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Abstract Diatoms are increasingly being used in

the bioassessment of aquatic systems. However,

autecological information for many common taxa is

incomplete. We explored the potential of classifica-

tion (CT) and regression tree (RT) approaches to

identify the hierarchical interaction among water

quality variables in predicting the relative abundance

of ten common stream diatom taxa in the Mid-

Atlantic Highlands ecoregion. RT analysis was also

used to identify environmental change points corre-

sponding to major shifts in species abundances. We

also used traditional weighted-averaging approaches

(WA) to model taxon pH and total phosphorus (TP)

optima. RT and WA approaches provided different,

yet complementary, information on the complex

relationships between common stream diatoms and

environmental variables. Both RT and CT high-

lighted the interaction of stream acidity (pH, acid

neutralizing capacity (ANC)), and TP in structuring

the stream diatom assemblage. For the RT of taxa,

where pH was an important predictor, higher pH

predicted higher relative abundances. In contrast,

higher TP predicted lower relative abundances for

some diatom taxa (e.g., Achnanthidium minutissimum

(Kütz.) Czarnecki), while predicting higher relative

abundances for other taxa (e.g., Planothidium lance-

olatum (Bréb.) Round & Bukht., Gomphonema

parvulum (Kütz.) Kütz.). The environmental change

point for pH derived from RT analysis was lower than

WA optima for all species. We suggest that RT

change point analysis can be used to complement

traditional WA optima approaches, especially when

diatom taxa’s abundances are affected by interactive

environmental factors, to provide more refined infor-

mation on stream diatom environmental preferences.

Keywords Change point analysis � Classification

and regression trees � Diatom � pH � Total

phosphorus � Weighted-average

Introduction

Current knowledge of diatom autecology is incom-

plete, gleaned from studies which are not specifically

designed to determine the environmental requirements

of common species. Frequently cited environmental

preferences are often based on qualitative best profes-

sional judgment, which were derived from studies

within a limited geographic area or region (e.g.,
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Lange-Bertalot, 1979; van Dam et al., 1994) or based

on synthesis of studies with different study objectives,

sampling designs, and various spatial and temporal

scales (e.g., Lowe, 1974; Beaver, 1981; van Dam et al.,

1994). As a consequence, species environmental

preference lists are often incomplete and inconsistent

and autecological information about common species

in many areas is lacking. More recently, numerical

modeling approaches have been employed to quanti-

tatively characterize the relationships between diatoms

and environmental variables in streams. While gradi-

ent analyses are commonly employed to elicit overall

assemblage patterns (e.g., Biggs, 1990; Leland, 1995;

Pan et al., 1996), species optima for key environmental

variables are most often determined by weighted-

averaging (WA) techniques (e.g., Pan et al., 1996,

Leland & Porter, 2000; Winter & Duthie, 2000;

Potapova & Charles, 2003).

WA techniques provide a quantitative evaluation

of diatom autecology and in many cases expand our

knowledge of diatom species preferences. In streams,

WA models have been used to develop species

optima and tolerances for conductivity (e.g., Leland,

1995; Leland et al., 2001; Munn et al., 2002; Potap-

ova & Charles, 2003), pH (Kovács et al., 2006),

phosphorus (e.g., Pan et al., 1996; Winter & Duthie,

2000; Soininen & Niemelä, 2002; Schönfelder et al.,

2002; Potapova et al., 2004; Ponader et al., 2007),

nitrogen (e.g., Leland, 1995; Ponader et al., 2007),

sulfate (Potapova & Charles, 2003), major cations

(Potapova & Charles, 2003), and dissolved inorganic

carbon species (Schönfelder et al., 2002; Potapova &

Charles, 2003). In addition, WA optima have suc-

cessfully been used to reconstruct environmental

conditions in lakes, including pH (e.g., Birks et al.,

1990; Dixit et al., 1999) and total phosphorus (Dixit

et al., 1992; Hall & Smol, 1992; Bennion, 1994), and

wetlands (e.g., Gaiser & Taylor, 1995; Bunting et al.,

1997; Cooper, 1999).

However, WA approaches suffer from the sim-

plicity and assumptions of these models (see

summary in Imbrie & Webb, 1981; Birks et al.,

1990). Of primary concern when dealing with the

relationships between diatom species and environ-

mental variables is that WA modeling assumes that

the variable of interest is the sole variable responsible

for determining the species distribution. The impor-

tance of other environmental variables is implicitly

included in the calculation of the WA optima.

However, WA can’t explicitly illustrate the interac-

tions among environmental variables. Subsequently,

environmental variables must be interpreted one at a

time. In reality, most studies have displayed interac-

tions among environmental predictors and stream

algal assemblages. Interactive relationships between

pH and nutrients were demonstrated in streams in the

Illinois River Basin (Leland & Porter, 2000) and

Finland rivers (Soininen & Niemalä, 2002). The

development of WA models, for example, nutrient

models, has often been less-successful when other

environmental variables, such as pH, are important in

structuring the diatom assemblage (e.g. Hall & Smol,

1992; Reavie et al., 1995; Pan & Stevenson, 1996).

