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Abstract Riparian corridors in Mediterranean-cli-

mate regions (med-regions) are resource-rich habitats

within water-limited, larger landscapes. However,

little is known about how their plant communities

compare functionally and compositionally across med-

regions. In recent decades, research on these ecosys-

tems has expanded in both geographic scope and

disciplinary depth. We reviewed 286 riparian-vegeta-

tion studies across the five med-regions, and identified

common themes, including: (1) high levels of plant

biodiversity, structural complexity, and cross-region

species introductions; (2) strong physical controls on

plant demographics and community structure; and (3)

intensive human impacts. European and Californian

ecosystems were the most represented among the

studies reviewed, but Australia, South Africa, and

Chile had the greatest proportional increases in articles

published since 2000. All med-regions support distinct

riparian flora, although many genera have invaded

across regions. Plant species in all regions are adapted

to multiple abiotic stressors, including dynamic flood-

ing and sediment regimes, seasonal water shortage, and

fire. The most severe human impacts are from land-use

conversion to agriculture, streamflow regulation,

nutrient enrichment, and climate change. Current

knowledge gaps and subjects for future research

include cumulative impacts to small, ephemeral

streams and large, regulated rivers, as well as under-

studied ecosystems in North Africa, the western

Mediterranean basin, and Chile.
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Introduction

Riparian corridors occupy a small proportion of

the Mediterranean-climate regions (med-regions)

throughout the world but are important far beyond

the land area they occupy. As resource-rich ‘‘islands’’

in semi-arid, human-dominated landscapes, they pro-

vide ecosystem functions and services related to water

quality, microclimate, structural habitat for wildlife

and fish, an energy base for the food web, and bank

stability, among others (Naiman et al., 2005).

Med-region riparian zones differ from their mesic

temperate and tropical counterparts in several key

ways. Regionally, they support a dense and productive

closed-canopy forest ecosystem relative to the sur-

rounding landscape, which is typically a matrix of xeric

woodlands, shrub and grassland communities. Opti-

mum conditions of sunlight, nutrients, and water

support high productivity and forest canopy heteroge-

neity that is typically more complex than in adjacent

and upland areas (Fig. 1; Barbour et al., 1993; Vaghti

& Greco, 2007). Because of the local availability of

water, biogeochemical fluxes and nutrient cycling rates

are also generally greater in riparian zones than in the

adjacent semi-arid landscape (Lewis et al., 2009).

Med-region riparian areas also support unique

ecological communities. In a biome with high popu-

lation pressure, agricultural conversion, and landscape

fragmentation, they are hotspots of biodiversity (Ag-

uiar & Ferreira, 2005; Underwood et al., 2009).

Particularly in arid and semi-arid regions, riparian

areas host high local plant diversity and a greater

proportion of the biome’s tree species than their

counterparts in temperate or tropical regions. For

example, in Southern Portugal, Santos (2010) found

that 46% of the total woody plant community richness

resulted from strictly riparian species, compared to

28% from sclerophyllous plants. Moreover, commu-

nity richness was positively affected by the area of

shrubs in the riparian zone and by the absence of

human activities and grazing animals. Young-Mathews

et al. (2010) found that woody riparian vegetation of

the Sacramento River (California) supported greater

plant diversity, nearly twice as much total carbon per

hectare, and lower levels of soil nitrate and phosphorus

compared to adjacent land managed for agricultural

uses. Riparian zones in med-regions and other semi-

arid environments also host a large proportion of the

surrounding biome’s wildlife species for some portion

of their life history (Patten, 1998; Seavy et al., 2009a).

Examples of high diversity include mammalian car-

nivores (Matos et al., 2009; Santos et al., 2010), birds

(Leal et al., 2011), and beetles (da Silva et al., 2011).

Med-region riparian areas are extremely vulnerable

to the cumulative, and universally increasing, pres-

sures from land use, streamflow regulation and

diversion, and climate change. Over the last two

decades, there has been a large increase in the number

and diversity of riparian research studies in med-

regions. Because the physical-ecological linkages are

so strong and so similar among med-regions (Fig. 1),

there is a high potential for application of analytical

approaches and tools across the biome. However, most

studies are focused locally, and inter-region studies are

rare. As a result, there is a need to identify common

findings across med-region riparian zones in terms of

ecological linkages with physical processes, riparian

composition and condition, and human threats to

ecosystem integrity.

In this review, we highlight several salient themes

that emerge from the last several decades of riparian

research on woody plant communities in med-regions.

Our primary focus is on woody plant communities

because of the important role they play in providing

physical habitat and regulating resource fluxes. Our

review highlights several pertinent issues: (1) the

distribution of med-region riparian research based on a

bibliometric review of published articles; (2) a com-

parison of woody plant genera among the five med-

regions; (3) physical drivers and interactions with

riparian vegetation that strongly influence distribution,

composition, and life history of med-region woody

riparian plants; (4) human impacts to these ecosys-

tems; and (5) recent policy initiatives, classification

and monitoring methods, and technical advances that

have made the recent resurgence of med-region

riparian research so extensive and fruitful. Finally,

we identify key gaps in our understanding and future

challenges for riparian science and management.
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Recent trends in med-region riparian research

Riparian research studies in med-regions have increased

at a rapid pace in recent decades. In a biogeographic

analysis of research on riparian vegetation and ecogeo-

morphic interactions (Bendix & Stella, in press), this

biome had the greatest proportional increase of recent

studies when compared to all other biomes, except dry

tropical forest. In med-regions, 71% of articles in print

since 1990 were published within the last 5 years,

compared to 54% as a global average across all

terrestrial biomes.

To better understand this recent trend, we under-

took a more detailed analysis of the spatio-temporal

Fig. 1 Photograph montage of med-region riparian ecosys-

tems: a Odelouca River during summer low flow, Algarve,

Portugal (photograph by P. M. Rodrı́guez-González). b Oued

Laou valley, Morocco (S. Dufour). c Piedra Blanca Creek 1 year

after fire, California (J. Bendix). d Gravel bar colonization along

a dynamic reach of the Biobio river, Chile (B. Belletti). e Fynbos

riparian zone, Cederberg Wilderness Area, S. Africa (J. M. Kalwij).

f Canning River riparian zone near Perth, Australia (R. L. Pettit)
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distribution of riparian research articles published

amongst the five med-regions, expanding the scope to

include all studies focused on vegetation, regardless of

whether they also included physical processes. We

performed a bibliometric analysis using results from

the Scopus database, in which joint searches were

performed on the word ‘‘riparian’’ and geographical

terms, which included ‘‘Mediterranean’’ and individ-

ual med-region countries (e.g., ‘‘riparian’’ and

‘‘Chile’’). We searched for the co-occurrence of these

terms in the title, abstract and/or keywords, and

constrained our search to the period 1980–2011. The

articles were then categorized manually into four

degrees of relevance: (1) studies in which vegetation

was the direct object of the research, or in which

geomorphic drivers and vegetation exert one-way or

reciprocal influences; (2) studies in which vegetation

characteristics were a predictive factor or covariate for

the object of the study, which was not vegetation; (3)

studies in which the riparian area is either mentioned

in passing, or is a relatively unimportant feature of the

study; and (4) studies that are part of the geographic

unit but not in the med-region. In all cases of groups 1

and 2, some aspect of vegetation was quantified (e.g.,

species richness, biomass, or areal extent), and we

retained these studies for further analysis. We

excluded those studies that took place in riparian

areas without consideration of the vegetation charac-

teristics (group 3), and those that were not conducted

within the med-region portions of the countries

searched (group 4). Criteria for the geographic

boundaries of med-regions followed the biome maps

generated by Olson et al. (2001).

