic disturbance on

aquatic environments. Also, FA can represent a

reliable measurement of environmental impact that

does not have to tag individuals during biomonitoring

surveys, which simplifies specimen manipulation.

However, additional studies are required to understand

how multiple stressors could affect FA and, for that,

we highlight the need for the standardization of an

experimental protocol and the expansion of

ecotoxicological studies with FA (Schiesari et al.,

2013; Simioni et al., 2013) to increase the capacity of

interspecific comparisons and to provide a scientific

foundation for new aquatic environment protection

laws.
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