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Abstract We investigated the impact of different

nitrogen (N) and phosphorus (P) compounds and

concentrations on the growth of Gyrodinium instri-

atum Freudenthal et Lee in laboratory experiments,

and possible links to blooms of this species at

Hakozaki Fishing Port, Fukuoka, Japan. G. instria-

tum utilized only inorganic N compounds as N

sources for growth. In contrast, G. instriatum utilized

many inorganic and organic phosphorus compounds.

We used the Monod equation to describe the growth

rate of G. instriatum in N- or P-limited batch cultures

as a function of ambient nutrient concentrations.

Kinetic growth parameters for maximum specific

growth rate (lmax) and half-saturation nutrient

concentration (KS) were 0.57 divisions d-1 and

14.2 lmol l-1, respectively, under N-limitation and

0.65 divisions d-1 and 1.75 lmol l-1, respectively,

under P-limitation. Compared with these KS values,

all in situ average dissolved inorganic nitrogen (DIN)

concentrations in Hakozaki Fishing Port were higher

than KS for N, but all in situ average dissolved

inorganic phosphorus (DIP) concentrations were

lower than KS for P, whether a red tide occurred or

not bloom. Moreover, average DIP concentration in

April (a month critical to red-tide genesis) of 2004 (a

non-red-tide year) was less than half those in 2002

and 2003 (red-tide years). Thus, differences in DIP

concentrations may be an important factor controlling

blooms of G. instriatum in Hakozaki Fishing Port.

Keywords Harmful algae � Monod equation �
Nitrogen � Phosphorus � Dynamics

Introduction

Gyrodinium instriatum is a species of dinoflagellate

that is distributed worldwide (Toriumi, 1980).
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Although G. instriatum is non-toxic, red-tide blooms

of this species can have noxious effects. For example,

in the Gulf of Guayaquil in Ecuador, there was mass

mortality in shrimp farms caused by anoxic bottom

water following the outbreak of a G. instriatum

bloom (Jimenéz, 1993). Blooms of this species may

be widely distributed: 50 km along the coast north of

the Gulf of Guayaquil (Jimenéz, 1993), 150–200 km2

surface area in the Zhujiang River estuary, China

(Wang et al., 2003), and 500 km2 surface area in Chi

Bay, China (Zhu et al., 2004). These reports also

indicate that blooms of G. instriatum cause serious

damage to fishery products. However, there are few

studies that examine the relationships between the

environmental factors and the growth of G. instria-

tum or closely related species such as Gyrodinium

fissum (Levander) Kofoid et Swezy (Kofoid &

Swezy, 1921) and Gyrodinium uncatenum Hulburt

(Hulburt, 1957; Campbell, 1973).

From 2002 to 2004, we investigated the species

composition of phytoplankton in Hakozaki Fishing

Port (lat 33�3703000N, long 130�2500000E), which is

located inside the breakwater in the southeastern area

of Hakata Bay, Japan (Fig. 1). In 2002 and 2003,

G. instriatum caused intense red tides (up to over

7,000 cells ml-1 at the surface) in mid-May. In 2004,

however, there was no outbreak of G. instriatum,

although low densities of cells were observed. To

explain the annual variability of G. instriatum in the

port, our previous studies examined the effects of

temperature, salinity, and irradiance on the growth of

G. instriatum (Nagasoe et al., 2006a) and the

inhibitory effects of Skeletonema costatum (Greville)

Cleve (Nagasoe et al., 2006b). However, the effects

of nutrients on the growth of G. instriatum have not

yet been examined.

In environments where production is limited by a

single nutrient, competitive exclusion should result in

Fig. 1 Map of Hakata Bay, Japan, indicating the locations of the Hakozaki Fishing Port (left) and sampling station (right). Solid
black lines in the bay indicate the breakwater
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the species best able to utilize this nutrient being

dominant (Tilman, 1976). A species that can utilize

nutrients in various types of compounds or that

requires a minimal concentration of growth-limiting

nutrients has a competitive advantage. Thus, for a

given red-tide species, information about the types of

nutrient compounds used and the concentrations

needed for growth is important for identifying the

mechanisms of red-tide occurrence. To date, in the

laboratory, nutritional limitation of various phyto-

plankton growth rates has been examined by using

either the Monod (1949) or the Droop (1968)

equation. The former relates the growth rate (l) to

ambient concentrations of the limiting dissolved

nutrients (S); the latter relates l to the intracellular

concentrations of the limiting nutrients (cell quota).