Of the 861 articles returned from the series of

database searches, 286 were focused on riparian

vegetation distribution and ecology within med-region

catchments (i.e., coded as groups 1 and 2). Within this

group, the number of studies increased over the last

three decades, and particularly since 2000 (Fig. 2a).

Zaimes et al. (2011) document a similarly increasing

trend in their review of riparian area studies in Greece,

with 85% of 52 articles published after 2008. Among

med-regions, the largest number of articles published

since 1980 come from the Mediterranean basin (45%)

and California (35%) and, within the former, 74% of

the articles came from four countries: Spain, Italy,

Portugal, and France. It is notable, however, that the

number of articles from Australia, South Africa, and

Chile has increased substantially since 2000 (Fig. 2b),

representing large proportional within-region increases

over past decades.

In some cases, the recent surge in research has been

indirectly promoted by regional management and

policy initiatives. For example, riparian research in

Mediterranean Europe has been greatly expanded

under the EU’s Water Framework Directive (WFD),

which mandates a national assessment of health for all

watercourses and a plan for improving those in poor

condition (Munné & Prat, 2004; Sánchez-Montoya

et al., 2009). Though the riparian plant resources are

not specifically mandated in the WFD’s focus on

aquatic plants, fish, and benthic fauna, many member

countries include some aspect of riparian assessment

Fig. 2 Number of articles related to med-region riparian

studies: a over time and b by region. Lines series in a refer to

studies that were specifically focused on riparian plants (Type 1;

n = 172), those that included vegetation as a part of a larger

study on other organisms or processes (Type 2; n = 116), and

the total number of studies returned by the original Scopus

database search using the terms ‘‘riparian’’ and country/region

keywords (‘‘All’’; n = 861). b The distribution of core studies

(Types 1 and 2) by region and decade. AU Australia, CA

California, CH Chile, MED Mediterranean basin, SA South

Africa
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in their protocols. Furthermore, Zaimes et al.

(2011) link the increase in riparian studies in Greece

to the establishment of another European policy, the

Habitats Directive that established the Natura 2000

network.

Another clear result from our analysis is that, as

with riparian studies in general, there is no primary

publishing outlet for riparian vegetation studies in

med-regions. The core studies in our analysis

(n = 286) were published in 136 different journals

(�X ¼ 2:1 articles per journal) with more than 60% of

journals containing a single article (n = 84 journals).

The top twenty journals in terms of publishing

frequency, which represent only 47.1% of the core

articles, have an average 2010 Impact Factor of 2.19

(Table 1). A large proportion of this research is

published in applied ecology journals (e.g., Restora-

tion Ecology or Environmental Management) and less

frequently in regional outlets (e.g., South African

Journal of Botany) or hydrogeomorphological publi-

cations (e.g., ESPL or Geomorphology).

Composition of woody riparian plant communities

in med-regions

Comparison among regions

The riparian floras of all five med-regions have been

described with various levels of thoroughness. For

example, within the Mediterranean basin, extensive

floristic or phytosociological studies have been con-

ducted over the last 50 years in France (e.g., Archiloque

et al., 1963; Gaudis-Montbrun, 1985; Varèse, 1994),

Italy (e.g., Ballero, 1988; Manzi, 1988; Brullo &

Spampinato, 1997), Spain (e.g., Dı́az & Penas, 1987;

Garcı́a Fuentes et al., 1998; Fernández González &

Molina, 1988; Amigo, 2005; Quesada et al., 2009),

and Portugal (Vasconcelos, 1970; Costa et al., 1996;

Rodrı́guez-González et al., 2003a; Duarte et al., 2004).

In South Africa, Sieben & Reinecke (2008) describe a

species template of fynbos riparian vegetation. From

these and other studies, we compiled a list of the

primary woody genera present in the five med-region

Table 1 Distribution of

relevant riparian articles in

med-regions among the top

twenty journals by frequency

and Impact Factor (2010 ISI

Journal Citation Reports,

Thompson Reuters)

The IF-weighted average was

calculated for the top twenty

journals (i) using the following

formula: (
P

(number articlesi/

total articles) * IFi)

Journal name Number Frequency (%) IF

1 Restoration Ecology 12 4.6 1.93

2 Environmental Management 11 4.2 1.50

3 Biological Conservation 10 3.8 3.49

4 Earth Surface Processes and Landforms 9 3.4 2.11

5 Forest Ecology and Management 9 3.4 1.99

6 South African Journal of Botany 9 3.4 1.11

7 River Research and Applications 9 3.4 1.82

8 Biological Invasions 6 2.3 3.47

9 Ecological Applications 6 2.3 4.28

10 Ecological Engineering 6 2.3 2.20

11 Hydrobiologia 6 2.3 1.96

12 Landscape Ecology 6 2.3 3.20

13 Wetlands 6 2.3 1.24

14 Aquatic Conservation: Marine

and Freshwater Ecosystems

5 1.9 1.97

15 Landscape and Urban Planning 5 1.9 2.00

16 Plant Ecology 5 1.9 1.88

17 Ecosystems 4 1.5 3.68

18 Fresenius Environmental Bulletin 4 1.5 0.72

19 Geomorphology 4 1.5 2.35

20 Journal of Wildlife Management 4 1.5 1.56

SUM SUM Weighted

average

Total 136 47.1 2.19
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riparian zones in order to compare patterns of biodi-

versity and taxonomic origin between regions

(Table 2; Appendix A in Supplementary material).

Sources included descriptive flora and vegetation

publications at different spatial scales (international

and national articles, regional floras, theses, books,

and reports), author’s knowledge of their study

regions, and personal communication of local bota-

nists. From the descriptions available, we listed genera

as present (P) or common (C) for each of the five med-

regions (Appendix A in Supplementary material),

considering genera common if botanical sources

indicated that their occurrence was widespread within

a med-region’s riparian ecosystems. We also indicated

whether non-native species within the genus had

dispersed widely within the region. Although we used

authoritative sources for each region, the compilation

is not exhaustive and necessitated a coarse-level

classification as a result of the different degree of

information available among and within regions. For

example, within the Mediterranean basin, North

Africa and the Middle East remain understudied

compared to the European region.

A distinct regional flora has evolved within each of

the five med-regions, though some common genera are

considered native to several of these regions. These

common genera include: Populus and Salix in Europe,

California, and (for some Salix species) Chile; Bac-

charis in California and Chile; Coriaria in Europe and

Chile; Muehlenbeckia in Australia and Chile; Erica,

Ilex and Olea in South Africa and Europe; and

Podocarpus and Maytenus in South Africa and Chile.

