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Abstract Information on the effects of water level

changes on microbial planktonic communities in lakes

is limited but vital for understanding ecosystem

dynamics in Mediterranean lakes subjected to major

intra- and inter-annual variations in water level. We

performed an in situ mesocosm experiment in an

eutrophic Turkish lake at two different depths crossed

with presence/absence of fish in order to explore the

effects of water level variations and the role of top-

down regulation at contrasting depths. Strong effects

of fish were found on zooplankton, weakening through

the food chain to ciliates, HNF and bacterioplankton,

whereas the effect of water level variations was overall

modest. Presence of fish resulted in lower biomass of

zooplankton and higher biomasses of phytoplankton,

ciliates and total plankton. The cascading effects of

fish were strongest in the shallow mesocosms as

evidenced by a lower zooplankton contribution to total

plankton biomass and lower zooplankton:ciliate and

HNF:bacteria biomass ratios. Our results suggest that
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e-mail: meryem@metu.edu.tr

E. Jeppesen

Department of Bioscience and the Arctic Centre (ARC),

Aarhus University, Vejlsøvej 25, 8600 Silkeborg,

Denmark

E. Jeppesen

Greenland Climate Research Centre (GCRC), Greenland

Institute of Natural Resources, Kivioq 2, P.O. Box 570,

3900 Nuuk, Greenland

E. Jeppesen

Sino-Danish Centre for Education and Research (SDC),

Beijing, China

M. Beklioğlu
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a lowering of the water level in warm shallow lakes

will enhance the contribution of bacteria, HNF and

ciliates to the plankton biomass, likely due to

increased density of submerged macrophytes (less

phytoplankton); this effect will, however, be less

pronounced in the presence of fish.

Keywords Bacteria � Ciliates � Heterotrophic

nanoflagellates � Macrophytes � Phytoplankton

Introduction

Water level fluctuations (WLFs) are of critical

importance in shallow lakes (Coops et al., 2003; Leira

& Cantonati, 2008). WLFs, often triggered by natural

variations in net precipitation, are thought to have a

decisive effect on the ecology, functioning and

management of shallow lakes located in semi-arid

regions via their effects on nutrient concentrations

(Jeppesen et al., 2009, 2011; Özen et al., 2010),

macrophyte growth (Gafny et al., 1992; Coops et al.,

2003; Havens et al., 2004; Beklioglu et al., 2006;

Özkan et al., 2010; Bucak et al., 2012), phytoplankton

growth (Naselli-Flores, 2003) as well as on inverte-

brate and fish community structure and abundance

(Leira & Cantonati, 2008; Özkan et al., 2010; Bucak

et al., 2012). Due to the present global climate change,

WLFs may become just as significant as nutrients for

the change in the functioning of shallow lakes in the

future, especially in the Mediterranean region (Coops

et al., 2003; Beklioglu et al., 2007; Bucak et al., 2012).

How WLFs affect the microbial community struc-

ture is relatively unexplored, and experimental evidence

is limited of direct and indirect effects through changes

in nutrient availability, macrophyte coverage and

zooplankton grazing on the structure of the microbial

community (Tzaras et al., 1999; Farjalla et al., 2006).

The structure of the microbial community changes with

lake trophic state (Carrick et al., 1991; Nixdorf & Arndt,

1993; Gaedke & Straile, 1994), and in eutrophic lakes

the transfer of carbon from the primary producers

through the microbial community to the higher trophic

levels decreases (Weisse, 1991; Muylaert et al., 2002;

Auer et al., 2004; Saad et al., 2013). The impact of

macrophytes on the microbial community is two-sided.

Macrophytes may promote bacterial growth and bio-

mass by providing dissolved organic carbon (DOC) to

bacteria in the water column (Wetzel & Søndergaard,

1998; Wilcock et al., 1999; Stanley et al., 2003), but

they may also negatively affect bacteria production and

phytoplankton via allelopathy (Stanley et al., 2003).