In our investigation, we analyzed ambient dissolved

inorganic nutrient concentrations from 2002 to 2004.

To investigate possible links between the differences

in nutrient concentrations and red-tide outbreaks, we

used the Monod equation to examine the effect of

ambient nutrient concentrations on the growth of

G. instriatum.

In this study, we used batch cultures in the

laboratory to examine (1) the ability of G. instriatum

to utilize various organic and inorganic nitrogen and

phosphorus compounds, and (2) the effects of nutrient

concentrations on the growth of G. instriatum.

Materials and methods

Organisms and culture conditions

The clonal strain of G. instriatum used for this study

was obtained by isolating a vegetative cell that

germinated from bottom sediment incubated in

culture flasks in the laboratory. The sediment was

collected at Hakozaki Fishing Port in December 2004

and incubated at 20�C in sterilized modified SWM-3

medium (Yamasaki et al., 2007) containing GeO2

(0.1 mg l-1) under a photon flux density of

150 lmol m-2 s-1 (12:12 h light:dark [L:D]). We

obtained an axenic strain of the isolate by using the

method based on the phototactic ability of phytofla-

gellates (Imai & Yamaguchi, 1994) and by washing

with capillary pipettes. A sterility test was carried out

using STP (seawater with trypticase) test medium

(Tatewaki & Provasoli, 1964) and the fluorochrome

(40,6-diamidino-2-phenylindole, DAPI) staining method

(Porter & Feig, 1980); the test results verified that this

strain was axenic. The stock culture was maintained in

100-ml flasks containing 50 ml of modified SWM-3

medium at 20�C under 150 lmol photons m-2 s-1

and 12:12 h L:D. The seawater used for the culture

medium was collected from within the Tsushima

Warm Current in an area around Oki Island (lat

34�2405800N, long 130�1202000E), in the Sea of

Genkai, Japan, and aged in the laboratory for more

than 1 year. And this seawater originally contained

2.5 lmol l-1 of DIN and 0.08 lmol l-1 of DIP.

Utilization of nitrogen (N) and phosphorus (P)

compounds

The ability of G. instriatum to utilize various N and P

compounds for growth was examined in batch culture

experiments. Twenty-six nitrogen sources and 15

phosphorus sources were used in this experiment

(Table 1). These are representative of natural inor-

ganic and organic N and P sources in the environment

(Sharp, 1983; van Boekel, 1991). The concentrations

of N and P sources were set at 100 lmol l-1 and

25 lmol l-1, respectively. To avoid the decomposi-

tion of N and P sources during autoclave treatment

(McLachlan, 1973), all compounds were added indi-

vidually to the autoclaved medium (N- or P-depleted

modified SWM-3) in screw-cap test tubes (18 9

180 mm), after filtration through a 0.1-lm pore size

disposable syringe filter (Millipore Corporation, Bed-

ford, MA, USA).

Gyrodinium instriatum cells for inoculation were

pre-incubated for a week in N- or P-depleted media to

remove excess N or P within the cells. Acclimated

cells were inoculated into triplicate test tubes that

contained 15 ml of media having N or P compounds.

The control medium consisted of N- or P-depleted

medium without any additional N or P sources.

Inoculum sizes were adjusted to result in test cultures

at an initial density of about 500 cells ml-1. Every two

days over a 6-day period, 0.5-ml samples were taken

from each test tube to determine cell densities. To

determine the maximum yield, whole vegetative cells

of G. instriatum in 10- to 100-ll triplicate subsamples

were counted in a Sedgwick-Rafter counting chamber

under an upright light microscope. Cultures were

incubated under conditions of 20�C, salinity of 30,
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and photon flux density of 150 lmol m-2 s-1 of cool-

white fluorescent illumination on a 12:12 h L:D cycle.

Effects of nitrogen (N) and phosphorus (P)

concentrations on growth

The effects of nutrient concentrations on growth of

G. instriatum were examined by batch culture exper-

iments following the method of Monod (Monod,

1949). NaNO3 and NH4Cl were used as nitrogen

sources and NaH2PO4 was used as a phosphorus

source. Stock solutions of these nutrient sources were

filtered through a 0.1-lm pore size disposable syringe

filter (Millipore Corporation) into 50 ml of autoclaved

N- or P-depleted modified SWM-3 medium in 100-ml

flasks. The growth of G. instriatum was examined at

eleven different concentrations of each nutrient

(NaNO3 and NH4Cl: 0, 1, 2.5, 5, 10, 25, 50, 100,

250, 500, and 1,000 lmol l-1; NaH2PO4: 0, 0.1, 0.25,

0.5, 1, 2.5, 5, 10, 25, 50, and 100 lmol l-1). The

methods for pre-incubation, inoculum sizes, cell

counting and culture conditions were the same as

described previously for N and P utilization experi-

ments. The growth rate (l; divisions d-1) for each

culture determined to be in the exponential growth

phase was calculated using the method of Guillard

(1973). Data for measuring growth rate were collected

up until day 6.

