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Abstract Dreissena polymorpha (zebra mussel) and

D. rostriformis bugensis (quagga mussel) continue to

spread in Europe and in North America, and have large

ecological and economic impacts where they invade.

Today many more waterbodies are invaded by zebra

mussels, and therefore the extent of their impact is

greater than that of quagga mussels. Both species

provide additional space and food for invertebrates in

the littoral zone, increasing their diversity and density.

In contrast, in the profundal zone, quagga mussels may

compete for space and food resources with benthic

invertebrates, decreasing their diversity and density.

The system-wide effect of dreissenids depends on

water mixing rates, lake morphology, and turnover

rates. Because quagga mussels are found in all regions

of a lake, and form larger populations, they may filter

larger volumes of water and may have greater system-

wide effects, especially in deep lakes, than zebra

mussels, which are restricted to shallower portions of

lakes. Shortly after initial invasion, as populations

increase, both dreissenids will have their largest

effects on communities, and most of them will be

direct effects. After the initial stage of invasion,

impacts are less predictable, and more likely to be

caused by indirect effects through changes in the

ecosystem.

Keywords Invasive species � Ecological effect �
Spread � Population dynamics � Dreissena

polymorpha � D. rostriformis bugensis

Introduction

Dreissena polymorpha (Pallas), the zebra mussel, and

D. rostriformis bugensis (Andrusov), the quagga

mussel, based on their ecological and economic

impacts, are considered the most aggressive freshwa-

ter invaders in the Northern hemisphere (reviewed in

Nalepa & Schloesser, 1993, 2014; Karatayev et al.,

2002, 2007a). Both species continue to spread in

Europe and in North America at virtually all spatial

scales (Karatayev et al., 2007a, 2011; Pollux et al.,
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2010; Benson, 2014), and can have large ecological

and economic impacts where they invade (reviewed in

Karatayev et al., 1997, 2002, 2007a; Vanderploeg

et al., 2002; Hecky et al., 2004; O’Neill, 2008). These

two congeners have similar life history characteristics

including high reproductive potential, planktonic free-

swimming larvae, and an attached benthic adult stage,

and they are highly efficient suspension feeders. These

features are typical of marine mussels, but represent a

novel ecological type in freshwaters (Karatayev et al.,

2007b). This life history facilitates their success as

invaders, allowed them to spread rapidly across

landscapes, and become extremely abundant when

introduced into a new waterbody. The ecological

impacts of both species are likely associated with their

role as ecosystem engineers (reviewed in Karatayev

et al., 2002, 2007a; Vanderploeg et al., 2002;

Gutierrez et al., 2003; Sousa et al., 2009) as they can

‘‘directly or indirectly control the availability of

resources to other organisms by causing physical state

changes in biotic or abiotic materials’’ (Jones et al.,

1994, 1997).

Recent approaches using functional groups or

functional traits to predict or assess community or

ecosystems impacts of species, especially invaders,

have gained a lot of attention (Flynn et al., 2011).

Using these approaches, these two congeners are often

considered to be interchangeable in terms of the

impacts they may have on communities or ecosystems

(Karatayev et al., 2007a; Keller et al., 2007; Ward &

Ricciardi, 2007; Higgins & Vander Zanden, 2010;

Kelley et al., 2010). Although these two species are

similar, they are not identical, and to understand and

predict their ecological and ecosystem impacts on

systems they invade, it is essential to understand not

only their species specific characteristics, but also their

population dynamics and within-lake distributions,

which are different, and change as a function of time

since invasion. Because of this, the local and lake-

wide impacts of invasion by one or both of these

species are dynamic, and difficult to predict.

Across a landscape, the overall ecological impact of

zebra and quagga mussels will depend on the numbers

of waterbodies colonized, their total population den-

sity in a given waterbody, their population dynamics,

and the distribution within a waterbody (Karatayev

et al., 2010a, 2011). Although D. polymorpha is

among the best studied freshwater invertebrates,

comparable information for D. r. bugensis is generally

lacking (Nalepa, 2010; Karatayev et al., 2014a,

Table 1), limiting our ability to predict the spread

and ecological impacts of this important freshwater

invader. Since 1989, when quagga mussels were found

in North America and they expanded in Europe,

research efforts on D. r. bugensis have increased;

however, 87% of all Dreissena-related papers pub-

lished since 1989 are on D. polymorpha (Table 1).

The goal of this study is to review key similarities

and differences between zebra mussels and quagga

mussels in their rates of spread across the landscape,

their population dynamics and distributions in water-

bodies they invade, and their impacts on invaded

ecosystems. We also identify the essential information

that needs to be determined to understand the impacts

and spread of these invaders.