Other med-region genera have species that invaded

other med-regions outside their native ranges (e.g.,

Eucalyptus from Australia to the other four regions,

Tamarix with native and non native species within the

Northern Hemisphere regions, and Salix and Pinus in

the Southern Hemisphere). Differences also exist

within a given region; for example, Quézel & Médail

(2003), in their synthesis for the entire Mediterranean

basin, highlight the greater presence of Platanus,

Juglans, Pterocarya, Liquidambar, and Periploca in

the eastern part of the basin. The Mediterranean basin

also harbors important plant glacial refugia that

represent ‘‘phylogeographical hotspots’’, which are

significant reservoirs of unique genetic diversity

favorable to the evolutionary processes of Mediterra-

nean plant species (Médail & Diadema, 2009).

Examples of relict taxa within riparian communities

include Rhododendron ponticum in the western basin

(Portugal, Spain, Lebanon) and Liquidambar orien-

talis in the eastern basin (Médail & Diadema, 2009).

Despite differences in flora among regions, plant

communities in these ecosystems are structurally

similar, with a developed shrub layer, few dominant

trees, and a patchy mosaic of herbaceous, shrub-

dominated, and closed-canopy ecotypes that are

associated with distinct geomorphic landforms and/

or soil moisture regimes. Although it was formerly

assumed that there had been a convergent evolution of

traits among woody plants as a result of the unique

seasonality of Mediterranean climate (med-climate)

conditions (Cowling & Campbell, 1980), a recent

study suggests that many common traits (e.g., sclero-

phyllous leaves) have come from Tertiary lineages,

prior to the development of the current med-climate in

these regions (Verdú et al., 2003). Thus, current trait

similarities among the med-region taxa may be due to

historical and phylogenetic constraints and not to

evolutionary convergence (Verdú et al., 2003).

Species invasions between regions

There has been a vast exchange of plant species among

the five med-regions since the Age of Exploration

(Aschmann, 1973; Fox, 1990). Various mechanisms

have been described to explain how non-native species

can invade and become established in plant commu-

nities, including evolutionary history, community

structure, propagule pressure, disturbance, and stress

(Alpert et al., 2000). Theoretically, med-region ripar-

ian ecosystems are highly invasion-prone because of

disturbance-driven resource fluctuations (Davis et al.,

2000), specifically the annual cycles of flooding,

drought, and nutrient pulses that create new habitats

for species colonization. In these cases, non-native

species that exhibit a ruderal (i.e., disturbance-toler-

ant) life-history will be favored during colonization of

bare and moist substrates; one example is the invasion

of Arundo donax in California rivers (Quinn & Holt,

2008). However, there are native riparian species that

are well adapted to these conditions as well, and

species invasions in med-regions are more often aided

by the alteration of natural disturbance regimes caused

by flow regulation and bank improvements that reduce

the geomorphic dynamism of the river channel

(Stromberg et al., 2007). For example, shifts in flood

timing on regulated rivers in the Southwestern U.S.
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Table 2 Number of dominant

woody genera by family and

region associated with riparian

ecosystems in med-regions,

based on a review of regional

flora and other botanical/

ecological sources

A more complete list of genera

for each med-region is

presented in Appendix A in

Supplementary material along

with indications as to their

ecological status (common,

present, and/or non-native)

Family Australia California Chile Mediterranean basin South Africa

Aceraceae 1

Aextoxicaceae 1

Anacardiaceae 1

Apocynaceae 1

Araliaceae 1

Asteraceae 1 1 1 1

Betulaceae 1 1

Bruniaceae 3

Caprifoliaceae 2 1

Celastraceae 1 1

Chenopodiaceae 1

Convolvulaceae 1

Cornaceae 1

Cunoniaceae 2

Ebenaceae 1

Elaeocarpaceae 1

Ericaceae 1

Escalloniaceae 1

Fabaceae 2 1 2

Fagaceae 1 1

Grubbiaceae 1

Hippocastanaceae 1

Icacinaceae 1

Juglandaceae 1

Lardizabalaceae 1

Lauraceae 2

Liliaceae 1

Moraceae 1

Myrsinaceae 1

Myrtaceae 2 1 2 1

Oleaceae 1 1 1

Penaeaceae 1

Podocarpaceae 1

Polygonaceae 1 1

Proteaceae 1 2

Ranunculaceae 1

Rhamnaceae 1

Rosaceae 2 4 1

Salicaceae 1 2 2 2

Scrophulariaceae 1

Smilacaceae 1

Tamaricaceae 1 1

Thymelaeaceae 1

Ulmaceae 1

Vitaceae 1 1 1

Winteraceae 1
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favor the reproductively opportunistic Tamarix over

Populus and Salix, both of which have narrow

germination windows (Stromberg et al., 2007).

Recently Tamarix has been observed to invade

wetland habitats in California’s med-region (Whit-

craft et al., 2007).

Invasive species often have a suite of adaptive traits

that make them better competitors than natives,

including better stress tolerance (e.g., greater salt

tolerance in Tamarix compared to Populus [Di

Tomaso, 1998]); multiple reproductive strategies

(e.g., Acacia in Mediterranean basin, [Fox, 1990]),

and increased productivity after disturbances (Arundo

donax growth after fire in California [Quinn & Holt,

2008; Coffman et al., 2010]). Fox (1990) noted that

fleshy fruit was a common feature among woody

invaders in southern Australia, including species from

the genera Olea (Mediterranean basin), Chrysanthe-

moides and Lycium (South Africa), and Nicotiana and

Destrum (Chile). Bird dispersal of seeds is considered

the primary vector of invasion in these examples.

In the Mediterranean basin, some of the most

invasive species belong to the genera Acacia, Arundo,

and Eucalyptus (Brunel & Tisson, 2005). In North

America, by contrast, Tamarix has widely invaded arid-

land river ecosystems and shows important potential for

further colonization in both riparian areas and in habitats

that were not initially considered vulnerable to invasion

(Whitcraft et al., 2007). Med-rivers of Chile have been

strongly disturbed by human pressure (Amigo, personal

communication) and the most common invasive genera

there include Rubus and Acacia. In South Africa,

Arundo, Acacia, and Eucalyptus have invaded river

margins (Richardson et al., 2004; Nel et al., 2004).

The effects of invasive species can be observed at

different levels from community composition to

ecosystem functions and services. Cushman & Gaffney

(2010) found that Arundo and Vinca have strongly

negative effects on riparian plant community diver-

sity, and advocated effective control and restoration

efforts. For instream organisms, invasive riparian

plants can alter trophic processes, decomposition

rates, and ultimately community properties of inver-

tebrates and fish. For example, insect shredder densi-

ties in streams in New South Wales, Australia, were

significantly lower when a non-native invasive tree

(Cinnamomum camphora) comprised [38% of the

leaf litter, and growth rates for native caddisflies were

depressed (Davies & Boulton, 2009).

