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Abstract Nutrient enrichment of aquatic ecosystems

caused dramatic increase in the frequency, magnitude

and duration of cyanobacterial blooms. Such blooms

may cause fish kills, have adverse health effects on

humans and contribute to the loss of biodiversity in

aquatic ecosystems. Some 50 eutrophic to hypereu-

trophic ponds from the Brussels Capital Region

(Belgium) were studied between 2003 and 2009. A

number of the ponds studied are prone to persistent

cyanobacterial blooms. Because of the related health

concerns and adverse effects on ecological quality of

the affected ponds, a tool for assessment of the risk of

cyanobacterial bloom occurrence was needed. The

data acquired showed that cyanobacteria have thresh-

old relationships with most of the environmental

factors that control them. This is negatively reflected

on the predictive capacity of conventional statistical

methods based on linear relationships. Therefore,

classification trees designed for the treatment of

complex data and non-linear relationships were used

to assess the risk of cyanobacterial bloom occurrence.

The main factors determining cyanobacterial bloom

development appeared to be phytoplankton biomass,

pH and, to a lesser degree, nitrogen availability. These

results suggest that to outcompete eukaryotic phyto-

plankters cyanobacteria need the presence of environ-

mental constraints: carbon limitation, light limitation

and nitrogen limitation, for which they developed a

number of adaptations. In the absence of constraints,

eukaryotic phytoplankters appear to be more compet-

itive. Therefore, prior build up of phytoplankton

biomass seems to be essential for cyanobacterial domi-

nance. Classification trees proved to be an efficient

tool for the bloom risk assessment and allowed the

main factors controlling bloom development to be

identified as well as the risk of bloom occurrence

corresponding to the conditions determined by these

factors to be quantified. The results produced by the

classification trees are consistent with those obtained

earlier by probabilistic approach to bloom risk assess-

ment. They can facilitate planning management inter-

ventions and setting restoration priorities.

Keywords Classification trees � Cyanobacteria �
Phytoplankton biomass � Bloom risk assessment �
Threshold relationship

Introduction

Nutrient enrichment of aquatic ecosystems because of

urban, agricultural and industrial development caused
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dramatic increase in the frequency, magnitude and

duration of cyanobacterial blooms (Hudnell, 2008;

Paerl & Huisman, 2008). Such blooms may cause fish

kills through anoxia, have adverse health effects on

humans and contribute to the loss of biodiversity in

aquatic ecosystems (Carmichael, 2001; Briand et al.,

2003; Pflugmacher, 2004). Effective management of

cyanobacterial blooms requires understanding of the

conditions that allow bloom-forming cyanobacteria to

become dominant. Quantifying the risk of bloom

occurrence corresponding to different environmental

conditions can greatly facilitate setting restoration

priorities and planning remediation efforts.

While phytoplankton biomass levels in ponds and

lakes can be predicted fairly accurately (Dillon &

Rigler, 1974; Phillips et al., 2008), predicting compo-

sitional changes is much more difficult because they

depend on a large number of interrelated environmen-

tal factors subject to stochastic changes (Reynolds,

1998, 2000). The outcomes of stochastic interaction

between different factors cannot be predicted with

certainty. Under certain conditions, however, some

phytoplankters tend to increase in biomass more

strongly than others suggesting that their recruitment

and dominance are not completely stochastic and that

some factors favour them more than other species

(Reynolds, 1998). Hence they become, at least tem-

porarily, more represented. The patterns in the

relationships between environmental conditions and

phytoplankton responses to them allow prediction of

changes in phytoplankton assemblages. Phytoplank-

ters with a broad adaptive overlap are able to constitute

phytoplankton assemblages characteristic of a range of

conditions. More specialised phytoplankters are pref-

erentially selected by conditions they developed

adaptations for and, when these conditions persist,

can become dominant (Reynolds, 1998, 2006).

Bloom-forming cyanobacteria developed a number

of adaptations, like CO2 kinetics superior to that of

eukaryotic algae assuring their survival at low CO2

concentrations (Shapiro, 1997; Graham & Wilcox,

2000), ability to fix atmospheric nitrogen to counter

nitrogen limitation or produce gas vesicles to regulate

their position in the water column (Ferber et al., 2004;

Reynolds, 2006). Aggregation of cyanobacterial cells

in large colonies or long filaments makes them less

vulnerable to zooplankton grazing (Gliwicz, 1990;

Benndorf et al., 2002). Toxin production is considered

to further contribute to grazing resistance (Rohrlack

et al., 1999; Thostrup & Christoffersen, 1999). These

adaptations have a cost of slower growth that makes

cyanobacteria less competitive and vulnerable to

flushing (Reynolds et al., 1998; Scheffer, 1998).