The Monod equation (1949) was used to describe

the relationship between growth rate and ambient

nutrient concentration:

l ¼ lmax

S

KS þ S
ð1Þ

where l is the growth rate (divisions d-1), lmax is the

maximum growth rate (divisions d-1), S is the nutrient

concentration (lmol l-1), and KS is the nutrient con-

centration at lmax/2 (the half-saturation nutrient

concentration).

Table 1 Compounds used as nitrogen (N) and phosphorus (P)

sources in this study

Compound name Abbreviation

N sources

Inorganic

Sodium nitrate NaNO3

Sodium nitrite NaNO2

Ammonium chloride NH4O

Organic

Urea

Uric acid

Amino acids

Alanine Ala

Arginine Arg

Asparagine Asn

Asparatic acid Asp

Glutamine Gln

Glutamic acid Glu

Glycine Gly

Histidine His

Isoleucine Ile

Leucine Leu

Lysine Lys

Methionine Met

Phenylalanine Phe

Proline Pro

Serine Ser

Threonine Thr

Tryptophan Trp

Tyrosine Tyr

Valine Val

Ornithine Orn

Taurine Tau

P sources

Inorganic

Sodium dihydrogenphosphate NaH2PO4

Pyrophosphate PP

Tripolyphosphate TPP

Metaphosphate MP

Organic

Adenosine triphosphate ATP

Adenosine diphosphate ADP

Adenosine monophosphate AMP

Cytidine monophosphate CMP

Guanosine monophosphate GMP

Uridine monophosphate UMP

Table 1 continued

Compound name Abbreviation

Fructose-6-phosphate F6P

Glucose-1-phosphate G1P

Glucose-6-phosphate G6P

p-Nitrophenylphosphate NPP

Glycerophosphate GYP
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Field study site and sampling method

Hakata Bay is a small and shallow bay (Fig. 1; 20 km

east–west, 10 km north–south; maximum depth,

23 m; tidal range, 2 m). The southeastern section of

the bay is closed off by a large breakwater, approx-

imately 4 km long but with several openings for boat

traffic. Our investigation was conducted in Hakozaki

Fishing Port (Fig. 1; lat 33�3703000N, long

130�2500000E; water depth, 2.5–4.5 m), located inside

the breakwater in the southeastern area of the bay.

Seawater sampling was conducted daily from 1

April to 30 June in 2002 to 2004 from the pier in

Hakozaki Fishing Port (Fig. 1). Seawater was col-

lected using a 1-l plastic bottle with a small lead

weight attached. For sampling bottom seawater, the

bottle was closed with a rubber plug attached to a

string and submerged slowly so as not to resuspend

bottom sediments, and then opened at depth by

pulling on the string and removing the plug. Between

10:30 and 11:00 h. local time on each sampling date,

seawater was collected from the surface and from the

bottom layer (30 cm above the bottom). Environ-

mental parameters (water temperature and salinity)

were then immediately measured in the field and the

samples were brought to the laboratory within 15 min

of collection. These water samples were used for

phytoplankton counts and subsequent measurement

of dissolved inorganic nitrogen (DIN) and dissolved

inorganic phosphorus (DIP) concentrations. Details

of these measurements are given below.

Phytoplankton counts

Cells of phytoplankton (G. instriatum and diatoms),

and zooplankton (copepods ? ciliates ? Myrionecta

rubra (Lohmann) Jankowski) were counted in the

seawater sampled from Hakozaki Fishing Port; in a

precise sense, copepods should be treated as individ-

uals because each organism is multicellular, but we

treated copepods as unicellular for descriptive pur-

poses. The sample bottle was gently inverted five

times before removing a subsample for cell counting.

Diatoms, vegetative G. instriatum cells and zoo-

plankton were counted in 1 ml of the sample using an

upright light microscope and a counting slide with

engraved lines (Rigosha Co., Ltd. Saitama, Japan).