Spread across the landscape

In the early 1800s, zebra mussels began to spread from

their native range in the Ponto-Caspian basin through

canals connecting the Baltic and Black See basins for

commerce and international trade (Zhadin, 1946;

Mordukhai-Boltovskoi, 1960; Kinzelbach, 1992; Sta-

robogatov & Andreeva, 1994; Pollux et al., 2010; van

der Velde et al., 2010). Zebra mussels then rapidly

spread across the central and western Europe

(reviewed in Kerney & Morton, 1970; Kinzelbach,

1992; Starobogatov & Andreeva, 1994; Karatayev

Table 1 The total number of papers published on Dreissena

spp., the average number of papers per year for different time

intervals since these species began to invade, and the percent of

papers on D. r. bugensis during that time interval (the number

of papers in parenthesis)

Period Total

number

of

papers

Papers/

year

% of

papers on

D. r.

bugensis

Bibliographic

sources

1771–1963 1,180 6 2 (15) Limanova

(1964)

1964–1978 740 39 8 (60) Limanova

(1978)

1964–1993 885 30 6 (53) Schloesser

et al. (1994)

1989–2011 1,502 66 13 (200) Schloesser &

Schmucka,

(2012)
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et al., 2007a, 2011; Pollux et al., 2010; van der Velde

et al., 2010) in the nineteenth century at an exponential

rate colonizing *3.9 regions (i.e., countries, or

geographical provinces within large countries) per

decade (Karatayev et al., 2011). This was followed by

the industrial revolution and increased water pollution,

which essentially stopped the spread of D. polymorpha

in Europe for almost a century (reviewed in Kinzel-

bach, 1992; Karatayev et al., 2007a, 2011). Then,

starting in the 1960s, there was a second period of

exponential spread of D. polymorpha on a global

scale, including spread in Europe, and in North

America (Karatayev et al., 2007a, 2011), where this

species was introduced in the mid-1980s (Carlton,

2008). The spread of D. polymorpha at the global scale

(including the spread among countries or major

regions within countries in Europe and spread among

North American states and provinces) from 1962 to

2008 was much faster than the initial spread across

Europe, and averaged *6.6 regions per decade

(Karatayev et al., 2011).

In contrast to D. polymorpha, D. r. bugensis

remained restricted to its native range: the Dnieper-

Bug Liman (a large shallow productive estuary with

variable salinity), the Dnieper River delta, and lower

reaches of the South Bug and Ingulets rivers, until the

1940s (reviewed in Zhulidov et al., 2004, 2010;

Karatayev et al., 2007a, 2011; Van der Velde et al.,

2010). The delay in the spread of quagga mussels was

likely due to their inability to use mechanisms and

vectors responsible for spread as efficiently as zebra

mussels. Due to differences in byssal production rates

and attachment strength, and a flattened ventral

portion of their valves, D. polymorpha appears to be

more resistant to dislodgment than D. r. bugensis

(Mackie, 1991; Dermott & Munawar, 1993; Claxton &

Mackie, 1998; Peyer et al., 2009, 2010). Therefore,

zebra mussels were more likely to remain attached to

boat hulls and rafts than quagga mussels, facilitating

their transport to new habitats. In addition, during the

initial spread of zebra mussels in Europe, most

introductions were in the shallow areas of lakes,

rivers, and canals, habitats that may be less suitable for

quagga mussels, which prefer quiet areas of deep lakes

and reservoirs (Orlova et al., 2005; Nalepa et al., 2010;

Karatayev et al., 2014a).

When quagga mussels spread across Europe, most

lakes they invaded were already colonized by zebra

mussels, making it difficult to compare their rates of

spread. Because North America was colonized by both

species approximately at the same time (1980s) and in

the same area, their rates of spread in North America

are directly comparable. D. polymorpha was first

found in the New World in Lake Erie in 1986, and D. r.

bugensis was first documented, also in Lake Erie, in

1989 (Mills et al., 1993; Carlton, 2008). In addition,

detailed information is available on the year of

invasion of states (in USA) and provinces (in Canada),

as well as for counties within states, and for individual

lakes, reservoirs, and rivers within the United States

(Benson et al., 2013a, b).

By 2008, zebra mussels had colonized twice as

many US states as quagga mussels, almost eight times

more counties, and over 15 times more water bodies

(Karatayev et al., 2011). By 2010, both species of

Dreissena had colonized a total of 772 inland lakes,

reservoirs, impoundments, and quarries in USA and

Canada in addition to the Great Lakes. Of these, 729

waterbodies were colonized by zebra mussels alone,

33 by quagga mussels alone, and only 10 by both

species (Benson, 2014). Therefore, 25 years after their

introduction to North America, D. polymorpha had

colonized 17 times more waterbodies than D. r.

bugensis.

Although dreissenids can spread over large geo-

graphical areas relatively quickly, their rate of colo-

nization of inland lakes was very slow, even for zebra

mussels. For example in Belarus, after[200 years of

invasion, only 33% of all colonizable (based on pH,

calcium and total mineralization limits) lakes were

invaded by 2008 (Karatayev et al., 2010b). Similarly

in Wisconsin, USA after[20 years of invasion, only

120 of [15,000 inland lakes (\1%) were invaded by

2013 (Wisconsin, 2013). None of the inland lakes in

Belarus or in Wisconsin are colonized by quagga

mussels thus far. Therefore, the extent of ecological

impacts of zebra mussels is much higher than that of

quagga mussels, as many more waterbodies are

invaded by D. polymorpha than by D. r. bugensis.