Thus, cyanobacteria differ in many ways from most of

the eukaryotic phytoplankters and under conditions of

prolonged carbon or nitrogen limitation combined

with reduced grazing pressure and low flushing rates

can become dominant. Individual species of cyano-

bacteria do not seem to be adapted to a full range of

environmental variability, they rather selectively

exploit different parts of the wide range of environ-

mental conditions. This accounts for their ecological

success as a group (Reynolds, 2006).

Although the conditions that favour cyanobacteria

are well known (Reynolds, 1998; Dokulil & Teubner,

2000), integration of the responses to multiple

controlling factors is difficult (Hudnell, 2008). On

the basis of the data from 48 Brussels ponds,

Peretyatko et al. (2010) found that conventional

methods based on linear relationships have limited

predictive capacity for cyanobacterial blooms,

whereas probabilistic approach based on calculation

of conditional probabilities permitted the main bloom

predictors to be identified and the bloom risk

corresponding to different environmental conditions

to be quantified. The aim here is to test whether

classification trees, designed for the treatment of

complex data (De’ath & Fabricius, 2000), are more

suitable for bloom prediction. The main objectives

are to use classification trees: (1) to determine the

relative importance of the environmental factors

measured for the control of cyanobacterial blooms;

(2) to quantify the risk of bloom occurrence corre-

sponding to environmental conditions determined by

the factors having the strongest bearing on cyano-

bacteria in the ponds studied; (3) to verify whether

the results produced by the classification trees are

consistent with those produced by the probabilistic

approach to bloom risk assessment presented in

Peretyatko et al. (2010).

Methods

48 ponds from the Brussels Capital Region (Belgium)

were studied between 2003 and 2009. All the ponds

are located within a radius of 10 km. They are all

shallow (maximum depth \ 3 m; mean depth around
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1 m; Table 1), flat-bottomed and range in surface

area from 0.1 to 6 ha. A number of ponds are used for

different recreational activities of which fishing and

boating are the most common. The ponds are

populated by fish communities typical of northern

Europe. Many of them harbour large stocks of

plankti-benthivorous fish (mainly common carp:

Cyprinus carpio, and bream: Abramis brama).

During the study period, the ponds were sampled

mostly during the warm season (May–September on

6 to 27 occasions per pond) for phytoplankton,

zooplankton, main nutrients and submerged vegeta-

tion. They were sampled monthly or at least on three

occasions per warm season.

One integrated water column sample of 10 l based

on 10 random sub-samples of 1 l was taken from each

pond with a plastic tube sampler. A special extension

was fixed to the sampler to reach the deeper parts of

the ponds when appropriate. Secchi depth (SD) was

measured with a Secchi disc of 30 cm diameter.

When the SD was greater than the depth of the pond,

depending on whether the disc was well or poorly

visible, 1 or 0.1 m was added to the depth value,

respectively.

After stirring the collected water, dissolved oxy-

gen, pH, conductivity and temperature were mea-

sured with a portable meter (WTW 340i); 500 ml of

the water were taken for phytoplankton identification

and enumeration and 1 l for Chl a analysis. For

soluble reactive phosphorus (SRP), and dissolved

inorganic nitrogen (DIN) determination, a 100 ml

water sample was filtered through a GF/C glass

microfiber filter and stored in a cooler. In the

laboratory, the samples were frozen until analysis

on a Quaatro segmented flow analysis system (Seal

Analytical limited) according to the manufacturer

procedures. For total phosphorus determination, a

100 ml water sample was stored in a cooler. Total

phosphorus was determined using the persulfate

digestion method (APHA-AWWA-WEF, 1995). The

samples for Chl a determination were kept in a cooler

until delivery to the laboratory where they were

immediately filtered onto GF/C glass microfiber

filters. Filters were stored at -18�C for several days

before analysis. Pigments were extracted in 90%

acetone in the dark, at 4�C, overnight. Chl a concen-

trations were measured spectrophotometrically with a

correction for pheophytin a (APHA-AWWA-WEF,

1995).

