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Abstract The spread of non-native species is one of

the most harmful and least reversible disturbances in

ecosystems. Species have to overcome several filters to

become a pest (transport, establishment, spread and

impact). Few studies have checked the traits that confer

ability to overcome these steps in the same species. The

aim of the present study is to review the available

information on the life-history and ecological traits of

the mud snail, Potamopyrgus antipodarum Gray

(Hydrobiidae, Mollusca), native from New Zealand,

in order to explain its invasive success at different

aquatic ecosystems around the world. A wide tolerance

range to physico-chemical factors has been found to

be a key trait for successful transport. A high compet-

itive ability at early stages of succession can explains

its establishment success in human-altered ecosys-

tems. A high reproduction rate, high capacity for active

and passive dispersal, and the escape from native

predators and parasites explains its spread success. The

high reproduction and the ability to monopolize

invertebrate secondary production explain its high

impact in the invaded ecosystems. However, further

research is needed to understand how other factors,

such as population density or the degree of human

perturbation can modify the invasive success of this

aquatic snail.
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Introduction

The spread of non-native species can be one of the

most harmful and least reversible disturbances in

ecosystems (Strayer, 1999; Ricciardi & MacIsaac,

2000; Rahel, 2002). Biological invasions may alter

the properties of the invaded habitat, decline biodi-

versity and induce biotic homogenization (Enserink,

1999; Kolar & Lodge, 2001; Cambray, 2003; Mills

et al., 2003). Nowadays, human activities, such us

agriculture, aquaculture, recreation and international

trade are increasing the range of some species

(Leppäkoski & Olenin, 2000; Ricciardi & MacIsaac,

2000; Kolar & Lodge, 2001; Darrigran, 2002;

Grigorovich et al., 2003). Moreover, global change

may increase the chance of success of exotic species

by declining the fitness of local species to the new

environment (Dukes & Mooney, 1999).
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Before a species becomes a pest in an ecosystem,

it must successfully overcome several filters (Kolar &

Lodge, 2001; Sakai et al., 2001). First, the species

must travel from its native range to a new ecosystem

(transport). Second, it must survive, grow and

reproduce under the new environmental conditions

(establishment). Third, it must acquire a high rate of

population growth, invading new regions (spread).

Finally, the alien species must alter the structure and

functioning of the invaded ecosystem (impact)

(Parker et al., 1999). Different traits may confer

success to overcome each step, so all of them must

coincide in the same species to assure its invasive

success (Williamson & Fitter, 1996; Sakai et al.,

2001). Most studies on invasion processes have

searched for functional traits explaining the spreading

success (Table 1). However, fewer studies have

searched for traits explaining success in the previous

invasive phases (Kolar & Lodge, 2001), partly

because exotic species do not catch the attention of

researches before being widely spread. Therefore, it

remains unknown whether the traits explaining

spread success of a given species also contribute to

explain its success in transport, establishment and

impact, or different sets of traits are required to pass

each filter. In order to answer this question, detailed

information of the whole invasive process of a

species is needed.

The New Zealand mud snail, Potamopyrgus anti-

podarum Gray (=P. jenkinsi Smith) (Hydrobiidae,

Mollusca), meets the above condition. This

invertebrate, native from New Zealand and adjacent

islands (Gangloff, 1998; Ponder, 1988), has success-

fully spread through fast rivers, slow-flowing and

brackish water ecosystems of four continents

(Heywood & Edwards, 1962; Quinn et al., 1998;

Leppäkoski & Olenin, 2000; Shimada & Urabe,

2003; Cada, 2004; Kerans et al., 2005; Strzelec,

2005; ANS, 2007). Its first occurrence in Europe was

dated in England in 1859 (Ponder, 1988). In Austra-

lia, the species was first reported in Tasmania in

1892, and then in Victoria in 1895 (Ponder, 1988). In

North America, this species was first cited in the

Middle Snake River (Idaho, north-west of USA) in

1987, probably escaped from a fish farm (Bowler,

1991). In 1991, mud snails were found in Lake

Ontario (North-East USA) and in 1997 in Columbia

River (Oregon, north-west of USA), where they

probably arrived via ballast water from commercial

ships (Zaranko et al., 1997; Gangloff, 1998).