Moreover, by acting as a refuge for large-bodied

zooplankton, macrophytes may negatively affect the

abundance of bacteria, heterotrophic nanoflagellates

(HNF) and ciliates through enhanced competition with

and predation by the zooplankton (Jürgens & Jeppesen,

2000; Zingel & Nõges, 2008).

Several studies have elucidated the top-down

effects of zooplankton on the biomass and community

structure of the microbial community (Jürgens et al.,

1994; Jürgens & Jeppesen, 2000; Wickham, 1998;

Zöllner et al., 2003, 2009), and results show that the

impacts of fish-mediated trophic cascades on micro-

bial loop processes can be strong (Riemann, 1985;

Pace & Funke, 1991; Pace & Cole, 1994; Fonte et al.,

2011; Nishimura et al., 2011). Some studies have

revealed that the presence of planktivorous fish

changes the biomass and composition of the zoo-

plankton community (Riemann, 1985; Christoffersen

et al., 1993), which, in turn, influences the biomass of

bacteria (Riemann, 1985; Markosova & Jezek, 1993)

via the altered grazing pressure on bacteria by

zooplankton. Fish, may, however, also affect the

microbial community via bottom-up control, nutrient

excretion and regeneration, inducing an increase in

nutrient concentrations and phytoplankton biomass

(Vanni & Layne, 1997; Vanni, 2002; Roozen et al.,

2007; Nishimura et al., 2011).

Although there are numerous studies on the effect of

fish predation on the structure of phytoplankton and

microbial communities (e.g., Christoffersen et al., 1993;

Nishimura et al., 2011) and a few examples of water

level change effects on the structure of the microbial

community (Tzaras et al., 1999; Farjalla et al., 2006),

the combined effect of water level change and fish on

aquatic food webs as a whole, including zooplankton,

phytoplankton, ciliate, HNF and bacteria, has, to the

best of our knowledge, never been assessed before.

Bucak et al. (2012) studied the influence of water

level (0.8–1 and 1.6–1.7 m at the beginning of the

experiment) and fish on macrophyte growth and

trophic interactions in a mesocosm set-up in Lake

Eymir, located in central Anatolia, Turkey. During the

experiment, the water depth decreased by

0.41 ± 0.06 m in all mesocosms (Fig. 1) and macro-

phytes, expressed as the proportion of plant volume
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inhabited, became, most abundant in the shallow

fishless mesocosms, while macrophyte growth was

limited at the higher water depth (Fig. 1). They further

reported higher chlorophyll a (chl-a) in the low water

level-fish (LW?) mesocosms than in the other mes-

ocosms. Moreover, they found a shift in the zooplank-

ton community from large-bodied zooplankton to

small-bodied zooplankton during the experiment, and

the biomass of cladocerans was higher in the fishless

mesocosms than in those with fish. The present study

was undertaken in the same experimental set-up, from

June to September 2009, and focused on ciliates, HNF

and bacteria, hereafter called the microbial commu-

nity, in the water column.

We hypothesised that (i) water level would indi-

rectly influence the biomass of bacteria and phyto-

plankton by affecting the growth of submerged

macrophytes; (ii) presence of fish would alter the top-

down control of the microbial community through

reduced zooplankton grazing; and (iii) interactions

between water level and fish treatments would be

important, with fish effects being stronger at higher

water level due to lower abundance of macrophytes.

Materials and methods

Study site and experimental design

The study was conducted in Lake Eymir, which has a

surface area of 125 ha and a mean depth of 3.1 m. This

lake was chosen as it has demonstrated high sensitivity

to water level changes (Beklioğlu & Tan, 2008; Özen

et al., 2010). During the study period, the lake was

eutrophic with total phosphorus (TP) and chl-

a concentrations varying between 162–253 and

30–82 lg l-1, respectively. Detailed information about

the history of the lake can be found in several

publications (Beklioğlu et al., 2003; Tan & Beklioğlu,

2006; Beklioğlu & Tan, 2008; Özen et al., 2010).