Phytoplankton samples were preserved with

Lugol’s solution, sodium thiosulfate and buffered

formalin (Kemp et al., 1993). Phytoplankton was then

identified to genus level and counted using a modified

Utermöhl sedimentation technique (Hasle, 1978).

Biovolumes were calculated using the approxima-

tions of cell shapes to simple geometrical forms

(Wetzel & Likens, 1990).

For zooplankton, a mixed 10 l sample consisting

of 10 random sub-samples of 1 l was taken from each

pond. Zooplankton samples were filtered in the field

through a 64 lm mesh net and preserved in 4%

formaldehyde (final concentration) before being

identified and counted using an inverted microscope.

The length of large Cladocera (Daphnia spp., Eury-

cercus spp., Sida spp. and Simocephalus spp.; Moss

et al. 2003) was measured and taken as an indicator

of grazing intensity and size-selective predation

(Pourriot, 1995; Carpenter et al., 2001).

Surface cover of aquatic vegetation was mapped

visually from a boat during each field visit. The

presence/absence of the vegetation was verified with

a rake when water was not sufficiently transparent.

Since submerged macrophytes were often associated

with filamentous green algae, which are also known

to inhibit phytoplankton growth (Irfanullah & Moss,

2005; Peretyatko et al., 2007a, b), their combined

surface cover was used in statistical analyses.

Hydraulic retention time was estimated on the

basis of the outlet discharge and the corresponding

pond volume once a year in 2003–2006 and during

each field visit in 2007–2009.

Since even neighbouring ponds often showed very

contrasting phytoplankton dynamics, thus underlying

the importance of local factors, meteorological data,

obtained from the nearest meteorological station,

were not used in the analyses presented here.

For the reason of cyanobacterial bloom occurrence

in the ponds studied being restricted almost exclu-

sively to the summer time and to avoid the blurring

effect of seasonal periodicity on the relationship

between cyanobacteria and factors controlling them,

only warm season data were used in the analyses.

Statistical analyses

Spatial autocorrelation in cyanobacterial biovolumes

was assessed using Moran’s I test (SAM, version 4;

Rangel et al., 2010). Classification trees (Breiman

Hydrobiologia (2012) 689:131–146 133
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et al., 1984) were used to determine the thresholds

corresponding to different environmental factors as

well as their relative importance for cyanobacterial

bloom development. The goodness of fit of each split

was assessed with Chi-square statistics. The stopping

rule was set at the ‘Prune on deviance’ option and 45

cases in a parent node. The thresholds that followed a

node that contained less than 5% of the total

cyanobacterial blooms were not taken into consider-

ation. Classification trees analysis was performed in

StatSoft, Inc. STATISTICA version 8.0.

SD, pH, DIN, TP, SRP, temperature, hydraulic

retention time, submerged vegetation cover, large

Cladocera density and length were used as continuous

predictors. Because of strong correlation with phyto-

plankton biovolumes (Spearman rank-order correla-

tion: r = -0.81; P \ 0.001; n = 564) and to

facilitate the use of the analysis results by the

managers, SD was used as a proxy for total phyto-

plankton biomass. Three arbitrarily selected levels of

cyanobacterial biovolume, C2, C5 and C10 mm3 l-1,

were used as dependent categorical variables in order

to test whether the effects of the predictors would vary

with the change in the magnitude of cyanobacterial

blooms. The variables with sampling gaps that did not

appear on classification trees in the test runs of the

analysis (submerged vegetation cover and large

Cladocera density not available for 2003, large

Cladocera length not available for 2003 and 2004)

were excluded from the final analysis to increase the

number of cases used and thus the representativeness

of the final results. The resulting classification trees

were validated by a 10-fold cross-validation proce-

dure. The number of cases and cyanobacterial blooms

corresponding to different nodes of the classification

trees were used to calculate the probability of bloom

occurrence and the percentage of all blooms

accounted by each node. The relationships of these

probabilities to main predictors were graphically

represented on the respective 3D plots.

The results of the classification trees analysis

were compared with the results of the probabilistic

approach to cyanobacterial blooms prediction

(Peretyatko et al., 2010).