One of the best-studied impacts is that of Eucalyptus

species on riparian and stream communities in Medi-

terranean Europe, California, and South Africa. Various

Eucalyptus species, including E. camaldulensis,

E. grandis, and E. lehmanii, have invaded large reaches

of South African streams in the Western Cape (Forsyth

et al., 2004). In a 10-year study, Beater et al. (2008)

found that the overstory of large E. grandis trees in

South Africa had a negative effect on native woody

cover and that Eucalyptus removal did not reduce the

invasion of this plant in savannah and grassland habitats

over the long-term. Abelho & Graça (1996) found that

compared to streams with native deciduous riparian

corridors, Eucalyptus-dominated streams accumulated

more organic matter, had lower decomposition rates,

and supported less diverse and less abundant inverte-

brate communities. In addition, the decomposer com-

munities and temporal pattern of leaf litter inputs were

different between invaded and non-invaded streams

(Bärlocher & Graça, 2002). However, despite these

functional differences between reach types, leaf decay

rates for individual Eucalyptus trees were equivalent to

native trees (e.g., Castanea sativa) within a particular

habitat (Bärlocher & Graça, 2002). Similarly, in

California, Laćan et al. (2010) found that Eucalyptus

litter decomposed at rates equal to native riparian

species (Quercus, Umbellularia, Acer, and Alnus); in

this case the benthic communities did not differ among

treatments. These results suggest that although Euca-

lyptus can be a functioning part of a larger, more diverse

ecosystem when present in low densities, it tends to

negatively influence instream habitat value where it is

dominant within riparian communities in South Africa

and the Mediterranean basin.

Physical drivers and interactions

Plants in med-region riparian ecosystems are adapted

to multiple physical drivers and stressors, including

floods, droughts, and fire. Hydrological influences on

riparian vegetation in med-regions are pronounced

because of the extended dry season, but also because

of an often flashy, streamflow regime. Bendix & Stella

(in press) found that among recent riparian ecogeo-

morphology articles from med-regions, flood energy

and sediment interactions with vegetation were the

basis for 51% of studies, with an additional 21%

considering multiple physical processes.
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Overall, physical drivers in med-region riparian

zones can be divided into five principal categories

(Fig. 3): (1) flood magnitude and hydraulics; (2) flood

timing; (3) streamflow and water table dynamics; (4)

sediment dynamics and texture; and (5) fire. Some of

these processes overlap in terms of how they affect

species’ life histories or community dynamics. For

example, flood timing interacts with flood magnitude

to control the availability of geomorphic surfaces

available for colonization, and sediment texture and

water table dynamics interact to provide soil moisture

to plant roots (Dufour et al., 2007). Other critical

influences involve feedbacks from biotic processes to

the physical drivers listed above (Bendix & Cowell,

2010a).

Flood magnitude and flow hydraulics

Floods affect plant communities by dispersing prop-

agules, initiating recruitment of pioneer species on

cleared, moist substrate, and killing vulnerable plants

via hydraulic disturbance (Fig. 3; Bendix & Hupp,

2000). The energy associated with large floods dam-

ages plants through root scour and stem breakage

(Hughes, 1997; Polzin & Rood, 2006), and the high-

magnitude winter/spring floods typical in med-

regions, may cause significant plant mortality (Poesen

& Hooke, 1997; Bendix, 1998). Many factors influ-

ence plant vulnerability, including plant size and

flexibility, root and substrate characteristics, and

location relative to the distribution of energy within

the streamflow (Bendix, 1999). Energy distribution is

determined both by local geomorphic variables and by

the vegetation itself, as feedbacks with plant density

affect both hydraulic roughness (Bendix & Hupp,

2000) and the size and magnitude of scour patterns

(Rominger et al., 2010). Seedlings are especially

vulnerable because of their small size and limited root

development, and the near-total failure of annual

cohorts is a common occurrence (Sher et al., 2002;

Stella, 2005).

At the landscape scale, vegetated area typically

decreases after flood disturbance (Piégay & Bravard,

1997), then increases with colonization of the freshly

deposited sediments, so that stand initiation and succes-

sion is linked to landform development (Michalkova

et al. 2010; Corenblit et al., 2010; Stella et al., 2011). In

rivers experiencing frequent high-energy flows, the

resulting vegetation dynamics may not exhibit succes-

sion of plant communities, but rather a quasi-equilibrium

state dominated by flood-adapted species (Bendix,

1998).

Flood magnitude is relevant not only in the context

of disturbance, but also for hydrochory (i.e., dispersal

by water). Hydrochory may involve transport of either

seeds (Pettit & Froend, 2001) or clonal plant fragments

(Douhovnikoff et al., 2005), and is most effective

during overbank floods when propagules are dispersed

across floodplains (Gurnell et al., 2006; Nilsson et al.,

2010).

Fig. 3 Conceptual matrix

of physical influences on

woody riparian plants in

med-regions. The number

of symbols indicates the

relative magnitude of the

influence on each life stage.

The arrows below indicate

interactions between

physical drivers that may

mediate (i.e., reinforce or

conversely lessen) effects on

plants. See text for a full

description of drivers,

vegetation impacts, and

feedbacks
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Flood timing

In med-region riparian zones, seedling recruitment is

limited by appropriate seedbed conditions and is often

achieved by synchronization of seedfall with floods that

scour and/or deposit moist substrate (Siegel & Brock,

1990; Pettit & Froend, 2001; Stella et al., 2006). The

time window most critical for recruitment may reflect

either the distinctive med-region precipitation regime

(Pettit et al., 2001) or the spring runoff period for

snowmelt-dominated rivers (Peterson et al., 2000; Stella

et al., 2006). Because many Mediterranean species have

seeds with short viability, seed dispersal is usually

directly from parent plants rather than from seedbanks

(Stella et al., 2006), and this can result in clustered

establishment near parent trees (Pettit & Froend, 2001).

Streamflow and water table dynamics

In med-regions, seasonally fluctuating water tables and

severe vapor–pressure deficits limit water availability

for much of the growing season. Though riparian plants

are generally well-adapted to disturbance (Lytle &

Poff, 2004), many are intolerant of drought and rely on

a phreatophytic root morphology, with deep roots

permanently accessing groundwater or the stream

(Karrenberg et al., 2002; Singer et al., 2012). Shal-

low-rooted plants, including seedlings and saplings,

are particularly vulnerable to desiccation during water

table recession, and this poses a major limitation on

plant establishment (Fig. 3; Stella et al., 2010).

Despite their vulnerability to drought, riparian

plants do demonstrate some adaptive traits. Rapid

root extension and low shoot-to-root biomass ratios

are common for riparian trees and potentially reduce

stress related to seasonally-variable water tables

(Kranjcec et al., 1998; Amlin & Rood, 2002). For

example, in Western Australia, roots of Eucalyptus

diversicolor can exceed 20 m (Hubble et al., 2010).

Other morphological adaptations include reduction in

leaf size (Stella & Battles, 2010) and specific leaf area

(Busch & Smith, 1995), crown dieback (Scott et al.,

1999), branch abscission (Rood et al., 2000), and

reduced diameter growth (Stromberg & Patten, 1996).

High water use efficiency is a common response of

water-stressed plants and has been observed as

enriched d13C values in leaves and wood for riparian

seedlings grown under experimental drought (Zhang

et al., 2004; Stella & Battles, 2010) and for adult trees

in situ within natural environments (Leffler & Evans,

1999). Experimental water table manipulations reveal

the impact of seasonal moisture stress on plant

survival and growth (Horton & Clark, 2001; Stella

et al., 2010). In one such study, Stella & Battles (2010)

found variation in species’ responses to water stress,

with cottonwood minimizing specific leaf area more

than willow, and the latter more effectively reducing

stomatal conductance and leaf size.