The experiment was carried out in 16 cylindrical-

shaped mesocosms with a diameter of 1.2 m combin-

ing two contrasting depths (low water level, 0.8 m—

LW and high water level, 1.6 m—HW, respectively);

8 mesocosms were placed at each water depth of

which half had fish (?), while the other half was

fishless (-). The effect of WLFs was simulated by

placing mesocosms at different water depths (0.8 and

1.6 m) in the lake. The mesocosms were kept open to

the sediment and to the atmosphere. Before the

mesocosms were set-up, macrophytes were removed

by scuba divers. After set-up, the mesocosms were left

for a week to recover from disturbance. Zooplankton

collected from the lake with a 50-lm plankton net

were inoculated in all mesocosms as were ten shoots of

Potamogeton pectinatus. To imitate the natural fish

density of the lake, 12 small fish (\10 cm), six Tinca

tinca and six Alburnus spp., were stocked to half of the

mesocosms at each depth.

TP and total nitrogen in the mesocosms ranged

between 77–441 and 749–2,200 lg l-1, respectively.

Bucak et al. (2012) reported that the LW mesocosms

had higher TN concentrations than the HW mesocosms

and that both reduced water level and presence of fish

had a significant positive effect on TP concentrations.

Sampling procedures and analyses

Phytoplankton biomass was estimated from the chl-a in

the water using a carbon to chl-a ratio of 30 (Reynolds,

Fig. 1 Monthly percent

plant volume inhabited (PVI

%) in low water level

fishless (LW-), low water

level with fish (LW?), high

water level fishless (HW-)

and high water level with

fish (HW?) mesocosms and

changes in mean water level

in low (LW) and high (HW)

water level mesocosms

throughout the experiment

(data from Bucak et al.,

2012)
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1984). The carbon (C) content of zooplankton was

calculated using a conversion factor of 0.48 lg C

per lg dry weight (Andersen & Hessen, 1991).

The microbial community was sampled monthly

between June and September 2009. From each meso-

cosm, a 4 l composite water sample integrating the

whole water column was taken using a tube sampler

without disturbing the bottom or the macrophytes. The

water samples were used for enumeration of the

microbial communities, including bacteria, HNF and

ciliates. From the bulk water sample, 50 ml subsamples

for bacteria and HNF and a 100 ml subsample for ciliate

analyses were taken. Samples for enumeration of

bacteria and HNF were fixed immediately after collec-

tion by adding glutaraldehyde (Sigma, Taufkirchen,

Germany) to a final concentration of 2% (v/v). Ciliates

were fixed with acidic Lugol (4% Lugol’s iodine (v/v)).

Enumeration of the microbial community

Subsamples for bacteria and HNF analyses were

stained for 10 min with 40,6-diamidino-2-phenylin-

dole (DAPI, Sigma, Taufkirchen, Germany) at a final

concentration of 10 lg DAPI ml-1 (Porter & Feig,

1980). A Whatman GF/C glass microfiber filter with a

pore size of 1.2 lm as a pad was used to obtain a

uniform distribution of cells under low pressure

(\0.2 bar). Within 2 h following sampling, we filtered

the subsamples to count bacteria (2 ml) and HNF

(15 ml) onto 0.2 and 0.8 lm pore size black Nucle-

pore filters, respectively. The filters were stored at

-20�C until enumeration. The abundances of bacteria

and HNF were determined by direct counting of cells

using epifluorescence microscopy (Leica, DM 6000B,

Wetzlar, Germany) at 1,5009 magnification. At least

400 bacteria cells from different fields were counted

for each sample with a UV filter (420 nm). All HNF

specimens found within 1.6 mm2 of each filter (ran-

domly selected) were counted. The microscope was

equipped with a UV (420 nm) and a blue (515 nm)

filter to distinguish heterotrophs from mixo- and auto-

trophs for HNF counting. Conversion to carbon

biomass was made using a factor of 0.22 pg C lm-3

for bacteria and HNF (Bratbak & Dundas, 1984;

Borsheim & Bratback, 1987).