Results

The ponds studied showed contrasting ecology span-

ning over a number of environmental gradients. TP

Fig. 1 Mean total and relative phytoplankton biovolumes in the ponds studied arranged in order of biovolume increase; error bars
indicate maximum biovolumes
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concentrations ranged from \50 lgP l-1 to

[1 mgP l-1; DIN concentrations from below detec-

tion (1 lgN l-1) to[3 mgN l-1; pH from 7.1 to 9.7.

Submerged vegetation cover varied from absence

through sparse and patchy to dense and extensive, at

times covering the whole surface of a pond (Table 1).

Some ponds were fishless, whereas others harboured

more than 1,000 kg ha-1 of plankti-benthivorous fish

(data not shown). Because of the differences in

submerged vegetation cover and fish biomass and

community structure, zooplankton composition,

densities and size were also very variable ranging

from Rotifera to large-bodied Cladocera dominated

communities.

Contrasting ecology was reflected on phytoplank-

ton biomass and composition. Chl a concentrations

covered the range from oligotrophic to hypereutroph-

ic state (from \2 to [800 lg l-1; UNEP-IETC,

1999). The ponds with low phytoplankton biomass

were generally dominated by cryptophytes, diatoms

and chrysophytes, whereas the ponds with higher

biomass tended towards chlorophyte, euglenophyte

Fig. 2 Classification tree for two categories of cyanobacterial

biovolume. Category 0: \2 mm3 l-1 and category 1:

C2 mm3 l-1. The box of each node contains: top left node

ID; middle prevailing category; right, top-down number of

cases per node, number of cases for 0 and 1 categories,

respectively (also graphically represented by bars), probability

of bloom per node and percentage of blooms accounted by

node. The predictor variables and respective thresholds

identified by the trees link the nodes. Dashed line outlines

the optimal tree denoted by the 10-fold cross-validation

procedure
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and cyanobacterial dominance (Fig. 1). Diatoms were

common all along the phytoplankton biomass gradi-

ent. Pennate (detached periphytic) diatoms were

typical of the lower part of the gradient, whereas

the upper part of the gradient was mostly populated

with centric (planktonic) diatoms. Persistent cyano-

bacterial blooms were often associated with hypoxic/

anoxic conditions and occasionally led to fish and

waterfowl kills (data not shown). Moran’s I test

showed that cyanobacterial biovolumes have non-

significant spatial autocorrelation (P [ 0.05) suggest-

ing lack of spatial structure and, therefore, control of

cyanobacterial blooms by local (intra-pond) factors.

The three levels of cyanobacterial biovolume (C2,

C5 and C10 mm3 l-1) used in the classification tree

analysis rendered 70, 46 and 27 blooms out of 542

samples, respectively. SD and pH were identified as

the best predictors of cyanobacterial blooms at all

the three levels of cyanobacterial biovolume. The

classification trees identified 1 SD threshold at

cyanobacterial biovolume C2 mm3 l-1 (0.57 m;

Fig. 2) and 2 SD thresholds at cyanobacterial biovo-

lumes C5 mm3 l-1 (0.42 and 0.57 m; Fig. 3) and

C10 mm3 l-1 (0.36 m and 0.57 m; Fig. 4). For pH,

two thresholds at cyanobacterial biovolume

C2 mm3 l-1 (8.0 and 8.7; Fig. 2), three thresholds at

cyanobacterial biovolume C5 mm3 l-1 (8.7, 8.0 and

8.15; Fig. 3) and one threshold at cyanobacterial

biovolume C10 mm3 l-1 (8.7; Fig. 4) were identified.

Most cyanobacterial blooms were restricted to

conditions characterised by high phytoplankton bio-

mass (SD \ 0.57) and high pH ([8.0). High phyto-

plankton biomass (SD \ 0.57) at low pH (\8.0),

however, was associated with low probability of

cyanobacterial blooms at cyanobacterial biovolumes

C2 and C5 mm3 l-1 (see Fig. 2, node 4; Fig. 3,

nodes 6 and 12). Only one bloom of cyanobacterial

biovolume C10 mm3 l-1 was observed at these

conditions implying further decrease in the bloom

probability at this cyanobacterial biovolume level.

Fig. 3 Classification tree for two categories of cyanobacterial biovolume. Category 0:\5 mm3 l-1 and category 1: C5 mm3 l-1. See

the legend of Fig. 2 for details
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This was not reflected on the respective classification

tree (Fig. 4), probably because at SD between 0.36

and 0.57 m DIN had a higher discriminative power

than pH, as suggested by the next split based on the

DIN concentration threshold (Fig. 4; nodes 10, 11).