Sediment dynamics

In med-region riparian settings, the varied roles of

sediment dynamics include influences of bar and

floodplain creation on vegetation colonization, plant

mortality by burial, and textural controls on water

availability (Fig. 3; Dufour et al., 2007; Hupp &

Rinaldi, 2007; Bertoldi et al., 2009; Angiolini et al.,

2011). On active alluvial rivers, channel migration

regulates the spatio-temporal distribution of plant

communities through formation of geomorphic sur-

faces that promote vegetation colonization (Fig. 4;

Harper et al., 2011). Such surfaces include point bar

deposits, mid-channel bars, and abandoned channels

(Baker & Walford, 1995; Stella et al., 2011).

Sedimentation can also affect plants through mor-

tality by burial. Many plant species can survive burial

and resprout from epicormic buds (Bond & Midgley,

2001), but significant mortality may occur depending

on the depth of sedimentation relative to plant size,

season (dormant vs. active), and taxon-specific phys-

iology. For example, Tamarix species show a greater

vulnerability to burial than Populus (Levine &

Stromberg, 2001) and Salix (Shafroth et al., 2010)

under identical field conditions.

Sediment processes are also important because of

the influence of sediment characteristics on soil

resources (Francis & Gurnell, 2006). Soil texture

controls capillarity and soil moisture availability,

which influence plant germination, survival, and

growth (McBride & Strahan, 1984; Hupp & Rinaldi,

2007). Soil texture is also related to nutrient availabil-

ity. In floodplain forests along the Ibero-Atlantic coast,

Rodrı́guez-González et al. (2010) found a complex

interaction between texture, nutrients, and soil mois-

ture. The nitrogen-fixing tree Alnus glutinosa grew

fastest on coarse, well-drained soils regardless of

nutrient availability, whereas Salix atrocinerea, in

contrast, maintained maximal growth on fine, nutrient-
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rich soils. Alnus only occurred where those soils were

not fully saturated.

Fire

In med-regions, the impact of fire on riparian vege-

tation reflects the interplay between moist, fire-

resistant site conditions (Kobziar & McBride, 2006)

and the tendency of severe fires to override variation in

fuel characteristics (Keeley et al., 1999). Severe fires

can dramatically affect riparian vegetation distribution

and community dynamics (Davis et al., 1989; Vaz

et al., 2011). In California, Bendix & Cowell (2010b)

found that postfire composition was determined by

(a)

(b)

Fig. 4 Example of a

process-based model of

riparian cottonwood

dynamics on the Sacramento

River, CA (Harper et al.,

2011). a The boundary

conditions of the patch-

based population model,

which simulates the initial

process of floodplain patch

creation over 75 years from

progressive channel

migration (narrow multi-

colored polygons showing

annual channel change) and

channel cutoff and

abandonment (large

polygons). For each patch

(white arrow leading to b),

a submodel simulates

cottonwood colonization

using a decision matrix

based on empirical

relationships of

germination, seedling

establishment, and survival

with seasonal and

interannual flood

characteristics. An overall

population model tracks the

age class of trees on each

occupied patch and

calculates aggregate output

variables for the river

corridor-wide population

(Images courtesy of Fremier

and the Ecological Society

of America)
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species’ balance of mortality rate and resprouting rate,

with alder (Alnus rhombifolia) losing its dominant

position because of high mortality and low resprouting

(Fig. 3). In that study, the fire’s effects were spatially

uniform across the valley floor, contrasting with the

spatial variability of flood impacts. Moreover, the

replacement of burnt mature stems by post-fire sprouts

resulted in significant structural change, which

affected habitat and stream shading, and decreased

the stature contrast (trees versus shrubs) between

riparian vegetation and the surrounding sclerophyllous

shrubland.

Fire also affects competition between native and

invasive species. Coffman et al. (2010) found that

invasive Arundo donax in California was far more

productive after fire than were native species. In med-

region South African streams, invasive Acacia species

regenerate through both seedling germination and

prolific sprouting after fire (Pretorius et al., 2008;

Reinecke et al., 2008), although their seedling germi-

nation rates can be suppressed somewhat by active

reintroduction of indigenous species (Reinecke et al.,

2008).

Feedbacks between physical drivers

and vegetation

A growing literature is advancing our theoretical

understanding of feedbacks between biological and

geomorphic processes (e.g., Steiger et al., 2005;

Stallins, 2006; Corenblit et al., 2011), and med-region

riparian systems are strongly affected by such feed-

backs (Fig. 3; Bendix & Cowell, 2010a). While

vegetation responses to hydrogeomorphic influence

have been outlined above, the vegetation feeds back to

the geomorphic processes through its role in stabiliz-

ing banks and its contribution to hydraulic roughness

(Bendix & Hupp, 2000; Gran & Paola, 2001; Gurnell

& Petts, 2006, Malkinson & Wittenberg, 2007). These

processes in turn affect the rate and spatial pattern of

floodplain development, and influence recruitment

success of seedling cohorts through seedbed avail-

ability, water table depth, and sediment texture

(Figs. 3, 4).

One major agent of biogeomorphic feedbacks is

large woody debris (LWD) in streams. Functional

LWD (i.e., that in contact with the active channel)

influences both flow characteristics and channel

morphology, which affect both colonization by plants

and aquatic habitat (Gurnell et al., 2000a, b; Opper-

man, 2005). The complexity of these feedbacks adds

to the contribution of fire to LWD supply, as shown by

Vaz et al. (2011) in Portugal’s Tagus River. The

timing of wood inputs may be critical, and Keller &

Tally (1982) have noted the potential role of LWD in

buffering sediment transport following fire-induced

sediment influxes from surrounding slopes. Bendix &

Cowell (2010a) argued that both the temporal and the

spatial distribution of wood inputs reflect the interplay

of fire, post-fire flooding, and variation in the charac-

teristics of burned species.

Human impacts

Human modifications of med-river corridors affect

riparian vegetation directly and indirectly through

land conversion and regulation of the hydrological

regime. For example, in Greece only 10% of riparian

corridors can be considered as near natural conditions

(Zogaris et al., 2009; Chatzinikolaou et al., 2011). The

riparian ecosystems in med-regions appear to be

especially vulnerable because of cumulative impacts

of these modifications, together with additive effects

of climate change (Palmer et al., 2009; Seavy et al.,

2009b, Perry et al., 2012).

Direct impacts of grazing, fire regime modification,

cultivated agriculture and plantations, and urbaniza-

tion may reduce riparian cover, influence floristic

composition (Vasilopoulos et al., 2007; Dimitriou &

Zacharias, 2010), and/or facilitate increased non-

native species frequency and cover (Meek et al.,

2010). Land conversion and other activities are usually

associated with reductions in riparian zone extent,

community complexity, dispersal, and function (Katibah

et al., 1984; González et al., 2010), although these

impacts can be difficult to separate from other

environmental variables. For example, near cities,

humans may be responsible for introduction of

cosmopolitan, ornamental, nitrophilous or cultivated

species (Hruska et al., 2008). In rural areas where

agricultural activity has decreased over the last

century (e.g., piedmont reaches in south-eastern part

of France), riparian woodlands have expanded into

formerly grazed areas (Liébault & Piégay, 2002).