Counting of ciliates was performed in sedimentation

chambers following Utermöhl (1958) in an inverted

microscope with 6309 magnification (Leica DMI

4000B, Wetzlar, Germany). At least 200 ciliate cells or

the entire chamber were counted and identified to genus

or species level according to Foissner & Berger (1996)

and Foissner et al. (1999). The biovolume of ciliates was

calculated from measurements of length and width

dimensions approximated to an appropriate geometric

shape. Conversion to carbon biomass was done using the

factor 0.14 pg C lm-3 (Putt & Stoecker, 1989).

Statistical analyses

To test for treatment effects (water level and fish) with

time (months), we applied repeated measures

ANOVA (RM-ANOVA) using the SAS 9.2 software

(SAS Institute Inc, Cary, NC, USA). Data were log-

transformed before analysis to reduce skewness and to

approximate to normal distribution.

Results

Microbial community

Bacteria biomass

Bacterial abundance ranged between 0.5 and

1.9 9 106 cells ml-1 and the biomass between 28

and 109 lg C l-1. A significant negative effect of

water level on bacterial biomass was observed

(Fig. 2a; Table 1).

Heterotrophic nanoflagellates (HNF)

HNF abundance ranged between 0.7 and 1.7 9 104

cells ml-1 and the biomass between 39 and

86 lg C l-1. An interactive negative water level-fish

effect on HNF biomass was recorded (Fig. 2b;

Table 1). In August, there was a noticeable decrease

in the HNF biomass in all mesocosms and it increased

again in September (Fig. 2b). The HNF:bacteria

biomass ratio was lower in the LW? mesocosms

and significantly higher in the LW- and HW-

mesocosms (Fig. 3; Table 1).

Ciliates

Ciliate abundance ranged between 0.2 and 2 individ-

uals ml-1 and the biomass between 0.4 and

1.8 lg C l-1 (Fig. 2c). Oligotrichida dominated in
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Fig. 2 Monthly biomasses (±1SD) of (a) bacteria, (b) HNF,

(c) ciliates, (d) phytoplankton, (e) total zooplankton, (f) Clado-

cera, (g) Copepoda and (h) the zooplankton:phytoplankton ratio

in low Water level fishless (LW-), low Water level with fish

(LW?), high Water level fishless (HW-) and high Water level

with fish (HW?) mesocosms
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most samples, including the genera Strobilidium and

Strombidium. RM-ANOVA showed no significant

effect of water level on ciliate biomass, whereas a

positive effect of fish on ciliate biomass was observed

(Fig. 2c; Table 1). Fish also had a significant positive

effect on the ciliate:bacteria and ciliate:HNF biomass

ratios (Fig. 3; Table 1).

Interaction between phytoplankton, zooplankton

and the microbial community

Phytoplankton biomass was estimated from chl-a con-

centrations and ranged between 16 and 4,440 lg C l-1

(Fig. 2d). We found a significant negative effect of

water level–fish interactions on the bacteria:phyto-

plankton, HNF:phytoplankton and ciliate:phytoplank-

ton biomass ratios (Fig. 3; Table 1).

Total zooplankton biomass ranged between 4 and

850 lg C l-1 (Fig. 2e). We found no significant effect

of water level on zooplankton biomass, whereas a

negative fish effect occurred (Table 1). We recorded a

significant negative effect of fish on the zooplank-

ton:phytoplankton, zooplankton:bacteria, zooplank-

ton:HNF and zooplankton:ciliate biomass ratios

(Fig. 3; Table 1). The zooplankton:phytoplankton

biomass ratio was high in the fishless mesocosms

and low in the mesocosms with fish (Fig. 2h).

Cladoceran biomass ranged between 2 and

654 lg C l-1 in the monthly samples (Fig. 2f). A

negative fish effect was recorded on cladoceran

biomass (Table 1). We found a negative effect of fish

on the Cladocera:phytoplankton, Cladocera:bacteria,

Cladocera:HNF and Cladocera:ciliate biomass ratios

(Fig. 3; Table 1). Copepoda biomass ranged between

2 and 379 lg C l-1 in the monthly samples (Fig. 2f).