Low phytoplankton biomass (SD [ 0.57) irrespec-

tive of the pH level was associated with low

probability of cyanobacterial blooms (Fig. 2 node 3;

Fig. 3, node 11; Fig. 4, node 9). At this phytoplank-

ton biomass level, cyanobacterial blooms of low

magnitude were observed mostly at pH [ 8. This,

however, was also not reflected on the classification

trees.

Besides SD and pH thresholds, the classification

trees produced DIN thresholds at cyanobacterial

biovolumes C2 mm3 l-1 (0.047 mgN l-1; Fig. 2)

and C10 mm3 l-1 (0.021 and 0.039 mgN l-1;

Fig. 4). The probability of cyanobacterial bloom

occurrence was markedly higher below these thresh-

olds. There was no DIN threshold for cyanobacterial

biovolume C5 mm3 l-1 (Fig. 3). In more than 75%

cases, cyanobacterial blooms that occurred below the

DIN thresholds were dominated by non-heterocystous

cyanobacteria, mainly Planktothrix spp., Microcystis

spp. and Woronichinia spp., whereas heterocystous

cyanobacteria, Anabaena spp., Aphanizomenon spp.

and Anabaenopsis spp., dominated cyanobacterial

blooms that occurred above the DIN thresholds in

more than 35% cases.

The classification tree for cyanobacterial biovo-

lume C2 mm3 l-1 produced a TP threshold of

0.481 mgP l-1 at SD [ 0.57 (Fig. 2, nodes 10, 11).

The classification tree for cyanobacterial biovolume

C5 mm3 l-1 produced a temperature threshold of

21�C confined to the pH range between 8.0 and 8.7

(Fig. 3, nodes 8, 9). Lower pH, DIN and temperature

thresholds were not retained on the optimal classifi-

cation trees corresponding to cyanobacterial biovo-

lumes C5 mm3 l-1 and C10 mm3 l-1 denoted by the

10-fold cross-validation procedure (Figs. 3, 4).

The two best predictors (SD and pH) showed

strong threshold relationship with cyanobacterial

biovolume (Fig. 5A). This was reflected on the

probabilities of cyanobacterial bloom occurrence as

well as the percentages of all blooms accounted by

the most informative nodes along the pH and SD

Fig. 4 Classification tree for two categories of cyanobacterial biovolume. Category 0:\10 mm3 l-1 and category 1: C10 mm3 l-1.

See the legend of Fig. 2 for details
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gradients that are summarised on the graphs corre-

sponding to the three levels of cyanobacterial biovo-

lume used in the analysis (Fig. 5B–D). Most of

cyanobacterial blooms occurred at SD \ 0.57 m and

pH [ 8. Increase in the magnitude of cyanobacterial

blooms was associated with a trend towards decrease

in the SD and increase in the pH thresholds.

The best predictors of cyanobacterial blooms (SD

and pH) detected by the classification trees are the

same as those identified by the probabilistic approach

to bloom risk assessment (Peretyatko et al., 2010).

The thresholds corresponding to these predictors as

well as probabilities of bloom occurrence are also

comparable (Fig. 6).

Discussion

The classification trees allowed the relative impor-

tance of environmental factors measured to be

Fig. 5 A Relationship of cyanobacterial biovolume to SD and

pH. B–D Risk of cyanobacterial bloom occurrence correspond-

ing to different ranges of SD and pH as predicted by the

classification trees for different levels of cyanobacterial bio-

volume (B: C2 mm3 l-1, C: C5 mm3 l-1, D: C10 mm3 l-1).

Each bar shows bloom probability corresponding to the node of

the respective classification tree with an indication of the ID as

well as the percentage of all blooms accounted by the node
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identified as well as the risk of bloom occurrence

corresponding to the conditions determined by the

most important factors to be quantified. Different

levels of cyanobacterial biovolume used in the

analyses allowed the relationships between the main

predictors and the magnitude of cyanobacterial

blooms to be elucidated.

Phytoplankton biomass, expressed as SD in the

analysis, appeared to be the best predictor of cyano-

bacterial blooms. The majority of cyanobacterial

blooms occurred at SD below 0.6 m. This is consistent

with the report of Downing et al. (2001) based on a

large number of temperate zone’s most studied lakes,

who also identified phytoplankton biomass as an

important predictor of cyanobacterial dominance.