Population dynamics

Dreissena polymorpha and D. r. bugensis are charac-

terized by different population dynamics when they

invade a new waterbody (Fig. 1). The time lag

between when each species was first detected in a

waterbody and when it reached its maximum
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population size is much shorter for zebra mussels

(2.5 ± 0.2 years, average ± standard error) than for

quagga mussels (12.2 ± 1.5 years) (reviewed in Ka-

ratayev et al., 2011). Shortly after initial invasion,

when populations are greatest, Dreissena spp. have

their largest and most direct ecological effects

(Karatayev et al., 2002). The longer lag time between

the initial invasion and the maximum population size

for quagga mussels suggests that their maximum

ecological impacts will be delayed compared to that of

zebra mussels (Fig. 1). In addition, data suggest that it

takes longer for quagga mussels to obtain their

maximum density in deeper areas of lakes than in

shallow areas (Watkins et al., 2007; French et al.,

2009; Nalepa et al., 2010). After 9 years or more of

coexistence, the density of quagga mussels in both

shallow and deep areas of a lake can far outstrip those

of zebra mussels (Fig. 2).

The population size of both zebra and quagga

mussels can fluctuate widely through time (Ramcha-

ran et al., 1992; Burlakova et al., 2006; Strayer &

Malcom, 2006; Nalepa et al., 2010; Karatayev et al.,

2011, 2014b), affecting their impacts on ecosystems.

Usually, after reaching an initial maximum population

size, the sustainable total biomass of D. polymorpha

declines due to density-dependent processes, includ-

ing substrate and food limitation, as well as compe-

tition, and the effects of predation (Fig. 1; Lvova,

1977; Karatayev et al., 1997, 2002, 2011; Hunter &

Simons, 2004; Hecky et al., 2004; Patterson et al.,

2005; Burlakova et al., 2006). When only zebra

mussels have invaded a lake, they maintain a relatively

large population size, and dominate the benthic

community through time. To date, however, there

are no data on long-term lake-wide populations of

quagga mussels for lakes where zebra mussels have

not invaded that can be compared to the patterns for

zebra mussels. In contrast, in deep waterbodies with

large profundal zones, when both Dreissena species

have been introduced, zebra mussels are the first to

invade, but quagga mussels replace zebra mussels

after 9 or more years of coexistence (Fig. 1; Patterson

et al., 2005; Watkins et al., 2007; Nalepa et al., 2010;

Karatayev et al., 2011, 2014b). This pattern is likely

possible due to their greater energetic efficiency,

ability to allocate less energy to metabolic mainte-

nance and more to growth and reproduction, than D.

polymorpha, allowing them to outcompete zebra

mussels if food is limiting (Mills et al., 1999; Diggins,

2001; Baldwin et al., 2002; Stoeckmann, 2003;

Karatayev et al., 2010c; Nalepa et al., 2010). In

addition, quagga mussels can reproduce at lower

temperatures, including the profundal zone, where

zebra mussels will not reproduce, giving them a

demographic advantage (Roe & MacIsaac, 1997;

Fig. 1 Conceptual illustration of the dynamics of population

size of Dreissena polymorpha (gray line) and D. rostriformis

bugensis (dashed line) depending on lake morphometry, based

on data that zebra mussels reach their maximum density in

2.5 ± 0.2 years and quagga mussels reach their maximum

density in 12.2 ± 1.5 years from the time of first detection in a

waterbody (Karatayev et al., 2011). Bold black line indicates the

cumulative population size of both species

100 Hydrobiologia (2015) 746:97–112

123



Claxton & Mackie, 1998; Nalepa et al., 2010). These

demographic and physiological traits of quagga mus-

sels allow them to colonize the large cold profundal

zone of deep lakes, which is unsuitable for zebra

mussels. Thus, they can occur at high densities, and

outcompete zebra mussels by depleting food resources

to levels that are too low for zebra mussels, but high

enough to support quagga mussels (Nalepa et al.,

2010; Karatayev et al., 2011, 2014a). Zebra mussels

can still have an advantage in shallow lakes and rivers,

where the two species will coexist (Zhulidov et al.,

2006, 2010; Grigorovich et al., 2008; Peyer et al.,

2009; Karatayev et al., 2011, 2014b).

Distribution within waterbodies

Zebra mussels require hard substrate for attachment

and are better adapted to the unstable environment of

the littoral zone, where they may experience higher

water velocities and more waves. Alternatively,

quagga mussels are able to colonize silty sediments,

especially those found in the profundal zones of deep

large lakes (Fig. 2). Even in shallow, well-mixed

lakes, zebra mussels are primarily limited to the

littoral zone, and have a maximum density (average

per depth ranging from 3,500 to 11,000 m2) between 1

and 6 m deep (Lvova, 1977; Karatayev, 1983;

Lyakhnovich et al., 1994; Burlakova et al., 2006;

Goedkoop et al., 2011) depending on the availability

of hard substrates. In Europe, the largest density of

zebra mussels (9,169,000 m2) was found on semi-

submerged macrophytes in the South Bug Liman,

Ukraine, and the largest density of quagga mussels (up

to 130,000 m2) was found in Zaporozhskoe Reservoir,

Ukraine (reviewed in Karatayev et al., 1998). Both

zebra and quagga mussels have extremely patchy

distributions in littoral zones, and may form large

multilayer druses that are separated by bare sediment,

with few or no mussels (Karatayev et al., 1983, 1997;

Nalepa et al., 2010; Burlakova et al., 2012).