A negative effect of fish on copepod biomass was

traced (Table 1). The Copepoda:bacteria, Copep-

oda:HNF and Copepoda:ciliate biomass ratios were

also significantly and negatively affected by fish

(Fig. 3; Table 1). The interaction of water level and

fish had a negative impact on the Copepoda:phyto-

plankton biomass ratio (Fig. 3; Table 1).

Contribution of zooplankton, phytoplankton

and microbes to plankton biomass

The contributions of zooplankton and the microbial

communities to total plankton biomass were signif-

icantly higher in the fishless mesocosms (Fig. 4).

We found no effect of water level or water level–

fish interactions on the relative contribution of the

three plankton groups to total plankton biomass; a

negative effect of fish was recorded on the microbial

and zooplankton community contribution, while a

positive fish effect was observed for phytoplankton

(Table 1).

Table 1 Summary of the univariate repeated measures of two-

way ANOVA testing the effect of water level and fish on the

biomass of microbes and other plankton

Water

level (WL)

Fish (F) WL 9 F

Bacteria *** ; NS NS

HNF NS ** ** ;

Ciliate NS ** : NS

T. microbial community ** NS ** ;

% T. microbial community NS ** ; NS

Phytoplankton * : *** : NS

% Phytoplankton NS *** : NS

Zooplankton NS ** ; NS

% Zooplankton NS *** ; NS

Cladocera NS ** ; NS

Copepoda NS * ; NS

The whole community NS *** : NS

HNF:bacteria ** : * ; NS

Ciliate:bacteria NS * : NS

Ciliate:HNF NS * : NS

Copepoda:bacteria NS * ; NS

Copepoda:HNF NS * ; NS

Copepoda:ciliate NS * ; NS

Copepoda:phytoplankton * ** * ;

Cladocera:bacteria NS * ; NS

Cladocera:HNF NS ** ; NS

Cladocera:ciliate NS * ; NS

Cladocera:phytoplankton NS * ; NS

Zooplankton:bacteria NS * ; NS

Zooplankton:HNF NS ** ; NS

Zooplankton:ciliate NS * ; NS

Zooplankton:phytoplankton NS * ; NS

Bacteria:phytoplankton *** *** *** ;

HNF:phytoplankton *** *** *** ;

Ciliate:phytoplankton * *** * ;

Arrows show the direction of the treatment effect on the

organisms and ratios

NS not significant

* P \ 0.05, ** P \ 0.01, *** P \ 0.001
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Discussion

We found a strong effect of fish on zooplankton, which

abated gradually towards the lower trophic levels at

both high and low water levels, while the effect of

water level difference was comparatively weak: the

contribution of the microbial community to total

plankton biomass was higher in the low water

mesocosms at the expense of phytoplankton, likely

reflecting the observed higher density of submerged

macrophytes, the depth effect being lower in the

presence of fish.

Mesocosms with fish had a higher biomass of

ciliates and slightly lower biomass of HNF. The higher

biomass of ciliates likely reflects reduced predation

and competition from zooplankton as a result of fish

predation on the zooplankton. This is supported by the

much lower zooplankton biomass and the lower

biomass ratios of total zooplankton, cladocerans and

copepods to ciliates in the mesocosms with fish than in

the fishless mesocosms. Higher ciliate biomass and

thus presumably higher ciliate predation on HNF may

explain the lower HNF biomass (higher ciliate:HNF

biomass ratios) in the mesocosms with fish, as has also

been observed in other studies though often with

stronger effect on HNF (and bacteria) (e.g., Pace &

Funke, 1991; Müller-Solger et al., 1997; Wickham,

1998; Yamazaki et al., 2010; Nishimura et al., 2011),

also in mesocosms open to the sediment (Jürgens &

Jeppesen, 2000; Jeppesen et al., 2002).