Besides biomass, SD is also an indicator of light

availability. Cyanobacteria are known to be better light

harvesters than most of eukaryotic algae (Presing et al.,

1999; Dokulil & Teubner, 2000). In addition, many

cyanobacteria can change their buoyancy by produc-

tion of gas vacuoles and thereby regulate exposure to

light (Walsby et al., 1997; Graham & Wilcox, 2000).

Thus, low water transparency favours cyanobacterial

dominance. In the ponds studied, however, high

phytoplankton biomass was often dominated by

eukaryotic phytoplankters (Fig. 1). This limited the

Fig. 6 A–C Risk of cyanobacterial bloom occurrence corre-

sponding to different ranges of pH and SD calculated stepwise

(step length for SD = 0.25, for pH 0.5) for different levels of

cyanobacterial biovolume (A: C2 mm3 l-1, B: C5 mm3 l-1,

C: C10 mm3 l-1). D number of samples corresponding to each

region used in probability calculation
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predictive capacity for blooms of phytoplankton

biomass alone. It should also be noted that elevated

cyanobacterial biomass represented by very large

colonies of Aphanizomenon spp. or Microcystis spp.

was, at times, associated with relatively high water

transparency. Such blooms may be missed by the SD

measurements. They, however, are visible by a naked

eye.

Strong affinity of cyanobacteria to high pH condi-

tions and threshold relationship between them in the

ponds studied allowed the blooms dominated by

cyanobacteria to be discriminated from those domi-

nated by eukaryotic phytoplankters. The majority of

cyanobacterial blooms occurred at pH above 8

(Fig. 5A). Above this threshold, the probability as well

as the magnitude of cyanobacterial blooms increased

with the increase in pH and phytoplankton biomass.

Below this threshold, phytoplankton assemblages were

mostly dominated by eukaryotic phytoplankters even

when phytoplankton biomass was high. This was

reflected on the probability of bloom occurrence, which

was markedly lower as compared to the probability

above this threshold (Fig. 5B, C). Increase in proba-

bilities of bloom occurrence with increase in pH

supports the idea that cyanobacteria are better adapted

to the conditions of carbon limitation associated with

the elevated pH levels (Shapiro, 1973, 1997). It should

be noted that some eukaryotes, such as chlorophytes

Pediastrum boryanum and Scenedemus quadricauda,

showed CO2 kinetics comparable or superior to that of

cyanobacteria (Shapiro, 1997) suggesting that they may

compete with the latter at the conditions of low CO2

availability. They, however, are much poorer compet-

itors for light and are more vulnerable to zooplankton

grazing than the bloom-forming cyanobacteria. This

makes them overall less competitive.

The fact that in some cases pH did not follow

phytoplankton biomass increase in the ponds studied

was probably due to CO2 supply by detritus miner-

alisation that offset the effect of CO2 consumption by

phytoplankton (Brönmark & Hansson, 2005). As

mineralisation is generally more intense in the

sediment, decoupling of the relationship between

pH and phytoplankton biomass is more likely to

occur in shallow water bodies with continuous

sediment-watercolumn exchange, like the ponds

studied, and is unlikely in lakes, which, for that

reason, are generally characterised by elevated pH

(Søndergaard et al., 2005).

Different cyanobacterial biovolume levels used in

the analysis rendered comparable results in terms of

the main predictors and related thresholds. SD of

0.57 m appeared on all classification trees suggesting a

critical phytoplankton biomass level below which the

risk of bloom occurrence rapidly increased and above

which it was virtually inexistent. At higher cyanobac-

terial biovolume levels (C5 and C 10 mm3 l-1)

another SD threshold of about 0.4 m was identified

that allowed further differentiation of the bloom risk.

A pH threshold of 8.7 also appeared on all three

classification trees and in combination with the SD

thresholds delimited the conditions of the highest risk

of bloom occurrence apparently induced by carbon

limitation (Reynolds, 2006; Shapiro, 1973, 1997). A

pH threshold of 8 appeared at the two lower levels of

cyanobacterial biovolumes (C2 and C 5 mm3 l-1)

and delimited the conditions with a markedly lower

risk of bloom occurrence, suggesting that at pH

ranging between 8 and 8.7 some eukaryotic phyto-

plankters are still able to compete with cyanobacteria

for dominance. This is supported by the fact that this

threshold was not validated by the cross-validation

procedure for cyanobacterial biovolume C5 mm3 l-1

and suggests a decrease in its predictive capacity

with the increase in the magnitude of cyanobacterial

blooms.