Recently, this species has been cited in Japan

(Shimada & Urabe, 2003). In spite of this rapid and

well-documented spread, little is known about the

potential effect of mud snail on the native commu-

nities. Moreover, most of the available information

has been gathered at a local scale, and no attempt has

been done to put these pieces together to gain insight

on the whole process of invasion.

The aim of this work was to investigate whether the

attributes which confer mud snail success in transport,

spread, establishment and impact are the same or not by

reviewing all published information on this mollusc.

Table 1 Functional traits reported in bibliography to explain the spreading success of alien species

Trait References

Rapid growth rate Baruch & Bilbao (1999), Pattison et al. (1998)

Early sexual maturity Richardson et al. (1990)

High fecundity Richardson et al. (1990), Møller et al. (1994), Zaranko et al. (1997),
Richards (2002)

Low size of propagules Rejmánek & Richardson (1996)

Vegetative and parthenogenetic reproduction Huenneke & Vitousek (1990), Lively (1992), Lake & Leishman (2004),

Reichard & Hamilton (1997)

Low susceptibility to natural enemies Gérard et al. (2003), Maron et al. (2004), Vilà et al. (2005),

Vinson & Baker (2008)

Ability to tolerate wide range of abiotic conditions Alonso & Camargo (2003, 2004), Baruch & Bilbao (1999),

Morton (1996), Gérard et al. (2003), Strayer (1999)

High evolutionary potential to adapt

to new environments

Hänfling & Kollmann (2002), Lee (2002)

Bold letters highlight those functional traits present in P. antipodarum and the studies reporting them
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Life-history traits and colonized habitats

P. antipodarum is a prosobranch snail (Hydrobiidae,

Mollusca), which reaches a maximum size of 6–

7 mm in invaded regions, but can be up to 12 mm in

New Zealand (Winterbourn, 1970). This snail has a

solid operculum and its shell is long (Duft et al.,

2003a, b). Although, in its natural range, both sexual

and asexual reproduction coexists, non-native popu-

lations are parthenogenetic, consisting almost

exclusively of females (Lively, 1987; Jokela et al.,

1997; Gangloff, 1998; Jensen et al., 2001; Duft et al.,

2003a, b). This invertebrate is ovoviviparous, and

females brood their offsprings to the ‘‘crawl-away’’

developmental stage in a brood pouch (Jokela et al.,

1997). It reaches sexual maturity at 3–3.5 mm of

shell length (Møller et al., 1994; Richards, 2002).

The number of generations per year ranges from 1 to

6, and one adult individual can produce an average of

230 juveniles per year (Møller et al., 1994; Richards,

2002). Its diet includes periphyton, macrophytes and

detritus (Dorgelo & Leonards, 2001; Jensen et al.,

2001; Alonso & Camargo, 2003; Duft et al., 2003a,

b; Alonso, 2005). This snail can dwell on different

substrata, such as aquatic macrophytes, clay, fine

sand and mud (Heywood & Edwards, 1962; Marshall

& Winterbourn, 1979; Weatherhead & James, 2001).

In addition, it buries itself in the sediment to stand

dry or cold periods (Duft et al., 2003a).

Within its native range mud snail lives in fresh-

water ecosystems, except temporary ponds, and also

inhabits brackish waters (Winterbourn, 1973). How-

ever, in the invaded regions, it can be found in a

higher variety of habitats (Table 2). Although in most

cases P. antipodarum lives in freshwater habitats, it

has also been found in brackish and even salty water.

Regarding water speed, mud snail has colonized

streams, lakes, reservoirs, estuaries and even open

seas (Table 2).

Transport

There are several transport mechanisms that have been

reported in literature for P. antipodarum (Table 3).