In the Great Lakes, zebra mussels may be more

dense in deeper areas (e.g., Lake Ontario at 15–25 m,

Mills et al., 1999; Lake Michigan at 27–46 m,

Fleischer et al., 2001). Zebra mussels are present only

occasionally on soft substrates in the profundal zone,

where they can initially attach to plant fragments,

wood, shells, stones, or artificial substrates (e.g.,

discarded debris) and subsequently attach to each

other forming druses (Mordukhai-Boltovskoi, 1960;

Hunter & Bailey, 1992, Dermott & Munawar, 1993;

Lyakhnovich et al., 1994; Karatayev et al., 1998). In

deep dimictic lakes, zebra mussels are even more

Fig. 2 Density of Dreissena polymorpha and D. rostriformis

bugensis in different waterbodies. Mean values (±standard error

of the mean, sample size above the bars) were calculated using

data from Uchinskoe Reservoir, Russia, 1967 (Lvova, 1977),

Lake Lukomskoe, Belarus, 1978 (Karatayev, 1983), lakes

Naroch, Myastro, Batorino, and Drozdy Reservoir, Belarus,

1995 (Burlakova, 1998), Lake Erie western and eastern basins,

USA, 1992 (Jarvis et al., 2000), Lake St. Clair, USA, 2001

(Hunter & Simons, 2004), Lake Erie western and eastern basins,

USA, 2002 (Patterson et al., 2005), Lake Ontario, USA, 1995,

2003 (Watkins et al., 2007), Lake Ekoln, Sweden, 2006

(Goedkoop et al., 2011), Lake Huron, 2003 (Nalepa et al.,

2009b), Southern Lake Michigan, USA, 1999, 2004, and 2008

(Nalepa et al., 2010), and Lake Oneida, USA, 2012 (Karatayev

et al., in review)
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limited to shallow areas, and are not found in the

profundal zone below the thermocline. In contrast,

quagga mussels are found at much higher densities in

the profundal zone (Fig. 2). In the soft sediments of

the profundal zone, D. r. bugensis usually has a more

even distribution across the bottom, and rarely forms

large druses (Nalepa et al., 2010).

When both species are present in a lake, their

abundances frequently depend on the interval since

invasion for each species, and the size and depth of the

lake (Figs. 1, 2). In shallow lakes with a small or no

profundal zone, and in rivers, both species co-exist

(Zhulidov et al., 2006, 2010; Grigorovich et al., 2008;

Peyer et al., 2009; Karatayev et al., 2011, 2014b) with

zebra mussels generally restricted to the littoral zone,

while quagga mussels can be abundant in both littoral

and profundal areas (Fig. 2). For example, although

zebra mussels were replaced by quagga mussels in the

deep central and eastern basin of Lake Erie after

10 years of coexistence (Patterson et al., 2005), after

20 years of coexistence in the shallow western basin of

Lake Erie D. polymorpha represent [30% of the

mussels (Karatayev et al., 2014b). Both species are also

co-dominant within their native range, the Dnieper

River Delta and in the Dnieper-Bug Liman, Ukraine,

which has no pronounced profundal zone (reviewed in

Zhulidov et al., 2010; Karatayev et al., 2011).

In deep lakes, after quagga mussels invade and

reach their population maximum, they can sustain high

densities across the whole lake and these densities are

much higher than in shallow lakes colonized by either

zebra mussels alone or by both Dreissena species

(Figs. 1, 2). Zebra mussels are then usually restricted

to the mouths of inflowing rivers, bays, and upper

littoral zone of open shores where water motion gives

them an advantage over quagga mussels (Karatayev

et al., 2013). Because many marinas in lakes Ontario

and Erie are located in the river mouths, more zebra

mussels are attached to resident boats than quagga

mussels. Thus, although these lakes are dominated by

quagga mussels, they continue to be a potential source

for the spread of zebra mussels (Karatayev et al.,

2013).

Impacts of invasion

Because both species are ecosystem engineers and

sessile suspension feeders that attach to substrate with

byssal threads and form druses, they can increase

habitat complexity for other benthic invertebrates and

affect the planktonic community, trophic relation-

ships, and nutrient cycling via their feeding activities

(Karatayev et al., 1997, 2002, 2007a, b; Beekey et al.,

2004; Burlakova et al., 2012). In all cases, the

ecological effects of dreissenids in the invaded

waterbody depend on interval since the initial inva-

sion, which species are present, lake morphometry,

and the total abundance of mussels of both species

(Figs. 1, 2). We predict that in shallow lakes with

zebra mussels alone, their maximum abundance and

impact would be expected within 3–5 years after the

invasion. In shallow lakes with both species, the

maximum combined impact would be expected later,

in 5–10 years, following the peak in total density, but

then will decline (Figs. 1, 2). In deep lakes with both

species, the quagga mussels will be much more

abundant and will impact the ecosystem much stron-

ger, eventually out competing zebra mussels.