Besides phytoplankton biomass and pH, nitrogen

availability seems to have played a role, although

visibly less important than the former two factors, in

determining cyanobacterial bloom occurrence. The

DIN thresholds allow predicting relatively high

percentage of cyanobacterial blooms. The probabil-

ities related to them are higher at lower cyanobac-

terial biovolume level suggesting that in the ponds

studied low DIN concentrations are more important

for cyanobacterial bloom initiation than when a

bloom is established. The established blooms were

often associated with elevated concentrations of

NH4
? likely produced by the mineralisation of dead

phytoplankton, suggesting that nitrogen limitation

was not the main factor responsible for the mainte-

nance of cyanobacterial dominance.

The fact that DIN thresholds are much lower than

nitrogen concentrations below which the phytoplank-

ton growth is generally slowed down because of

nitrogen limitation (50–100 lgN l-1; Reynolds,

2006) prompts a competitive advantage for hetero-

cystous cyanobacteria capable of nitrogen fixing.
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These results suggest, however, that low nitrogen

concentrations favour not only heterocystous cyano-

bacteria, but vacuolated cyanobacteria in general, for

the blooms that occurred below the DIN thresholds

were often dominated by non-heterocystous cyano-

bacteria, mainly Planktothrix spp., and Microcystis

spp. This is consistent with the findings of Ferber

et al. (2004) who suggested that both non-heterocys-

tous and heterocystous vacuolated cyanobacteria can

outcompete eukaryotic phytoplankters owing to their

ability to regulate their position in the watercolumn

that allows them reaching nutrients released by the

sediment. The strong migratory abilities of the

vacuolated cyanobacterial genera that dominated

cyanobacterial blooms as well as their preference

for NH4
? as a nutrient source are well documented

(Hyenstrand et al., 1998; Ferber et al., 2004;

Reynolds, 2006). This is consistent with the low

depth of the ponds studied (around 1 m on average)

and high rates of ammonium release from the

sediment (mean = 75.8 ± 92.8 (sd) mg NH4
?-N/

m2/day; n = 98; pond number = 22; unpublished

data). Thus, reaching abundant benthic ammonium

and bringing it stored to the surface for photosynthe-

sis can give cyanobacteria a strong competitive

advantage over eukaryotic phytoplankters unable to

regulate their position in the water column. It should

be noted that because of very low depth, the ponds

studied are often well mixed, which implies that

mixing can considerably reduce this advantage of

cyanobacteria by facilitating access of eukaryotic

phytoplankters to benthic nitrogen. Shifts in the

phytoplankton assemblages towards flagellated

eukaryotes, whose motility is mostly superior to that

of cyanobacteria (Reynolds, 2006), also reduce the

competitive advantages of cyanobacteria. These are

probably the reasons why DIN concentrations

showed limited predictive capacity for cyanobacterial

blooms.

Contributions of temperature and TP to determine

cyanobacterial bloom occurrence seem to have been

marginal, probably because the effects of these two

factors were largely integrated by phytoplankton

biomass and pH. The TP threshold at cyanobacterial

biovolume C2 mm3 l-1 suggests, however, that high

nutrient levels favour development of small blooms

even at relatively low phytoplankton biomass, and,

therefore, nutrient rich ponds pose greater risk of

bloom occurrence. This is consistent with the report

of Downing et al. (2001) who stressed the association

of cyanobacterial blooms with the increase in nutrient

concentrations. The temperature threshold suggests

that at intermediate pH level (8–8.7; Fig. 3) elevated

temperature can shift the balance in favour of

cyanobacterial dominance. A number of other studies

also reported positive relationship between water

temperature and cyanobacterial bloom occurrence

(e.g. Dokulil & Teubner, 2000; Paerl & Huisman,

2008).