The most frequently cited long-distance transport is

through ballast water of commercial ships (Zaranko

et al., 1997; Gangloff, 1998; Leppäkoski & Olenin,

2000; Leppäkoski et al., 2002; Richards, 2002), which

may explain transoceanic transport (e.g. from Austra-

lia to Europe). Other reported long- or short-distance

transport means relate with commercial movements of

aquaculture products, or aquatic ornamental plants;

mud snails may also travel within freshwater tanks and

water pipes, or within the mud attached to bills or

legs of birds, or even inside the gut of birds or

fishes (Haynes et al., 1985; Ponder, 1988; Aarnio &

Bonsdorff, 1997; Zaranko et al., 1997; Gangloff,

1998; Leppäkoski & Olenin, 2000; Richards, 2002).

Finally, other transport mechanisms are recreational

vessels (e.g. kayaks and rafts) and sport fishing tools

(e.g. waders and boots), where mud snails may adhere

(Hosea & Finlayson, 2005; ANS, 2007).

Although the arrival to any of these transport

means may be a matter of chance, the survival during

the journey requires wide tolerance to physico-

chemical conditions. For example, a successful

transport via ballast water requires high tolerance to

salinity (Leppäkoski & Olenin, 2000; Richards, 2002;

Gérard et al., 2003). In fact, this snail has been

reported to survive after short-term exposures to

salinities as high as 32%, and it can feed, grow and

reproduce at 15% salinity (Jacobsen & Forbes, 1997;

Costil et al., 2001; Gérard et al., 2003).

Long distance travels also require wide tolerance

to temperature change. Some authors have found that

this species tolerates temperature from 0 to 28�C

(Winterbourn, 1969; Hylleberg & Siegismund, 1987).

In an experimental study, Vareille-Morel (1985a, b)

found a range of temperature tolerance between 9 and

27�C among individuals of different populations. In

other experimental study, Dybdahl & Kane (2005)

tested the growth of P. antipodarum to a range of

temperatures from 12 to 24�C, finding the highest

growth rate at 18�C. But to our knowledge, no study

has assessed the reproductive success after exposure

to extreme temperatures.

Successful transport on mud, fishing tools or recre-

ational vessels requires a high tolerance to desiccation.

Several authors have reported that this snail can survive

after short desiccation periods (Bowler, 1991; Zaranko

et al., 1997; Cada, 2004; Lysne & Koetsier, 2006),

although desiccation tolerance declines at increasing

temperature, and with decreasing snail size (Richards

et al., 2004). Fewer studies have tested the reproductive

success of P. antipodarum after desiccation and for

different environmental conditions (Vareille-Morel,

1985a, b; Bowler, 1991; Quinn et al., 1994; Zaranko
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et al., 1997). These studies suggest that transport means

implying desiccation are only effective for short

distance movements, therefore contributing to snail

spread once the species has reached a new area. The

same can be argued for travels in other animal’s gut, as

mud snail can only stand such conditions for a few hours

(Haynes et al., 1985; Bowler, 1991; Aarnio & Bons-

dorff, 1997; Zaranko et al., 1997; Cada, 2004; Lysne &

Koetsier, 2006). In summary, wide tolerance range to

physico-chemical variables is a key trait assuring travel

success of mud snail, both at long and short distances.

Establishment

A wide tolerance range to multiple environmental

factors also increases the chances of an exotic species

survival once it has arrived in a new environment.

Table 2 Habitats colonized by the mud snail Potamopyrgus antipodarum. Habitat type, water salinity and population densities are

shown for each site whenever available

Continent/Country Habitat Salinity (%) Densities

(snails/m2)

Reference

Europe

Mont St-Michel Basin (France) Polder-marsh 0–28 – Costil et al. (2001),

Gérard et al. (2003)

Baltic Sea (North Europe) Sea Brackishwater – Leppäkoski & Olenin (2000)

Norfolk (UK) Sea 3.5 – Grant & Briggs (1998)

Ivel river (UK) Stream Freshwater 2,750–164,000 Heywood & Edwards (1962)

Henares river (central Spain) Stream Freshwater – Alonso & Camargo (2003),

Alonso (2005)

Lake Veluwemeer, Lake

Wolderwijd (The Netherlands)

Shallow lakes Freshwater 2,000 Van den Berg et al. (1997)

Upper Silesia (southern Poland) Post-industrial ponds Freshwater 100 Strzelec (2005)

Upper Silesia (southern Poland) Reservoirs Freshwater 2–2,422 Lewin & Smolinski (2006)