Although we have a great deal of information about

the ecosystem impacts of zebra mussels, fewer data

exist for the impacts of quagga mussels (Karatayev

et al., 2007a; Fahnenstiel et al., 2010). In addition,

because most of the waterbodies invaded by quagga

mussels were first invaded by zebra mussels, it is

difficult to separate the impacts of these two species

and determine the role of quagga mussels alone.

Moreover, most studies of the ecological impacts of

quagga mussels are from research conducted on the

Laurentian Great Lakes, while research on zebra

mussels is mostly from small inland lakes, making

comparisons challenging.

Local benthic effects

Littoral zone

In the littoral zone, druses of Dreissena change the

physical habitat and provide shelter and food for other

benthic invertebrates, affecting community stability,

diversity, and interspecies interactions. By creating

reef-like three-dimensional structure, Dreissena pro-

vides refuges from predation and from other stressors

(waves, currents, desiccation) for benthic organisms

that would otherwise be absent from this environment

(Botts & Patterson, 1996, Karatayev et al., 1997, 2002,

2007a, b; Stewart et al., 1998a; Gutierrez et al., 2003,

Beekey et al., 2004; Burlakova et al., 2012).
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Dreissena polymorpha has positive effects on

native epifaunal invertebrates occurring in the littoral

zone (e.g., amphipods, isopods, leeches, turbellarians,

hydrozoans, and some oligochaetes and chironomids),

which take advantage of both the structural complex-

ity and food resources provided by zebra mussels

(Karatayev et al., 1983, 1997, 2002, 2007a, b, Botts &

Patterson, 1996; Stewart et al. 1998a, b, 1999; Mayer

et al., 2001; Cobb & Watzin, 2002; Gutierrez et al.,

2003; Beekey et al., 2004; Burlakova et al., 2012).

Burrowing organisms (e.g., oligochaetes and chiron-

omids) may be negatively affected by zebra mussels

due to oxygen depletion caused by high concentrations

of organic material from feces and pseudofeces (Effler

& Siegfried, 1994; Caraco et al., 2000). In general, the

overall density and biomass of native invertebrates are

always higher in D. polymorpha druses compared to

nearby bare sediments (reviewed in Karatayev et al.,

1983, 1997, 2002, 2007b; Burlakova et al., 2012),

resulting in a significant increase in the biomass of the

majority of native invertebrates in the littoral zone

(reviewed in Karatayev et al., 1997, 2002; Higgins &

Vander Zanden, 2010). To date, we do not have

parallel data for the quagga mussel, but the limited

information available (Bially & MacIsaac, 2000)

suggests that their impacts in the littoral zone may

be similar to those of the zebra mussel.

Profundal zone

In the soft sediments of the profundal zone, quagga

mussels usually do not create large druses attached to

hard substrates. They live individually or form small

aggregations that float on the surface of soft silt (rather

than sink), often spaced apart by the length of their

siphons (Dermott & Kerec, 1997; Karatayev &

Burlakova, personal observations). In contrast to

littoral zone, there are few highly mobile epifaunal

invertebrates in the deep profundal that can take

advantage of the shelter provided by quagga mussels

(Mörtl & Rothhaupt, 2003). Most profundal zone

benthic invertebrates are less mobile (Merritt et al.,

1984), including burrowing chironomids and oligo-

chaetes, which are then negatively affected through

spatial competition with quagga mussels (Burlakova

et al., 2014).

While in the well-mixed littoral zone there is an

abundant food supply for dreissenids that is transferred

from the water column to the bottom in the form of

feces and pseudofeces, in the deep profundal zone,

especially during summer stratification, quagga mus-

sels may be food limited. They may feed on the

benthic nepheloid layer, which is rich in organic

matter that originates from small epilimnetic phyto-

plankton and fine sediment (Watkins et al., 2007) and

develops each summer in Great Lakes just above

profundal sediments during stratified conditions

(Mudroch & Mudroch, 1992; Hawley & Muzzi,

2003). Quagga mussels may also benefit from the

deep chlorophyll layer, which develops in the Great

Lakes just below the thermocline (Barbiero & Tuch-

man, 2001; Pothoven & Fahnenstiel, 2013). Since

dreissenids invaded the Great Lakes, the deep chloro-

phyll maximum and spring phytoplankton bloom have

disappeared, which has been linked to the loss of

Diporeia spp., although other factors may have also

been important in the decline of this group (Nalepa

et al., 2009a; Barbiero et al., 2011; Ryan et al., 2012;

Watkins et al., 2012). The establishment of quagga

mussels in the profundal zone of Great Lakes has not

only been linked to the dramatic decline of native large

bodied amphipods like Diporeia spp. (Dermott &

Kerec, 1997; Nalepa et al., 1998, 2007, 2009a, b;

Lozano et al., 2001; Watkins et al., 2007; Nalepa,

2010), but also to molluscs (Sphaeriidae, Lozano et al.,

2001; Watkins et al., 2007; Nalepa et al., 2007, 2009a,

b), oligochaetes (Lozano et al., 2001; Watkins et al.,

2007; Soster et al., 2011; Burlakova et al., 2014), and

chironomids (Nalepa et al., 2009a, b; Burlakova et al.,

2014).