Indirectly, changes in hydrological regime and

geomorphological processes strongly influence riparian

vegetation. In med-region riparian zones, important
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sources of change include (1) groundwater extraction

and associated water table decline (Shafroth et al., 2000;

Stromberg & Patten, 1996; Scott et al., 1999); (2) flow

diversion and regulation, with effects on channel

morphology, and riparian species extent, complexity,

and function (Trush et al., 2000; Bombino et al., 2007);

and (3) land uses changes in the watershed, and

associated modification in sediment delivery and mor-

phological processes (Piégay et al., 2004; Stella et al., in

press). In Mediterranean and arid climates, modification

of the water regime from dams, diversion, or land cover

changes can also affect soil conditions, nutrient cycling

(Sampaio et al., 2008; González et al., 2010), and/or

salinity (Akeroyd et al., 1998; Callow & Smettem,

2007), with significant effects on ecosystem functions

and vegetation patterns (Bejarano et al., 2011).

Levees and river embankments affect channel

geometry through width reduction, steepened hydrau-

lic gradients, and coarser grain sizes, leading to drier

conditions on colonizable landforms. Thus, in chan-

nelized reaches, pioneer communities tend to be less

diverse and dominated by drought-tolerant woody

species (Dufour et al., 2007). River bed degradation

can depress local water tables, resulting in decreased

growth and survival of phreatophytic riparian trees,

and modification of the floodplain environment to

favor more xeric-adapted plants (Tabacchi et al., 1996;

Bravard et al., 1997). Amplified channel incision and

narrowing from human activities reduce both species

richness at the reach scale and the proportion of

pioneer riparian habitats (Hupp & Rinaldi, 2007). At

the network scale, human modifications to channels

may impact gene flow (Imbert & Lefevre, 2003).

However, in specific cases, the reduction in channel

mobility may increase the overall landscape diversity

by facilitating expansion of woodland communities

(Liébault & Piégay, 2002; Kondolf et al., 2007; Piégay

et al., 2009) and human disturbances can increase the

total species diversity and evenness (Kladis et al.,

2011). Lastly, human-mediated invasion by non-

native species can result in altered competitive

hierarchies both for establishing seedlings and for

adult plants (Planty-Tabacchi et al., 1996; Aguiar

et al., 2006; Stromberg et al., 2007; Mortenson &

Weisberg, 2010; Santos, 2010).

Climate change resulting from increased anthropo-

genic greenhouse gas emissions is projected to have a

particularly strong effect on med-regions (Parry et al.,

2007). With an average temperature rise of 2�C or more

in the Mediterranean basin, decreased precipitation is

projected, along with increased frequency and duration

of the droughts and desertification. These trends have

already been established in parts of the basin. In med-

rivers fed by snowmelt, reduced snowpack will alter

the timing as well as the magnitude of flooding. A

meta-study performed on the Mediterranean basin

predicted an increased risk of inland flash floods from

intensification of extreme events (Giorgi & Lionello,

2008). Greater fire frequencies under a warmer and

drier climate are also likely in multiple med-regions,

including the Mediterranean basin, South Africa, and

California (Parry et al., 2007), with potential effects on

riparian community composition and succession, veg-

etation structure, and carbon storage (Parry et al., 2007;

Bendix & Cowell, 2010b).

Accompanying these ecosystem changes, the size of

med-regions may change as well. In one analysis of

three emissions scenarios using aggregated down-

scaled results from 23 general circulation models

(Klausmeyer & Shaw, 2009), Chile’s med-region is

projected to increase from 29 to 53% over its current

size by the end of the twenty-first century, whereas

Australia would lose 23–51% of its current med-region

area and South Africa may lose 65% of its fynbos

biome. This will also result in severe contraction of

many endemic species’ ranges (Parry et al., 2007).

Such contraction, combined with rates of human land

conversion in these regions, with an average of 30%

across regions, makes natural area protection impor-

tant, particularly for Australia where the med-region

may shrink dramatically (Klausmeyer & Shaw,

2009).

Currently active and emerging research directions

The expansion of research since 2000 (Fig. 2) has

accompanied, and often been driven by, advances in

policy, management, and technology. Three main

influences include (1) the development of riparian

status indicators to address management and policy

initiatives (e.g., European Water Framework Direc-

tive, CALFED Ecosystem Restoration Program in the

San Francisco Bay-Delta region of California, and the

Murray-Darling Basin Authority in Australia); (2)

the propagation of remote sensing technology; and (3)

the development of process-based predictive models

of riparian community dynamics.
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Riparian assessment and indices of ecological

integrity

Plant-based river quality assessment methods have

traditionally focused on the aquatic environment, and

in particular the trophic state of macrophyte species,

with numerous examples from temperate rivers. In

Australia, the AUSRIVAS system is in common use

(Halse et al., 2007), and in Europe, assessment

systems include the Mean Trophic Rank system

(MTR; Holmes et al., 1999) and the Macrophyte

Biological Index for Rivers (IBMR; Haury et al.,

2006). Some water-quality assessment approaches use

riparian trees as bioindicators of trace metals (Madejón

et al., 2004) or extremely acidic conditions (Rufo

et al., 2011).

In contrast to these water quality metrics that use

riparian plants as indicators, the direct assessment of

the vegetated riparian zone’s ecological integrity is a

young field with little agreement as to appropriate

approaches (Stromberg et al., 2006). In med-regions,

the intrinsic spatio-temporal variability and its inter-

play with natural and human disturbances makes this

field especially challenging, and a number of different

approaches have been developed in the last decade to

tackle this issue. For example, in Mediterranean

Europe, early riparian vegetation assessment methods

focused on richness and cover of native versus

exotic species, as well as patch connectivity metrics

(Espirito-Santo et al., 2000; Salinas et al., 2000).

The adoption of wide-ranging riparian monitoring

and management mandates in med-regions has led to

the development of a number of rapid assessment

methods (RAMs) that could be applied extensively

and simply within and amongst regions. For example,

the European Water Framework Directive (WFD;

2000/60/EC) required development of new criteria to

assess the ecological quality of riparian areas (Gon-

zález del Tánago & Garcı́a de Jalón, 2006) as well as

improve field assessment methods (Gutiérrez et al.,

2001; Munné et al., 2003). These developments draw

on the long history of aquatic ecosystem indicators

(e.g., Karr, 1991; Pont et al., 2006), and the WFD

guidelines allow the use of combined indices based on

different biological elements such as fish and macr-

oinvertebrates along with woody riparian vegetation

(Navarro-Llácer et al., 2010). González del Tánago &

Garcı́a de Jalón (2006) developed a biotic quality

index (RQI) based on longitudinal connectivity,

woody riparian buffer width, native species composi-

tion and recruitment, and bank conditions. The qBR

index (Munné et al., 2003), also developed in Spain, is

based on riparian cover, structure, and channel alter-

ation, and it has been adapted and applied in different

med-region countries including Portugal (Rodrı́guez-

González et al., 2003b), Greece (Zogaris et al., 2009;

Chatzinikolaou et al., 2011), and Chile (Fernández

et al., 2009; Palma et al., 2009). In Portugal, a multi-

metric approach was developed to assess the ecolog-

ical integrity of rivers based on vegetation attributes

including cover of alien and endemic species, and

functional metrics associated with life cycle and

reproduction (Ferreira et al., 2005a; Aguiar et al.,

2009). Although this approach provided a reliable

response to disturbance, classification was better at

local rather than regional scales. Other assessment

methods use vegetation relevé plots, consisting of a

rapid inventory of species, their percent cover, and

plot abiotic characteristics, to compare impacted sites

with reference conditions (e.g., Sieben & Reinecke,

2008 in South Africa). Another approach is to use a

scoring process that often includes component scores

for riparian width and continuity, among other prop-

erties. For example, Carone et al. (2010) adapted the

riparian, channel and environmental (RCE) inventory

method, previously used by Petersen (1992) in the

U.S., for Italian rivers. The RCE inventory method

scores sixteen characteristics of the riparian zone,

stream channel morphology, and the biological com-

munities in both habitats to determine a combined

index that can be used for prioritizing management

actions.