Northern Poland Reservoirs Freshwater 220–25,500 Brzezinski & Kolodziejczyk

(2001)

Lake Zurich (Switzerland) Lake Freshwater 800,000 Dorgelo (1987)

Finland Isolated coastal lakes Freshwater – Leppäkoski (1984), Leppäkoski

& Olenin (2000)

North America

Yellowstone National Park (USA) Geothermal stream Freshwater 20,000–500,000 Hall et al. (2003)

Greater Yellowstone (USA) Stream and Creek Freshwater 22–299,000 Kerans et al. (2005)

Idaho (USA) Stream Freshwater 17,550–500,000 Richards et al. (2001)

Great Lakes Basin (Canada–USA) Lake Freshwater – Mills et al. (2003), Grigorovich

et al. (2003)

Columbia River (USA) Estuary Saltwater – Zaranko et al. (1997)

Australia

Lake Purrumbete (Victoria) Lake Freshwater 1,770–49,260 Quinn et al. (1998), Schreiber

et al (1998)

Curdies river (Victoria) Stream Freshwater – Quinn et al. (1998)

Southern Victoria Stream Freshwater – Schreiber et al. (2003)

Asia

Tone River (Japan) River Freshwater – Katayama & Ryoji (2004)

Moriyama (Japan) Channel Freshwater – Shimada & Urabe (2003)
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However, the species still have to overcome the

biological resistance opposed by the local community

(competition, predation, diseases, etc.) to assure a

long-term successful establishment. Theoretically,

the exotic species can take advantage of two differ-

ent, but not exclusive, strategies to do so: to possess a

high potential to overcome biological resistance (by

means of high competitive potential, escape from

natural enemies, etc.), and/or to be a successful

colonizer of empty spaces, where disturbances have

reduced or eliminated local populations.

In non-native regions, mud snail has been mainly

found in human-disturbed environments (Zaranko

et al., 1997; Mouthon & Charvet, 1999; Gérard et al.,

2003; Schreiber et al., 2003; Cada, 2004; Richards

et al., 2004; Alonso, 2005), as occurs with other

exotic species (Rejmánek & Richardson, 1996;

Almasi, 2000; Lake & Leishman, 2004). Human-

induced disturbances increases the chance of success

for recently arrived species, either by increasing

resource availability (i.e. eutrophication), or by

releasing resources capitalized by local populations

(Thompson et al., 2001; Schreiber et al., 2003). In

habitats altered by human activities, P. antipodarum

performs as a successful early colonizer (Quinn et al.,

1998) dominating the incipient community (Schreiber

et al., 2003; Strzelec, 2005; Strzelec et al., 2005;

Lewin & Smolinski, 2006), probably due to the low

biotic resistance exerted by the remaining simplified

native communities. The escape from parasites can

additionally contribute to explain mud snail success-

ful establishment, as it seems to leave their trematode

Table 3 Summary of transport, establishment, spread and impact mechanisms reported in scientific bibliography for Potamopyrgus
antipodarum

Invasion step Mechanism Reference

Transport Ship ballast water Zaranko et al. (1997), Gangloff (1998), Leppäkoski & Olenin,

(2000), Richards (2002), Leppäkoski et al. (2002)

Holding on aquatic ornamental plants Ribi (1986)

Movements of aquaculture products Bowler (1991)

Freshwater tanks Ponder (1988)

Water pipes Ponder (1988)

Bird and fish guts; Bills or legs of birds Haynes et al. (1985), Aarnio & Bonsdorff (1997), Zaranko

et al. (1997)

Others: holding on recreational vessels,

sport fishing tools, etc.

Hosea & Finlayson (2005); ANS (2007)

Establishment Tolerance to wide range of environmental conditions

High tolerance to salinity Leppäkoski & Olenin (2000), Richards (2002), Gérard et al.

(2003)

High tolerance to extreme temperatures Winterbourn (1969), Hylleberg & Siegismund (1987)

High tolerance to human perturbations Alonso & Camargo (2003), Alonso (2005)

High competition ability as compared with

invertebrate native fauna (dependent on snail

density)

Gangloff (1998), Schreiber et al. (2002, 2003), Hall et al.