We hypothesize that by having different spatial

distributions in a waterbody, and different druse-

forming habits, these two species of Dreissena can

have very different effects on benthic invertebrate

communities. While in the littoral zone, zebra and

quagga mussels provide additional space and food for

many invertebrates, and thus have overall positive

impacts on the benthic community by increasing

diversity, density, and biomass of invertebrates; in the

profundal zone, quagga mussels compete for space

and food resources with most of native invertebrates

decreasing their overall diversity, density, and

biomass.

Impact on unionids

Zebra mussels have had pronounced negative impacts

on unionid bivalves in both Europe and North America
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(Sebestyen, 1937; Mackie, 1991; Hunter & Bailey,

1992; Haag et al., 1993; Gillis & Mackie, 1994;

Tucker, 1994; Ricciardi et al., 1996; Schloesser et al.,

1996; Karatayev et al., 1997; Burlakova et al., 2000;

Lucy et al., 2014). Although there are no comparable

data on the impacts of quagga mussels on unionids

(Lucy et al., 2014), the limited information that does

exist suggests that D. r. bugensis may have smaller

impacts on unionids than D. polymorpha (Conn &

Conn, 1993; Ricciardi et al., 1996; Schloesser &

Masteller, 1999; Sherman et al., 2013). In the Kiev

Reservoir, Ukraine, quagga mussels are 4 times more

abundant than zebra mussels, yet zebra mussels

compose 87% of the mussels found on unionid shells

(reviewed in Zhulidov et al., 2010). A recent study by

Burlakova et al. (in review) showed that D. polymor-

pha is much more common on unionid shells than D. r.

bugensis in the lower Great Lakes even though quagga

mussels represent over 95% of dreissenids in these

lakes. They also found that the proportion of unionids

colonized by dreissenids, and the number and weight

of mussels attached to each unionid, were lower in

lakes dominated by D. r. bugensis. These data suggest

that the ongoing replacement of zebra mussels by

quagga mussels in the Great Lakes may reduce the

negative impacts on unionids and facilitate their

recovery.

System-wide effects

The system-wide effects of dreissenids are associated

with their role as suspension feeders. Because both

zebra and quagga mussels usually attain high popu-

lation densities, they filter large volumes of water in a

short period of time. Dreissenids transfer materials

from the water column to the benthos, providing a

direct link between planktonic and benthic compo-

nents of the ecosystem (benthic-pelagic coupling).

This can trigger a suite of connected changes that

increase the relative importance of the benthic com-

munity—a process sometimes referred to as benthifi-

cation (Mayer et al., 2014).

The system-wide effect of zebra mussels depends

on water mixing rates, lake morphology, and turnover

rates (Reed-Andersen et al., 2000), and may be very

local in deep water lakes (Ackerman et al., 2001).

Because quagga mussels are found throughout the

entire waterbody, rather than being restricted shallow

areas, or areas with hard substrates as are the zebra

mussels, they have larger total population sizes

(Fig. 2). The larger populations of quagga mussels

will filter larger volumes of water, and may have

greater system-wide effects than zebra mussels, espe-

cially in deep lakes and reservoirs with large profundal

zones. However in the profundal zone, isolated from

the epilimnion by the thermocline, the impact of

quagga mussels on the water column may be lower

than that of mussels in the well-mixed littoral zone. In

addition, because the clearance rate is temperature

dependent (Fanslow et al., 1995), we hypothesize that

the filtering activity in the cold profundal zone should

be much less than that in the littoral zone.

Increases in water clarity and light penetration, and

decreases in turbidity, seston, and organic matter in the

water column are among the most common and well-

documented impacts of zebra mussels on invaded

waterbodies (reviewed in Karatayev et al., 1997, 2002,

2007a, b; Vanderploeg et al., 2002; Higgins & Vander

Zanden, 2010; Kelley et al., 2010; Mayer et al., 2014).

Although fewer data are available, the effect of quagga

mussels appears to be similar (Barbiero & Tuchman,

2004; Nalepa, 2010; Pothoven & Fahnenstiel, 2013;

Bunnell et al., 2014). In addition, because D. r.

bugensis can colonize the profundal zone, their

impacts may be even greater in deep lakes. Zebra

and quagga mussels also alter nutrient cycling,

increasing concentrations of ammonia, nitrates, and

phosphates in the water (reviewed in Vanderploeg

et al., 2002; Karatayev et al., 2002, 2007a, b; Higgins

& Vander Zanden, 2010; Kelley et al., 2010; Nalepa,

2010). Feeding by dreissenids results in the deposition

of large amounts of seston on the bottom, which could

increase siltation of otherwise available substrates for

zebra mussels (reviewed in Karatayev et al., 1997,

2007b; Zhukova, 2001), thereby decreasing their

population density through time (Lvova, 1977).

Quagga mussels may colonize soft substrates, and

may therefore not experience this negative feedback.

In most waterbodies, dreissenids decrease phyto-

plankton density (chlorophyll concentration) and

primary production (reviewed in Karatayev et al.,

1997, 2007a, b; Barbiero & Tuchman, 2004; Higgins

& Vander Zanden, 2010; Kelley et al., 2010; Fahn-

enstiel et al., 2010; Pothoven & Fahnenstiel, 2013).