Cell densities of the organisms counted on each

sampling date were determined as the average of the

cell densities in surface and bottom samples. If no

vegetative G. instriatum (sp.) cells could be detected

in either the surface or bottom water sample, we tried

to find this organism from concentrated samples. To

concentrate the plankton in the samples, the 1-l

surface and bottom samples were combined (2 l total)

and concentrated to about 5 ml by gravity filtration

through a membrane filter with a 5.0-lm pore size

(Millipore Corporation) on a 47-mm polysulphone

filter holder (Advantec Toyo Kaisha, Ltd., Tokyo,

Japan). Vegetative cells of G. instriatum were

counted in 100 ll of the concentrated sample using

an upright light microscope and a counting slide with

engraved lines (Rigosha). Seawater samples were not

fixed before counting phytoplankton because count-

ing occurred within 1 h of sample collection.

Analysis of in situ nutrient concentrations

Seawater samples for nutrient analysis (50 ml) were

filtered through a syringe filter with a 0.22-lm pore

size (Millipore Corporation) and then frozen (-30�C)

until they were analyzed for DIN and DIP concen-

trations with an autoanalyzer (TRAACS 800;

Bran ? Luebbe Co., Hamburg, Germany) using the

method of Strickland & Parsons (1972). In addition,

during bloom events, we replaced several syringe

filters in order to filtrate a seawater sample for

nutrient analysis.

Results

Utilization of nitrogen (N) and phosphorus (P)

compounds

Of the 26 nitrogen compounds provided as sources of

N, G. instriatum grew only in the media to which

inorganic nitrogen sources (NaNO3, NaNO2, and

NH4Cl) were added (Fig. 2). However, the maximum

yield (cells ml-1) in media with NH4Cl was lower

than in that with NaNO3 or NaNO2 (about 49.8% of

the maximum yield on NaNO3) (one-way ANOVA;

P \ 0.05). The maximum yields on all of the organic

nitrogen compounds tested (urea, uric acid, 20 amino

acids, and taurine) were not significantly different

than that in the control (N-depleted media) (one-way

ANOVA; P [ 0.05). Thus, G. instriatum is appar-

ently unable to utilize organic nitrogen for growth.
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In contrast, G. instriatum utilized a variety of

inorganic and organic phosphorus compounds for

growth (Fig. 3). The maximum yields on all 15 P

sources tested were at least 10 times as high as those

of the control (P-depleted media).

Effects of nitrogen and phosphorus concentration

on growth

We compared the growth curves of G. instriatum at

the various concentrations of NaNO3, NH4Cl, and

NaH2PO4 (Fig. 4). Growth of G. instriatum was

observed at NaNO3 concentrations of 25 lmol l-1

and higher; the maximum yield at 25 lmol l-1

NaNO3 was twice the density at inoculation. The

maximum yields increased with increasing concen-

tration of NaNO3 to 250 lmol l-1, and became

saturated at 500 lmol l-1; the cell densities at 500

and 1,000 lmol l-1 were both about 20,000 cells

ml-1 (Fig. 4A). G. instriatum in 10–250 lmol l-1

NH4Cl grew to cell densities significantly greater

than in the controls (one-way ANOVA; P \ 0.01).

Growth in 1–5 lmol l-1 NH4Cl did not differ

significantly from the controls (Fig. 4B) (one-way

ANOVA; P [ 0.05). The highest maximum yield in

medium containing NH4Cl (about 4,400 cells ml-1)

was at 250 lmol l-1; this was markedly lower than

the highest maximum yield with NaNO3 (about

20,000 cells ml-1 at 500 and 1,000 lmol l-1). When

G. instriatum was inoculated into the medium with

500 and 1,000 lmol l-1 NH4Cl, the algal cells burst

immediately.

In media containing NaH2PO4, growth of G. instri-

atum was observed at concentrations[1 lmol l-1, with

maximum yields increasing with increases in NaH2PO4

concentrations from 1 to 100 lmol l-1 (Fig. 4C).

We determined the relationship between growth rates

of G. instriatum and the concentrations of NaNO3 and

NaH2PO4 (Fig. 5), but not for NaH4Cl, because of the

low number of concentrations of NH4Cl concentrations

that resulted in growth. Based on the approximation of

parameters using the non-linear least-squares method,

the values oflmax and KS for NaNO3 were 0.57 divisions

d-1 and 14.2 lmol l-1, respectively, and for NaH2PO4

are 0.65 divisions d-1 and 1.75 lmol l-1, respectively.