(2006)

Spread Passive methods

Dispersal by birds and fish Lassen (1975), Haynes et al. (1985)

Drift Richards et al. (2001)

Holding in floating aquatic macrophytes Ribi (1986)

Active methods

Positive rheotactic Haynes et al. (1985)

Impact High consumption rate of primary production Hall et al. (2003)

High secondary production Hall et al. (2006)

Reduction in the colonization ability of other

invertebrates

Ponder (1988), Kerans et al. (2005)

Asymmetrical competition with native snail Riley et al. (2008)
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parasites behind when invading new regions (Gérard

et al., 2003). Experimental studies have shown that

P. antipodarum growth was reduced by the presence

of trematodes (Krist & Lively, 1998). Finally, mud

snails are also resistant to many native predators,

because of its hard shell and solid operculum

(Zaranko et al., 1997; Vinson & Baker, 2008). All

these traits can help mud snail for a successful

establishment in a new area.

Spread

Mud snail may disperse both by passive and active

methods (Table 3). Passive methods have been

described as the principal way of spread in European

waters for P. antipodarum (Hubendick, 1950; Lassen,

1975). Among them, several authors reported birds

and fish as dispersal agents (Haynes et al., 1985;

Ribi, 1986; Aarnio & Bonsdorff, 1997; Zaranko

et al., 1997), while others reported passive drift or

dispersal by holding in floating aquatic macrophytes

(Ribi, 1986; Richards et al., 2001). Mud snail was

found to be one of the most abundant macroinverte-

brate in drift net samples in Banbury Springs (Idaho,

USA) (Richards et al., 2001). These authors also

showed that P. antipodarum used floating vegetation

mats to colonize a lake. However, these mechanisms

are only effective to colonize lakes or currents

downstream from the initial population. In Australia,

Loo et al. (2007a) found that fish stocking and

anglers were two passive spread mechanisms to

P. antipodarum.

Regarding active dispersal mechanisms, some

authors have found that positive rheotactic response

can facilitate spread in invaded streams and rivers

(Adam, 1942; Haynes et al., 1985), and that high

water speed produces a more consistent upstream

movement (Haynes et al., 1985). Adam (1942) found

in Belgium that mud snails can spread 60 m in three

months by active upstream movements. At this

spread rate a single mud snail might can move

upstream up to 240 m in just one year. Furthermore,

as each snail can produce more than 230 juveniles per

year, the number of snails in the reach can dramat-

ically increase, as it moves upstream in a reach

(Møller et al., 1994; Richards, 2002). By contrast,

Richards et al. (2001) reported that P. antipodarum is

prone to detach from substrate in high-speed waters,

suggesting that fast waters can limit colonization.

They also found that aquatic macrophytes are a good

refuge for juveniles of P. antipodarum, which are

more sensitive to velocity than adults. According to

these authors, low-speed waters with high densities of

macrophytes are more susceptible to mud snail spread

than high-speed waters. These contradictory results

indicate the necessity of further research on the active

dispersal method of mud snail.

All these ecological traits help mud snail to a rapid

spread around different aquatic ecosystems. Recent

predictive models developed for P. antipodarum have

shown that the future spread of mud snail through

Australia and North America could be very fast

unless prevention measures are rapidly implemented

(Loo et al., 2007b).

Impact

The principal impact of mud snail in invaded

ecosystem can be attributed to its high reproductive

capacity, which leads to an explosive population

growth, a fast spread and a high consumption rate of

the available primary production of the ecosystem.

P. antipodarum is a successful early colonizer (Quinn

et al., 1998) dominating the incipient community

(Schreiber et al., 2003; Strzelec, 2005; Strzelec et al.,

2005; Lewin & Smolinski, 2006). In a highly

productive stream of Wyoming (USA), Hall et al.