Dreissenid impacts on phytoplankton may be direct,

top-down control through feeding on planktonic algae

and indirect, bottom-up control by sequestering phos-

phorous that otherwise will be available to
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phytoplankton (Bunnell et al., 2014). Declines in

phytoplankton abundance often correlate with changes

in phytoplankton community composition (reviewed

in Kelley et al., 2010). Several studies attribute one of

the most important environmental issues in North

America and Europe, toxic blooms of the cyanobac-

teria Microcystis (Pires et al., 2010; Michalak et al.,

2013), to selective grazing and rejection of toxic

strains of blue-green algae or the release of soluble

nutrients to the invasion of zebra mussels and then

later by quagga mussels (Makarewicz et al., 1999;

Vanderploeg et al., 2001, 2009; Conroy et al., 2005a,

b; Bykova et al., 2006). In contrast, other studies (both

in North America and Europe) have found that zebra

mussels may actively consume and reduce the density

of Microcystis (Strayer et al., 1999; Baker & Levinton,

2003; Pires et al., 2005, 2010).

We suggest that the impact of profundal quagga

mussels on phytoplankton, especially diatoms, could

be largely limited to the spring, when the whole water

column is well-mixed. The recent colonization of the

profundal zone of Lake Michigan by quagga mussels

resulted in a fourfold decline of spring chlorophyll

concentrations and a diatom bloom that was not

evident when only zebra mussels were present in the

lake (reviewed in Nalepa, 2010).

Increased light penetration and phosphorus avail-

ability due to suspension feeding by zebra mussels in

the littoral zone allow macrophytes, periphyton, and

benthic algae to grow deeper and cover larger portions

of the bottom of invaded waterbodies (reviewed in

Karatayev et al., 1997, 2007a, b; Nalepa et al., 1999;

Vanderploeg et al., 2002; Hunter & Simons, 2004;

Higgins & Vander Zanden, 2010; Mayer et al., 2014).

While in many inland lakes vascular plants and Chara

benefit from these changes in the littoral environment

(Lyakhnovich et al., 1988; Hunter & Simons, 2004;

Reeders et al., 1990; Ibelings et al., 2007; Mayer et al.,

2014), in most of the Great Lakes increased water

clarity and phosphorus concentrations led to the re-

establishment of the nuisance filamentous algae

Cladophora and Lyngbya (Higgins et al., 2008;

Bridgeman & Penamon, 2010). Increases in macro-

phyte abundance associated with the introduction of

zebra and quagga mussels may cause, or contribute, to

the shift from turbid to clear water phase in eutrophic

lakes (Ibelings et al., 2007; Mayer et al., 2014) and

have different consequences for zebra and quagga

mussels. Zebra mussels, which produce stronger

attachment to hard substrates, may take greater

advantage of the additional substrates provided by

macrophytes than quagga mussels. Even in areas with

[90% quagga mussels on the bottom, zebra mussels

dominate on macrophytes (Diggins et al., 2004).

The impact of dreissenids on zooplankton is less

evident, but most data suggest that zooplankton

density and biomass decline after the introduction of

zebra mussels, along with the changes in plankton

community structure (reviewed in Karatayev et al.,

1997, 2007a, b; Vanderploeg et al., 2002; Higgins &

Vander Zanden, 2010; Kelley et al., 2010). This

decline could be due to the direct consumption of

small zooplankton by zebra mussels, reduction of their

food resources (phytoplankton and detritus), or due to

increased consumption by planktivorous fish, facili-

tated by the increase in visibility, or by increases in

benthivorous fishes, whose larvae feed on zooplankton

(reviewed in Karatayev et al., 1997, 2002, 2007a, b;

Kelley et al., 2010; Mayer et al., 2014). At present,

limited data on the impact of quagga mussels on

zooplankton suggest that their effect is similar to that

of zebra mussels (reviewed in Nalepa, 2010; Pothoven

& Fahnenstiel, 2013).

In both European and North America waters,

dreissenids provide an abundant food resource for

fishes. At least 27 fish species in Europe and 14 species

in North America feed on Dreissena spp. including

three species that occur on both continents: common

carp (Cyprinus carpio, native to Eurasia), pumpkin-

seed (Lepomis gibbosus, native to North America),

and round goby (Neogobius melanostomus, native to

Eurasia), as well as lake sturgeon in North America

(Acipenser fulvescens) (Molloy et al., 1997 and

references therein). In their native range, the Northern

Caspian Sea, fish consume up to 90% of the annual

production of Dreissena spp. (130,000 tonnes)

(reviewed in Molloy et al., 1997). In North America,

both species of Dreissena are actively consumed by

the invasive round goby (Lederer et al., 2008; Kornis

et al., 2012) to such an extent that several studies have

suggested that gobies may control Dreissena spp.

populations in the Great Lakes (Barton et al., 2005;

Patterson et al., 2005; Wilson et al., 2006; Lederer

et al., 2008).

The overall direct and indirect impacts of zebra

mussels on fish vary depending on the feeding mode of

the fishes and the morphology of the invaded water-

body (Karatayev et al., 1997, 2002; Strayer et al.,
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2004), and are likely to be similar for quagga mussels.