Using these values, Equations 2 and 3 describe the

growth rate of G. instriatum as a function of each

inorganic nutrient concentration (S):

NaNO3

NaNO2

NH4Cl

Urea

Ureic acid

Ala

Arg

Asp

Gln

Glu

Gly

His

Ile

Leu

Lys

Met

Phe

Pro

Ser

Thr

Trp

Tyr

Val

Orn

Tau

Control

Asn

0

N
 s

ou
rc

e

1 2 3 4 5 6 7 8

Maximum yield ( 103 cells ml–1)

Fig. 2 Utilization of

nitrogen compounds by

G. instriatum. The control

had no added N source.

Values are the mean and

error bars are the SD

(n = 3). See Table 1

for an explanation of

compound abbreviations
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lN ¼ 0:57
SN

14:2þ SN

r ¼ 0:96ð Þ ð2Þ

lP ¼ 0:65
SP

1:75þ SP

r ¼ 0:96ð Þ ð3Þ

Field investigations of G. instriatum abundance

Gyrodinium instriatum cell densities in Hakozaki

Fishing Port were calculated daily from April to

June in 2002–2004 (Fig. 6). In 2002 and 2003,

G. instriatum increased in abundance from the end

of April and formed intensive red tides in mid-May

(average of surface and bottom cell density; 3,721

cells ml-1 in 2002 and 2,382 cells ml-1 in 2003).

Subsequently, cell densities gradually decreased, and

G. instriatum cells were not observed after mid-June

in 2002 or 2003. In contrast, there was no outbreak

of G. instriatum in April–June 2004. Whether a red

tide occurred or not, low cell densities of G.

instriatum were observed in early April. However,

cell density of this organism did not increase during

April 2004.

In situ concentrations of DIN and DIP

from 2002 to 2004

Concentrations of DIN and DIP were monitored daily

from April to June from 2002 to 2004 at Hakozaki

Fishing Port (Fig. 7A, B). The concentrations of

dissolved inorganic macronutrients are of particular

interest during April because this period is important

for the initial proliferation of G. instriatum, which has

subsequent outbreaks in mid-May of bloom years at

Hakozaki Fishing Port (Fig. 6).

Nitrate accounted for more than 80% of DIN

concentrations. Therefore, we considered fluctuations

in DIN concentrations in the port as changes in nitrate

levels. Both DIN and DIP concentrations fluctuated

widely in the red-tide years 2002 and 2003; we

observed many pulses of higher nutrient concentra-

tions. In contrast, in 2004 (without a red tide), and

particularly during April, there were only occasional

pulses of higher nutrient levels; the concentrations of

nutrients and the magnitude of changes remained low

during April. The average concentrations during April

(and the average concentration from April to June) in

Control

NaH2PO4

PP

TPP

MP

ATP

ADP

AMP

CMP

GMP

UMP

F6P

G1P

G6P

NPP

GYP

P 
so

ur
ce

0 1 2 3 4 5 6 7 8

Maximum yield ( 103 cells ml–1)

Fig. 3 Utilization of

phosphorus compounds by

G. instriatum. The control

had no added P source.

Values are the mean and

error bars are the SD

(n = 3). See Table 1 for an

explanation of compound

abbreviations
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each year were 35.8 lmol l-1 (39.5 lmol l-1) in

2002, 51.2 lmol l-1 (46.1 lmol l-1) in 2003, and

29.8 lmol l-1 (39.3 lmol l-1) in 2004 for DIN

(Fig. 7A), and 0.7 lmol l-1 (0.5 lmol l-1) in

2002, 0.5 lmol l-1 (0.5 lmol l-1) in 2003, and

0.2 lmol l-1 (0.5 lmol l-1) in 2004 for DIP

(Fig. 7B). The average concentrations of DIN and

DIP during April 2004 (non-red-tide year) were lower

than those in April 2002 and 2003 (red-tide years)

(Fig. 7). These differences were statistically signifi-

cant for DIN only between 2003 and 2004 (one-way

ANOVA; P \ 0.05), but for DIP the differences were

significant between both red-tide years (2002 and

2003) and the non-red-tide year (2004) (one-way

ANOVA; P \ 0.05). In particular, the average DIP

concentration during April in 2004 was less than half

that in 2002 and 2003 (Fig. 7B).

Following the G. instriatum red tides (more than

2,000 cells ml-1) in 2002 and 2003, the blooms

gradually declined and disappeared almost entirely

by early to mid-June in 2002 and 2003 (Fig. 7C).

During these periods of declining G. instriatum

blooms, the concentrations of DIP and the magnitude

of the variations remained at low levels; the average

DIP concentrations during the period of decline were

0.2 lmol l-1 in 2002 and 2003 (Fig. 7B).