Rapid assessment methods have been developed in

other med-regions as well to support monitoring and

management of riparian zones. For example in

Australia, a rapid riparian assessment (RRA) tool has

been developed to evaluate the condition of riparian

zones based on buffer size and condition, geomorphic

characteristics of the stream, and adjacent land-use

(Taylor et al., 2005). Davies et al. (2000) developed

the hierarchical habitat predictive modeling method,

which uses gross catchment-level features to predict

local-scale physical habitat characteristics that are

measured at reference sites (Norris & Hawkins, 2000).

Parsons et al. (2004) favored this approach in a

comparison against three other methods of river

habitat assessment currently used in Australia, and

extended it to include attributes such as plant
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community composition, degree of channel shading,

and seedling regeneration success. These characteris-

tics form the basis of the Australian government’s

recommendation for habitat assessment through its

national, citizen-based, water monitoring program

(Waterwatch Australia Steering Committee, 2004).

In California, the California rapid assessment method

(CRAM) has been developed to assess wetland and

riparian ecological condition based on habitat con-

nectivity, vegetation structure, hydrology, and biotic

variables such as organic material accumulation and

plant species composition (Sutula et al., 2006). This

approach was designed as a cost effective tool for

monitoring and managing all types of wetlands;

however, its application in practice has been primarily

within lentic wetlands.

Proliferation of remote sensing and geospatial

analyses

Another major influence on the recent growth in med-

region riparian research has been the advance and

proliferation of remote sensing and GIS tools (Dufour

et al., 2012). Along med-rivers, geospatial methods

have been used to map riparian vegetation and land

covers at large scales in order to evaluate landscape

connectivity and status (Piégay, 1996; Aguiar &

Ferreira, 2005; Ivits et al., 2009; Tormos et al.,

2011). At smaller scales, these tools have also been

used to characterize riparian surfaces and canopy

mortality (Dunford et al., 2009), changes in corridor

pattern (Ferreira et al., 2005b), post-flood vegetation

colonization (Hervouet et al., 2011), roughness gen-

erated by the vegetation (Forzieri et al., 2010), or other

physical characteristics such as landform age (Bertoldi

et al., 2011). Recent improvements in remote sensing

and GIS technology allow finer descriptions with very

high spatial resolution images that can be used to

distinguish individuals and species (Hamada et al.,

2007; Dunford et al., 2009). Often, these rely on low-

altitude aerial photography from planes, balloons, or

unmanned aerial vehicles. In applied contexts, GIS

and remote sensing have been used to detect invasive

species (Hamada et al., 2007) and to provide infor-

mation for river surveys at large scale in conjunction

with field data collection in Italy (Carone et al., 2010),

Spain (Magdaleno et al., 2010), California (Seavy

et al., 2009a), and Australia (Johansen et al., 2010),

among other areas.

Within the last decade, the proliferation of light

detection and ranging (LiDAR) technology has

improved researchers’ abilities to analyze riparian

canopy properties and associate structural attributes

with fine-scale geomorphic features, avian habitat, and

riparian zone connectivity (Seavy et al., 2009a;

Benjankar et al., 2011; Johansen et al., 2010). Such

tools also provide useful information to analyze

species composition and distribution through spectral

analysis (Fernandes et al., 2010), and to develop

spatially explicit approaches to linking geomorphic

and vegetation co-evolution (Girvetz & Greco, 2009;

Stella et al., 2011; Harper et al., 2011) and large scale

monitoring (Wiederkehr et al., 2010; Tormos et al.,

2011).

Process-based vegetation models

The increased understanding of hydrogeomorphic

drivers of riparian vegetation dynamics (e.g., Fig. 3;

Swift et al., 2008; Stella et al., 2011) has facilitated the

development of process-based and numerical models

to predict vegetation change under altered future

conditions of land use and climate (e.g., Harper et al.,

2011; Benjankar et al., 2011; Garcı́a-Arias et al., in

press). Unlike probabilistic models of vegetation

associations with landscape, abiotic, or other features,

these models typically predict vegetation dynamics

using mechanistic relationships and parameters based

on empirical studies (Fig. 4). For example, the CASi-

MiR-vegetation model, which was applied across a

range of diverse European river systems (Rivaes et al.,

2011, 2012), simulates vegetation change as an

iterative process based on an initial vegetation map,

floodplain topography, river hydrology, and spatially

distributed physical drivers such as shear stress, flood

duration, and height-over-base flow level (Benjankar

et al., 2011). This spatially explicit approach allows

for testing the impact of different management plans

or restoration actions, such as implementing environ-

mental flows. In California, Harper et al. (2011)

developed a patch-based model of riparian floodplain

colonization and forest dynamics (Fig. 4), which

simulates interactions between model inputs of flood-

plain topography, annual discharge series, and empir-

ically derived relationships between plant

demography and river hydrology (Stella et al., 2006,

2010; Stella & Battles, 2010). Both this model and

CASiMiR-vegetation have been calibrated using field
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data and are in various stages of model validation and/

or prediction of future conditions under changing

climate and hydrology.

Future research needs and management

applications

Research gaps in med-region riparian ecosystems

Going forward, our ecological understanding of med-

region riparian zones will be improved by more basic

research in understudied ecosystems, classification

systems that apply across ecoregions, and an under-

standing of how biophysical processes differ with

spatial scale, especially for small, ephemeral streams

(Zaimes et al., 2011) and for extremely large, regulated

rivers subject to multiple human stressors (Stella et al.,

2011). We recommend more research be initiated in

the relatively understudied med-regions in the South-

ern Hemisphere, North Africa, and the western Med-

iterranean basin to complement the extensive studies

conducted to date in Europe and California.

Second, we need to enlarge the scope of riparian

studies beyond the site and reach to a true biogeo-

graphical perspective at the corridor, catchment, and

regional scales. For this purpose, conceptual and

practical tools (e.g., statistical and mechanistic mod-

els) need to be developed to scale up local processes to

the larger landscape without oversimplifying the

spatial variability in environmental drivers. This

approach requires accurate and spatially distributed

quantification of physical conditions, biotic functions,

and ecosystem services in order to set management

priorities and identify the most important sites to

protect and restore. Thus, we need more general

classification systems and a solid assessment frame-

work that include indicators that work across systems

and scales (Brierley & Fryirs, 2005; Piégay et al.,

2009).