However, despite lower HNF:bacteria, lower

Cladocera:bacteria biomass ratios and lower bio-

masses of HNF and Cladocera, we did not find any

difference in bacterial biomass between the meso-

cosms with and without fish. Apparently, the bacteria

did not take advantage of the reduced predation on

them as also evidenced by the lower bacteria:phyto-

plankton biomass ratio. Moreover, a higher cili-

ate:bacteria ratio in the fishless mesocosms did not

result in a lower bacterial biomass than in the

mesocosms with fish, perhaps reflecting that lower

zooplankton grazing on phytoplankton (a lower zoo-

plankton:phytoplankton biomass ratio) may lead to

lower overall DOC production (decreasing algal

carbon assimilation by zooplankton, decreasing def-

ecation, sloppy feeding of zooplankton), implying

lower availability of organic carbon for bacteria

growth per unit of algal biomass (Gasol & Duarte,

2000). Accordingly, the presence of fish also nega-

tively affected the contribution of the total microbial

community to plankton biomass with increasing

phytoplankton biomass.

A water level increase, both in the presence and

absence of fish, enhanced the phytoplankton biomass

and lowered the bacteria biomass and led to increased

Fig. 4 Average contribution (%) of zooplankton, phytoplank-

ton and microbes (the sum of HNF, ciliates and bacterioplank-

ton) to total plankton biomass in low water level fishless (LW-

), low water level with fish (LW?), high water fishless (HW-)

and high water level with fish (HW?) mesocosms
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HNF: bacteria ratios. This higher phytoplankton

biomass likely reflects the concurrent lower macro-

phyte coverage (Bucak et al., 2012). Fish–water level

interactions were demonstrated by lower biomass

ratios of bacteria, HNF and ciliates against phyto-

plankton at high water level in the presence of fish,

mainly reflecting a higher phytoplankton biomass.

Moreover, during the experiment a declining water

level resulted in higher PVI% of submerged macro-

phytes in the shallow mesocosms (Fig. 1, Bucak et al.,

2012) and, concurrently, the biomass of phytoplankton

decreased and the bacteria biomass increased, not least

when fish were absent (Fig. 3). Nõges et al. (2010)

found that increasing mean depth in shallow Lake

Vortsjãrv, Estonia, had a negative effect on the

phytoplankton biomass in summer and autumn and

attributed this to light limitation during periods with

high water level. In contrast, we found positive effects

of an increasing water level on phytoplankton bio-

mass, attributable to an increase in submerged mac-

rophyte PVI% in shallow water. However, DOC

derived from macrophytes is probably of lower quality

than DOC derived from phytoplankton (Zhang et al.,

2013), higher bacterial biomass at higher submerged

macrophyte PVI% may reflect enhanced bacteria

growth stimulated by organic matter released from

the plant-periphyton community (Wetzel & Sønderg-

aard, 1998; Wilcock et al., 1999; Stanley et al., 2003),

but also lower grazing by HNF (lower HNF:bacteria

biomass ratio) may have contributed. Higher avail-

ability of nutrients in the shallow mesocosms may be

another contributory factor as bacterial biomass gen-

erally increases with lake trophy (Biddanda et al.,

2001; Cotner & Biddanda, 2002; Muylaert et al., 2002;

Auer et al., 2004).

In summary, strong effects of fish were found on the

zooplankton. These weakened through the food chain to

ciliates, HNF and with no effect on bacterioplankton,

whereas the direct effect of water level variations was

overall weak. Indirect effects of changes in water level

via macrophyte cover (higher macrophyte growth in

low water mesocosms) and zooplankton (higher cas-

cading effect of fish in low water mesocosms) were,

however, observed for phytoplankton, ciliates and

HNF. We found higher bacteria and lower phytoplank-

ton biomasses in the shallow mesocosms, coinciding

with higher submerged macrophyte density. The lowest

biomass ratios of bacteria, HNF and ciliates against

phytoplankton and the lowest total microbial and HNF

biomasses were recorded in the deep mesocosms with

fish. Our study is correlative and measurements of

processes such as grazing losses and bacterial produc-

tion would have provided a more solid picture of the

dynamics and regulating factors of the microbial

community (top-down or bottom-up processes) in these

systems. Our results suggest, however, that a lowering

of the water level in warm shallow lakes will enhance

the importance of the microbial community at the

expense of phytoplankton, likely reflecting higher

density of submerged macrophytes; the effect will be

less pronounced in the presence of fish.
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