Daily fluctuations in physical and biological

parameters in Hakozaki Fishing Port

Daily water temperatures and salinities in Hkozaki

Fishing Port are shown in Fig. 8. The temperature on

1 April was 15.1�C in 2002, 13.0�C in 2003, and

13.3�C in 2004, and increased steadily thereafter

(Fig. 8A). Linear regression analysis yielded the

same slope (rate of temperature increase) of 0.11�C

d-1 during the study period in each year (r = 0.97,

(A)  NaNO3

(B)  NH4Cl

(C)  NaH2PO4

0 2 4 6 8 10 12
Incubation time (day)
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C
el

l d
en
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 (
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lls
 m
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NH4Cl

(µmol l–1)
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5
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1

0

NaH2PO4

(µmol l–1)

100

50
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10

5

2.5

1

0.5

0.25

0.1

0

Fig. 4 Growth of

G. instriatum under a range

of concentrations of each

nutrient source. A NaNO3;

B NH4Cl; C NaH2PO4.

Symbols are the means and

error bars are the SD

(n = 3)
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0.97, and 0.98 in 2002, 2003, and 2004, respectively).

Salinities from April to June ranged from 22.2 to 33.0

in 2002, 21.6 to 34.1 in 2003, and 20.2 to 33.4 in

2004 (Fig. 8B).

Zooplankton densities showed inconsistent pat-

terns during the April–June period in the 3 years of

observations (Table 2). The average monthly densi-

ties were: April, 0.4 cells ml-1 (2002), 1.3 cells ml-1

(2003), and 0.1 cells ml-1 (2004); May, 1.6 cells

ml-1 (2002), 0.3 cells ml-1 (2003), and 0 cells ml-1

(2004); and June, 2.9 cells ml-1 (2002), 2.6 cells

ml-1 (2003) and 3.2 cells ml-1 (2004) (Table 2).

Zooplankton densities were lower in April and May

than in June in each year.

We compared the abundance of G. instriatum and

diatoms from April to June in the 2002–2004 period

at Hakozaki Fishing Port (Fig. 9). During May in

2002 and 2003, there was a relatively long period

when diatoms remained at low cell densities, and

G. instriatum became abundant during this period. In

contrast, in 2004, diatoms remained at high cell

densities throughout the study period; especially

during April and May, decreases in diatom cell

density were followed immediately by a return to

high cell densities. April is the most important month

for the initial proliferation of G. instriatum, and the

average diatom cell density during April was 458.7

cells ml-1 in 2002, 101.9 cells ml-1 in 2003, and

593.3 cells ml-1 in 2004.

Discussion

The ability to use the various nutrient components

available for growth differs among phytoplankton

species, and differences in the ability to utilize

organic nutrients in particular is one of the factors

that accounts for in situ species succession (Bonin &

Maestrini, 1981). In natural aquatic environments,

urea represents the majority of the organic nitrogen,

and is important for phytoplankton as a nitrogen

source (Sharp, 1983). Dissolved amino acids are also

utilized by several phytoplankton species (Iwasaki,

1979; Flynn & Butler, 1986). In this study, however,

G. instriatum grew only in culture media containing

inorganic nitrogen (nitrate, nitrite, and ammonium),

and not in any of the media with organic nitrogen

(Fig. 2). Thus, a continuous supply of inorganic

nitrogen would be essential for G. instriatum blooms.

Among the P compounds tested, p-nitrophenyl-

phosphate (NPP), which is not a natural component

of dissolved organic phosphorus, has been used as an

artificial substrate to test for alkaline phosphatase

activity (APA) (van Boekel, 1991). Our results

indicate that G. instriatum has APA. There have

been several reports that glycerophosphate (GYP),

one of the organic phosphorus species that we tested,

is utilized by many red-tide phytoplankton species

(Mahoney & McLaughlin, 1977; Iwasaki, 1979).

However, the raphidophytes Chattonella antiqua

(Hada) Ono (Nakamura & Watanabe, 1983; Yamag-

uchi, 1996), Chattonella marina (Subrahmanyan)

Hara et Chihara (Yamaguchi, 1996), and Hetero-

sigma akashiwo (Hada) Hada (Watanabe et al.,

1982), and the diatom Skeletonema costatum (Yam-

aguchi, 1996) cannot use GYP for growth. Therefore,

compared to these and similar species, G. instriatum

would have an advantage in forming red-tides in

terms of utilizing organic phosphorus.
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ambient N or P concentration (S), as determined from the