(2003) found that mud snail consumed 75% of the

primary production and excreted about 65% of the

total NH4
+ demanded by microbes and plants,

therefore dominating both C and N cycles. These

authors compared the effects of mud snail to those of

zebra mussel (Dreissena polymorpha), an invasive

bivalve which can consume nearly all the primary

production of the community (Strayer, 1999; Hall

et al., 2003). The same authors found in another study

that the secondary productivity of P. antipodarum was

one of the highest ever reported for a stream inverte-

brate (194 g AFDM m-2 yr-1), being 7–40 times

higher than that of any macroinvertebrate in Greater

Yellowstone area (Wyoming, USA) (Hall et al.,

2006). In a tributary of Snake River (Idaho, USA),

mud snail densities were reported to be higher than

those of native snails in three different habitats (run,

edge and vegetation) (Richards et al., 2001). In ditches

and canals of the Basin of the Mont St-Michel Bay
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(France), mud snail dominates the gastropod commu-

nities in fresh- and salt-water ecosystems (Gérard

et al., 2003). Lewin & Smolinski (2006) reported that

mud snail made up 83% of the mollusc community in a

reservoir near an industrial area in Poland. Experi-

mental studies also showed that mud snail reduced

colonization by other invertebrates in the early stages

of succession (Kerans et al., 2005; Ponder, 1988).

Several authors have compared the densities of mud

snail between degraded and intact stream. Alonso

(2005) found high densities of P. antipodarum in

human-polluted reaches of the Henares River,

whereas no snails were found in well-preserved

areas. Similarly, Schreiber et al. (2003) found higher

density of P. antipodarum in areas with multiple

human land uses than in low-impact sites of Victoria

streams (Australia). Moreover, at low population

density, P. antipodarum has been even found to

facilitate some native invertebrates, as its faeces,

which contain processed cellulases and chitinases

plus mucoproteins and mucopolysaccharides, consti-

tute a suitable food for native grazers and deposit-

feeders (Gangloff, 1998; Schreiber et al., 2002).

According to the five-level framework put forward

by Parker et al. (1999) to assess the impact of an

invader, mud snail impacts on the invaded ecosys-

tems are related mainly with two levels: (1) the

population effects, given that P. antipodarum possess

a population density in the invaded ecosystem higher

than most native invertebrates and (2) effects on

ecosystem processes, as the mud snail can consume

most of the primary production of the stream, and

therefore it can dominate the secondary production of

the invertebrate community.

This revision shows that the invasion success of

mud snail can be largely dependent on the conser-

vation state of the invaded habitat, and that

P. antipodarum is a very successful colonizer of

empty spaces, typically occurring at early stages of

succession, but less successful at overcoming the

biological resistance of an intact native community.

Concluding remarks

The revised bibliography has shown that a wide

tolerance to physico-chemical conditions contributes

to explain the success of mud snail in the two former

steps to become an invasive species (transport and

establishment). However, a successful establishment

also relies on a high capacity to overcome biotic

resistance, either by successfully colonizing early

stages of succession in human-altered habitats, or by

leaving behind parasite and predator control. Its high

reproductive rate, together with its ability to disperse

by active and passive mechanisms, explains mud

snail potential for an efficient spread. Finally, mud

snail ability to alter the structure and function of

invaded ecosystems (impact) is again due to the high

reproductive rate, which leads to extremely high

population density and to the consumption of most of

the primary productivity of the ecosystem. Therefore,

the coincidence of wide tolerance to abiotic factors

and high reproductive capacity on the same species

may have allowed it overcome most of the filters to

become a pest. Human-disturbed ecosystems are

more susceptible to mud snail invasion than intact

ones, although the latter may be also affected by mud

snail.

Future research on mud snail invasion should

address several open questions: (1) To assess the

reproductive viability of mud snail after exposure to

gradients of different conditions (humidity, temper-

ature, etc.) to understand its transport-spread

potential, (2) to study the potential impacts of mud

snail on native faunas at different densities, especially

in perturbed ecosystems, where it apparently shows

higher success and (3) to identify the ecosystems that

are susceptible to invasion in order to prevent spread

of P. antipodarum into these regions.
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Leppäkoski, E., S. Gollasch, P. Gruszka, H. Ojaveer, S. Olenin

& V. Panov, 2002. The Baltic—a sea of invaders. Cana-

dian Journal of Fisheries and Aquatic Sciences 59:

1175–1188.
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