Impact may be time-dependent as native predators

may need time to adapt to effectively consume an

exotic resource (Carlsson et al., 2011). In most cases,

there has been an increase in benthivorous fishes in the

littoral zone, even those that do not feed on dreisse-

nids, because invasion by dreissenids usually results in

the increase in biomass of native benthic invertebrates

in this zone (reviewed in Karatayev et al., 1997, 2002,

2007a, b; Higgins & Vander Zanden, 2010; Kelley

et al., 2010). Data suggest that planktivorous fishes can

be negatively affected by dreissenids because of the

decrease in phytoplankton and zooplankton abun-

dance due to suspension feeding by the mussels, or

because an increase in water transparency results in

increased predation on larval fish (Francis et al., 1996).

At the same time, increased water clarity and light

penetration may positively affect visual fish predators

(Mayer et al., 2001, 2014; Mills et al., 2003). Strayer

et al. (2004) found a decline in abundance and growth

rate of pelagic fishes in the Hudson River after

invasion by zebra mussels, and an increase in the

abundance and growth rate of littoral species.

In the profundal zone of the Great Lakes, the

introduction of zebra, and especially quagga mussels

is linked to the decline in the abundance of Coregonus

clupeaformis (whitefish) through the dramatic

decrease in their main food, the amphipod Diporeia

spp. (Dermott & Kerec, 1997; Hoyle et al., 1999;

Lozano et al., 2001; Pothoven et al., 2001; Nalepa

et al., 2009a; Nalepa, 2010). The decline in Diporeia

spp. resulted in a shift in diet of medium and large

whitefish from Diporeia spp. to D. r. bugensis (Nalepa

et al., 2009b; Madenjian et al., 2010). However,

because of the lower energy content of quagga

mussels, this shift resulted in the decline of lake

whitefish condition, growth, and abundance (Pothoven

et al., 2001; Hoyle et al., 2008; Nalepa et al., 2009b;

Rennie et al., 2009). The decline in Diporeia spp. is

also associated with the decline of alewife, sculpin,

bloater, and other fish that are prey for larger

piscivores, including salmon and trout (reviewed in

Nalepa, 2010). While most North American studies

report that a shift to dreissenid-based diets has resulted

in decreased growth rates and condition in fish, several

European studies have shown that this shift resulted in

increased growth, average and maximum size, and

condition for some species of fish (Lyagina &

Spanowskaya, 1963; Poddubnyi, 1966).

Conclusions and future needs

Although we have a great deal of information about the

ecosystem impacts of the zebra mussel, fewer data exist

for impacts of the quagga mussel. In addition, because

most of the waterbodies invaded by quagga mussels

were first invaded by zebra mussels, it is difficult to

separate the impacts of these two species and determine

the role of quagga mussels alone. Moreover, most of the

information on the ecological impact of quagga mussels

was obtained from the research conducted in the

Laurentian Great Lakes, while research on the effects

of zebra mussels has been primarily in small inland

lakes. The overall ecological impacts of both zebra and

quagga mussels will depend on the number of water-

bodies colonized in a region and their total population

density and spatial distribution in a given waterbody.

Today many more waterbodies both in Europe and in

North America have been invaded by zebra mussels,

and therefore the extent of their ecological impact is

much greater than that of quagga mussels. Because the

time lag between when a species was first detected in a

waterbody and reaches its maximum population size is

much shorter for zebra mussels than for quagga

mussels, their greatest ecological impacts will be also

delayed compared to that of zebra mussels. By having

different spatial distributions in the waterbody, these

two species of Dreissena have very different effects on

benthic invertebrates. In the well-mixed littoral zone,

zebra and quagga mussels provide additional space and

food for many invertebrates, and can have a net positive

impact on the rest of the benthic community by

increasing diversity, density, and biomass of other taxa.

In contrast, in the profundal zone, quagga mussels

compete for space and food recourses with most of

native invertebrates, decreasing their overall diversity,

density, and biomass.

The system-wide effects of dreissenids on the water

column largely depend on water mixing rates, lake

morphology, and turnover rates. Because quagga

mussels are found in all regions of a lake, they may

filter larger volumes of water and may have greater

system-wide effects than zebra mussels, especially in

deep lakes with large profundal zones. However,

during much of the growing season, quagga mussels in

the deep profundal zone are isolated from the epilim-

nion by the thermocline, and their impact on the water

column may be lower than that of quagga or zebra

mussels in the well-mixed littoral zone.

106 Hydrobiologia (2015) 746:97–112

123



Dreissena populations are extremely variable in

space and time. Densities can vary by several orders of

magnitude from their initial invasion to when popu-

lation size is at a maximum, and subsequently decline

as density-dependent factors become important.

Therefore, the ecological impacts of dreissenids are

also density-dependent. Shortly after initial invasion,

as populations increase, both zebra and quagga

mussels will have their largest and most obvious

effects on communities, and most of the impacts will

be direct effects. After the initial stage of invasion,

impacts are less predictable, and more likely to be

caused by indirect effects through changes in the

ecosystem.
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