Monod equation (1949). Symbols are the experimental mean

values and error bars are the SD (n = 3). Solid black lines
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Our results also indicate that G. instriatum cannot

achieve high cell density when ammonium is at very

high concentrations. High concentrations of ammo-

nium are known to inhibit the growth of many

phytoplankton species, although the degree of inhi-

bition varies with the species (Norris & Chew, 1975;

Yamaguchi, 1994). For example, the ammonium

concentrations that inhibit growth are C50 lmol l-1

for H. akashiwo (Takahashi & Fukazawa, 1982) and

Cochlodinium polykrikoides Margareff (Lee, 2008),

and C150 lmol l-1 for C. antiqua (Nakamura &

Watanabe, 1983). However, the growth of Gymnodi-

nium nagasakiense Takayama et Adachi (=Karenia

mikimotoi (Miyake et Kominami ex Oda) Hansen et

Moestrup) (Yamaguchi, 1994) and Heterocapsa cir-

cularisquama Horiguchi (Yamaguchi et al., 2001)

was not inhibited at 250 lmol l-1 ammonium. In the

present study, we observed growth of G. instriatum at

250 lmol l-1, but substantial inhibition of growth at

ammonium concentrations of 500 lmol l-1 and

higher. Thus, G. instriatum has a higher ammonium

tolerance than H. akashiwo, C. polykrikoides and

C. antiqua. However, our field observations indicate

that G. instriatum never encountered such high

concentrations because the ammonium concentra-

tions in Hakozaki Fishing Port were less than

10–20 lmol l-1.

The half-saturation nutrient concentration (KS)

have been reported for the growth of several harmful

flagellates. These values for N and P were, respec-

tively, 0.8 and 0.14 lmol l-1 for G. nagasakiense

(= K. mikimotoi) (Yamaguchi, 1994), 2.16 and

1.39 lmol l-1 for C. polykrikoides (Kim, 2003), 0.3

and 0.2 lmol l-1 for H. akashiwo (Zhang et al.,

2006), and 9.0 and 0.8 lmol l-1 for Chattonella

subsalsa (Zhang et al., 2006). In comparison with

these species, G. instriatum (14.2 lmol l-1 for KNS

and 1.75 lmol l-1 for KPS: in this study) has a high

nutrient demand for growth.

Gyrodinium instriatum has a resting cyst stage in

its life cycle (Uchida et al., 1996; Shikata et al.,

2008). Therefore, studies of the developmental

mechanisms of G. instriatum red tides should analyze

environmental factors during the specific period when

vegetative cells are in the water column. Shikata et al.

(2008) found that excystment of G. instriatum

occurred at low temperatures (10 and 15�C). We

found vegetative G. instriatum cells in the water

column at Hakozaki Fishing Port on the first day of

April, when water temperatures were already

10–15�C (Fig. 8A), regardless of subsequent red-tide

occurrence (Fig. 6). During April, numbers of

G. instriatum vegetative cells increased progressively

in the red-tide years (2002 and 2003), but failed to
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increase in the non-red-tide year (2004) (Fig. 6).

Thus, April appears to be the most important period

for the initial proliferation of germinated G. instria-

tum, which has outbreaks in mid-May of bloom years

at Hakozaki Fishing Port.

We consider whether some factor other than

nutrient concentrations (i.e., temperature, salinity,

grazer populations or interspecific relationships with

diatoms) determined the presence or absence of G.

instriatum red tides from 2002 to 2004 at Hakozaki

Fishing Port. Water temperatures during the study

period each year were almost the same (Fig. 8A).

Moreover, G. instriatum is a euryhaline species, with

an optimum salinity range for growth from 10 to 35

(Nagasoe et al., 2006a). The salinity in Hakozaki

Fishing Port during the study period ranged from 20.2

to 34.1 over the 3-year study (2002–2004; Fig. 8B).

Thus, the salinity was always within the optimum

salinity range for growth of G. instriatum, even in the

non-red-tide year (2004).

There were no consistent differences in the time of

appearance or the numbers of zooplankton from April

to June between red-tide and non-red-tide years. Even

though the grazing pressure in 2004 was the lowest

among the 3 years, there was little growth of

G. instriatum during April of this year (Table 2). Thus,

it is unlikely that direct grazing pressure by zooplank-

ton inhibited the progress of G. instriatum blooms.