Third, we need to understand how physical stress-

ors interact with increased water scarcity and climate

variability that are occurring in most med-regions

(Parry et al., 2007; Klausmeyer & Shaw, 2009). For

example, we need to better understand how increased

drought, fire, and resource variability under climate

change will affect riparian species’ life histories and

population dynamics, if we are to improve our

predictions of riparian community response (Perry

et al., 2012). Our tools for achieving this will include

novel applications of existing methods to riparian

zones to understand ecohydrological processes gov-

erning vegetation function and distribution. For

example, dendroecological methods are being increas-

ingly used to infer influences on tree growth and

survival in riparian zones (Dufour & Piégay, 2008;

Rodrı́guez-González et al., 2010; Stella et al., in press)

and can be coupled with stable isotope analysis that

indicate changes in water stress, ecophysiological

functioning (Horton & Clark, 2001; Leffler & Evans,

2001; Stella & Battles, 2010; Schifman et al., 2012),

and shifts in source water use (Busch & Smith, 1995;

Singer et al., 2012).

Applications to management of med-region

riparian ecosystems

The increased understanding achieved over the last

decade in riparian vegetation pattern and functioning

provides a solid basis for rational resource manage-

ment in med-river ecosystems (e.g., Downs et al.,

2011). Approaches with strong precedent include

releasing environmental flows to benefit riverine and

riparian species (Hughes & Rood, 2003; Rood et al.,

2005), as well as non-native species management

(Reinecke et al., 2008). However, there are still gaps

and deficiencies in the transfer from scientific findings

to sound policies (Maruani & Amit-Cohen, 2009),

notably because of the extensive time required to

integrate research results into conservation and resto-

ration strategies (Palmer et al., 2010). Both ecological

and social consequences of restoration practices are

not well understood yet, and the transfer of scientific

knowledge to practitioners must be improved (Chris-

tian-Smith & Merenlender, 2010).

Because the five med-regions are geographically

isolated and the majority of researchers work in a

single primary region, increased exchange and com-

parisons among regions should benefit both their

science and management (e.g., Chatzinikolaou et al.,

2011). Programs that monitor restoration and man-

agement success can be more systematized to capital-

ize on ecosystem similarities between regions (e.g.,

see Reinecke et al., 2008 and Marais & Wannenburgh,

2008 for examples of non native species management

programs in riparian corridors in South Africa).

In strongly modified systems, conservation, and

restoration strategies need to enhance ecological
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integrity of the ecosystems (e.g., relative to properties

of reference sites), to quantify ecosystem services, and

to recognize the human demands and plan for alter-

native scenarios (Tockner et al., 2003; Bombino et al.,

2008; Bertoldi et al., 2009; Sánchez-Montoya et al.,

2009; Dufour & Piégay, 2009; Dufour et al., 2011).

This requires that we consider various human prior-

ities (e.g., aesthetic, economic, cultural values) along

with biophysical functions to address multiple man-

agement objectives (Piégay et al., 2005; Santos, 2010;

Cottet et al., 2010). Assessment methods will need to

consider the role of novel riparian habitats, for

example those dominated by non-native species

(e.g., Stromberg et al., 2007). Whereas future man-

agement should seek to reverse destructive patterns

such as deliberate introductions of non-native species,

our modern assessment tools need to acknowledge the

ecosystem services that they do provide (Stromberg

et al., 2007; Schlaepfer et al., 2011).

Finally, specific strategies for riverine and riparian

management need to take into account future changes

under non-equilibrium conditions (Palmer et al.,

2009). Globally, human pressure will increase in

med-regions (Underwood et al., 2009) and climate

change is reducing the water supply in most of them

(Klausmeyer & Shaw, 2009). Thus, research is needed

on specific vulnerabilities and thresholds that can

drive riparian systems into alternative undesirable

states (e.g., Sher et al., 2000; Perry et al., 2012). On

regulated rivers, environmental flows that mimic

natural discharge regimes should capitalize on cli-

matic stochasticity, making the most of wet years

where high flows can be delivered without conflicting

with regulation goals (Poff et al., 1997; Hughes &

Rood, 2003; Rood et al., 2005; Stella et al., 2010).

These sorts of opportunistic restoration strategies, in

conjunction with realistic assessments of our opera-

tional limits, offer the best hope for water and land

managers to limit further degradation and increase

resilience of med-region riparian ecosystems that are

under increasing demand for water, land, and func-

tioning services.
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Faculté des Sciences de Marseille 12: 21–34.

Aschmann, H., 1973. Man’s impact on the several regions with

Mediterranean climates. In di Castri, F. & H. A. Mooney

(eds), Mediterranean type ecosystems—origins and struc-

ture. Springer, Berlin: 363–390.

Baker, W. L. & G. M. Walford, 1995. Multiple stable states and

models of riparian vegetation succession on the Animas

River, Colorado. Annals of the Association of American

Geographers 85: 320–338.

Ballero, M., 1988. The riparian flora in the Rio Cannas basin,

southeast Sardinia [La flora presente lungo i corsi d’acqua

del bacino idrografico del Rio Cannas (Sardegna sud-ori-

entale)]. Webbia 42: 269–284.

Hydrobiologia (2013) 719:291–315 307

123



Barbour, M., B. Pavlik, F. Drysdale & S. Lindstrom, 1993.

California’s changing landscapes: diversity and conserva-

tion of California vegetation. California Native Plant

Society, Sacramento.
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Botanica Malacitana 13: 217–228.

Fernández, L., J. Rau & A. Arriagada, 2009. Calidad de la

vegetación ribereña del rio Maullı́n (418280S; 728590O)

utilizando el ı́ndice QBR. Gayana Botánica 66: 269–278.

Fernandes, M. R., F. C. Aguiar & M. T. Ferreira, 2010.

Assessing riparian vegetation structure and the influence of

land use using landscape metrics and geostatistical tools.

Landscape and Urban Planning 99: 166–177.

Ferreira, M. T., P. M. Rodrı́guez-González, F. C. Aguiar &
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Navarro-Llácer, C., D. Baeza & J. de las Heras, 2010. Assess-

ment of regulated rivers with indices based on macroin-

vertebrates, fish and riparian forest in the southeast of

Spain. Ecological Indicators 10: 935–942.

Nel, J. L., D. M. Richardson, M. Rouget, T. N. Mgidi,

N. Mdzeke, D. C. Le Maitre, B. W. van Wilgen,

Hydrobiologia (2013) 719:291–315 311

123



L. Schonegevel, L. Henderson & S. Neser, 2004. A pro-

posed classification of invasive alien plant species in South

Africa: towards prioritizing species and areas for man-

agement action. South African Journal of Science 100(1):

53–64.

Nilsson, C., R. L. Brownn, R. Jansson & D. M. Merritt, 2010.

The role of hydrochory in structuring riparian and wetland

vegetation. Biological Reviews 85(4): 1–24.

Norris, R. H. & C. P. Hawkins, 2000. Monitoring river health.

Hydrobiologia 435: 5–17.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Bur-

gess, G. V. N. Powell, E. C. Underwood, J. A. D’amico,

I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks,

T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux,

W. W. Wettengel, P. Hedao & K. R. Kassem, 2001. Ter-

restrial ecoregions of the world: a new map of life on earth.

BioScience 51: 933–938.

Opperman, J. J., 2005. Large woody debris and land manage-

ment in California’s hardwood-dominated watersheds.

Environmental Management 35: 266–277.

Palma, A., R. Figueroa & V. H. Ruiz, 2009. Evaluación de ribera
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M. T. Ferreira & A. Pinheiro, 2011. Uma nova ferramenta
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