Numerous adaptations of cyanobacteria to envi-

ronmental constraints have a cost of relatively slow

growth. Therefore, in the absence of constraints,

bloom-forming cyanobacteria are usually outcompet-

ed by eukaryotic phytoplankters, generally more

efficient metabolically (Hyenstrand et al., 2000;

Reynolds, 2006). This can probably explain why

cyanobacteria, although often present in subdominant

concentrations, rarely dominated phytoplankton

Fig. 7 Examples of

conditions favouring

cyanobacteria (elevated

phytoplankton biomass and

pH) preceding bloom

development
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assemblages at low biomass levels (it was only

observed when nitrogen availability was limited by

the profuse growth of green filamentous algae).

Phytoplankton biomass increase eventually leads to

nutrient depletion or light limitation, which makes

cyanobacteria more competitive and, if such condi-

tions persist, may result in cyanobacterial dominance

(Dokulil & Teubner, 2000). Continuous growth of

cyanobacteria allows maintaining the constraints and

thus perpetuates the favourable conditions. This is

supported by the ability of some cyanobacteria, like

Planktothrix agardhii, to form perennial blooms

(Pavlik-Skowronska et al., 2008). The increase in

the severity of environmental constraints seems to

further favour cyanobacteria and thus increases the

likelihood and the magnitude of blooms. The classi-

fication trees support this idea by showing that

decrease in SD and increase in pH lead to a

considerable increase in the probability of cyanobac-

terial bloom occurrence. This is also consistent with

the decrease in the SD and increase in the pH

thresholds associated with the increase in the mag-

nitude of cyanobacterial blooms, suggesting a trend

towards more stringent conditions, less suitable for

eukaryotic phytoplankters.

The fact that most cyanobacterial blooms occured

in July and August following a continuous increase in

phytoplankton biomass (Peretyatko et al., 2010) as

well as a generally observed time lag between the

establishment of conditions favouring cyanobacterial

dominance (elevated phytoplankton biomass and pH)

and actual bloom development (Fig. 7) suggest that

in case of regular monitoring this approach may

allow cyanobacterial blooms to be anticipated. This

gives the pond managers the possibility of taking

preventive measures. It should be noted that the

ponds studied are very shallow and nutrient rich

ecosystems. Therefore, these results are not neces-

sarily applicable to other ponds and lakes.

The best predictors of cyanobacterial blooms (SD

and pH) detected by the classification trees analysis

are the same as those identified by the probabilistic

approach to bloom risk assessment presented in

Peretyatko et al. (2010). The thresholds correspond-

ing to these predictors as well as probabilities of

bloom occurrence are also comparable (Fig. 6). The

probabilistic approach appears to have better resolu-

tion of bloom risk, because it is predefined by the size

of the steps in the probability calculation, whereas

classification trees often split the sample space into

much wider regions, which was reflected on the

bloom probabilities that were overestimated or

underestimated as compared to the probabilistic

approach (Figs. 5, 6). Thus, the probabilistic model

could resolve the probabilities of bloom occurrence at

SD [ 0.6 m with regard to different pH levels,

whereas the classification trees spread them over

the whole area of SD [ 0.6 (Fig. 5B, C, Fig. 6A, B).

Similarly, classification trees could not resolve bloom

probabilities at pH \ 8 for cyanobacterial biovo-

lumes C10 mm3 l-1 (Fig. 5D). Besides, probabilistic

model automatically recalculates the bloom proba-

bilities and produces the related graphs for any

specified cyanobacterial biovolume level and set of

environmental thresholds. It also allows the assess-

ment of seasonal and interannual variation in bloom

risk. The classification trees, however, provide a

possibility of cross-validation of the results, which is

not yet a part of the probabilistic model. The

consistent results obtained by the two independent

methods prove, nevertheless, that they are not an

artefact of a specific statistical approach.

Conclusions

These results confirm that classification trees are an

efficient and simple way of tackling threshold

relationships typical of cyanobacteria and factors

that control them in the ponds studied. Classification

trees allowed the factors that determine cyanobacte-

rial dominance and their relative importance to be

identified as well as the risk of bloom occurrence

corresponding to different environmental conditions

determined by these factors to be quantified. SD and

pH turned out to be the best predictors of cyanobac-

terial blooms in the ponds studied. As both of these

variables are relatively easy to measure and may

allow anticipation of bloom occurrence, this approach

can be applied by the managers of the ponds studied

for the rapid assessment of the risk of cyanobacterial

bloom occurrence and thus facilitate planning man-

agement interventions and setting restoration priori-

ties. More research is needed to test the applicability

of this approach to other ponds and lakes.
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