Phytoplankton species such as the diatom S.

costatum have been shown to have an allelopathic

effect on G. instriatum. The growth rates and

maximum cell densities of G. instriatum decreased

in cultures containing high densities of S. costatum

cells (Nagasoe et al. 2006b). Our data for G. instri-

atum and diatom abundances from April to June in

the 2002–2004 period at Hakozaki Fishing Port show
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long periods in May 2002 and 2003 when diatoms

remained at low cell densities and G. instriatum grew

quickly to form dense blooms (Fig. 9). The absence

of a similar period of low diatom cell density in 2004

suggests that the allelopathic effect of diatoms may

influence outbreaks of G. instriatum red tides.

However, April is the most important month for the

initial proliferation of G. instriatum, and the average

diatom cell density during April 2002 (red-tide year:

458.7 cells ml-1) was almost as high as in 2004 (non-

red-tide year: 593.3 cells ml-1). However, it was only

in April 2002 and not in 2004 that G. instriatum grew

steadily, leading to the rapid increase in densities

during the period of low diatom cell density in May

(Figs. 6, 9). Thus, some factor other than allelopathic

interactions with diatoms must influence the initial

proliferation of G. instriatum during April.

According to our field measurements of nutrients

indicated average DIN and DIP concentrations during

April, the values of the non-red-tide year (2004) were

lower than those in the red-tide years (2002 and

2003). In comparison with the KS values that we

determined in the laboratory, all in situ average DIN

concentrations were higher than KNS, but all in situ

average DIP concentrations were lower than KPS,

whether a red tide occurred or not. This suggests that

G. instriatum growth was consistently limited by DIP

concentrations at Hakozaki Fishing Port. The average

DIP concentration in April 2004 was less than half

that in 2003 and less than one-third that in 2002. In

addition, DIP concentrations decreased and remained

low during the periods of bloom decline in 2002

(average, 0.2 lmol l-1) and 2003 (0.2 lmol l-1)

(Fig. 7B). These DIP concentrations are of the same

order as the average DIP concentration in April 2004.

This combined evidence suggests that low DIP

concentrations affected the initial proliferation of

G. instriatum during April 2004. If true, this suggests
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Table 2 Average monthly density (cells ml-1) of zooplankton

(copepods ? ciliates ? Myrionecta rubra) in each year

(mean ± SD)

Year April May June

2002 0.4 ± 0.4 1.6 ± 4.0 2.9 ± 5.6

2003 1.3 ± 3.6 0.3 ± 0.5 2.6 ± 7.6

2004 0.1 ± 0.2 0.0 ± 0.1 3.2 ± 5.1
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that the DIP concentrations that restrict G. instriatum

growth in the natural environment are lower than the

KPS estimated in this study. Future studies should

examine minimum cell quotas for G. instriatum under

semi-continuous N- or P-limitation in chemostat

culture.

Our culture experiments indicate that G. instriatum

can utilize various dissolved organic phosphorus

(DOP) compounds for growth (Fig. 3). This implies

that G. instriatum populations at Hakozaki Fishing

Port could utilize any available DOP to grow to red-

tide densities, even if the DIP concentration was

below KPS. Unfortunately, we only measured DOP at

Hakozaki Fishing Port in 2004, so we cannot compare

DOP concentrations between red-tide and non-red-

tide years. Our 2004 results indicate very low DOP

concentrations (range, 0–0.25 lmol l-1). Yanagi

(1999) and Yanagi & Onitsuka (2000) reported

seasonal variations of nutrients in Hakata Bay from

April 1993 to March 1994. They found little DOP

loading from the surrounding land or the bay bottom

through the year, and the DOP concentrations were

high from July to October due to large phytoplankton

populations. In other words, phytoplankton are likely

to be the major source of DOP in Hakata Bay. In our

study, diatom cell densities were slightly lower during

April of 2002 and 2003 than in April 2004 (Fig. 9), so

there would not be much difference in the April DOP

concentrations from 2002 to 2004. Thus, we consider

DIP depletion as one of the major factors that

prevented a G. instriatum red tide in 2004. Future

studies should investigate the role of DOP in the

occurrence of G. instriatum red tides.

Conclusion

Our results indicate: (1) the nitrate-rich environment

of Hakozaki Fishing Port should be favorable for

growth of G. instriatum, which readily utilizes DIN

but cannot utilize organic nitrogen for growth. (2)

The concentration of DIP at Hakozaki Fishing Port in

April 2004 (non-red-tide year) was the lowest during

the 3-year period of this study (2002–2004). (3)

Although G. instriatum can use DOP for growth,

there was little detectable DOP at Hakozaki Fishing

Port in 2004. We conclude that phosphorus depletion

may be an important factor controlling the blooms of

G. instriatum at Hakozaki Fishing Port.
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