Because WA can’t explicitly address other environ-

mental variables that influence patterns of species

abundances, the applicability of models developed in

one area to other areas is questionable. A second

assumption of WA modeling that often does not hold

true for stream diatom assemblages is the idea that

species abundance forms a unimodal relationship

with the environmental variable of interest. While

Gaussian responses of diatom abundance to physio-

logical environmental variables (e.g., pH and salinity)

have been reported (ter Braak & van Dam, 1989;

Juggins, 1992), this relationship is often not the case

for resource variables such as total phosphorus

(Potapova et al., 2004). Recently, advanced regres-

sion techniques, such as generalized linear models

(GLM) and generalized additive models (GAM),

which place fewer assumptions and constraints on

species–environmental relationships have been used

to model species–environmental relationships (see

Guisan et al., 2002 for review). Potapova et al. (2004)

used GLM to model relationships between diatom

relative abundance and total phosphorus for northern

Piedmont streams. While these models implicitly

incorporate biotic and environmental interactions

(Guisan & Zimmerman, 2000), they are additive

and still do not explicitly model interactions or

incorporate hierarchical structure.

Relationships between diatoms and environmental

variables in streams are complex, often with several

variables operating through hierarchical interactions.

Strong relationships between algal biomass and

nutrients are not often shown in streams (e.g., Leland,

1995). Diatom autecology would benefit from

approaches that allow interactions between variables

to be explicitly incorporated. Increasingly, regression
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tree approaches have been used to examine species–

environmental relationships in plants and animals

(e.g., Iverson & Prasad, 1998; De’ath & Fabricius,

2000; O’Conner & Wagner, 2004; Hershey et al.,

2006). Regression trees (RT) and classification trees

(CT) are useful for visually facilitating interpretation,

revealing data structures, and displaying interactions

(Clark & Pregibon, 1993; De’ath & Fabricius, 2000).

RT and CT models performed better than analysis of

variance and linear regression in predicting the

abundance of coral taxa from environmental vari-

ables (De’ath & Fabricius, 2000) and the authors

suggest using regression tree approaches to select

more simple interaction terms for regression models.

CT models had higher predictive power than both

GLM and GAM for modeling vegetation species

(Franklin, 1998; Vayssières et al., 2000 in De’ath,

2002). Another advantage of RT analysis is that it can

also be used to identify thresholds or change points

along environmental gradients, where species abun-

dances change from one state to another (Qian et al.,

2003). RT change point analysis was successfully

used to identify total phosphorus concentrations at

which the relative abundance of tolerant macroinver-

tebrate species shifted in wetlands (Qian et al., 2003)

and the level of wetland impairment at which

macrophytes, diatoms, and zooplankton abundances

shifted (Lougheed et al., 2007). While Pan et al.

(1999) used RT analysis to explore the hierarchical

relationships between algal biomass and environmen-

tal variables in streams, RT approaches have not been

used to explore individual diatom species distribution

in streams or to identify change points along envi-

ronmental gradients. RT and CT are non-parametric,

and therefore, they are well-suited for diatom species

relative abundance data that often contain many zero

values.

The objective of this study was to use both

weighted-average and regression tree approaches to

explore the relationships between environmental

variables and common diatom taxa in Mid-Atlantic

Highlands (MAHA) streams. In addition, RT analysis

was used to identify change points along environ-

mental gradients (pH and total phosphorus), where

taxa shift from low to high relative abundances. TP

and pH were selected for change point analysis

because these two variables have been shown to be

most influential in controlling MAHA stream diatom

assemblages (Pan et al., 1996). Regression tree

models developed on relative abundance data were

compared to classification models developed using

both presence–absence and relative abundance cate-

gories to determine if different data transformations

reveal different relationships between species and

environmental variables. Change points identified by

RT analysis were compared to optima derived from

WA methods to determine if change point analysis

can classify diatom taxa’s environmental preferences

more precisely. This work will further our under-

standing of the autecology of common stream diatom

taxa and of how environmental variables interact to

determine their abundance.

Materials and methods

Study area

Streams were located in the Mid-Atlantic Highlands

region of the U.S.A. (Fig. 1). The region has been

delineated into several ecoregions (Omernik’s, 1987

Level III ecoregion classification), which include the

Northern Appalachian Plateau and Uplands, the

North Central Appalachian Mountains, the Blue

Ridge Mountains, the Central Appalachian Ridges

and Valleys, the Central Appalachian Mountains, and

the Western Allegheny Plateau. Topography of the

ecoregions included a mixture of mountains, plateaus,

plains, and valleys. Data were collected as part of the

U. S. Environmental Protection Agency’s Environ-

mental Monitoring and Assessment Program

(EMAP). Stream sites in the region were selected

using a stratified random sampling design (Herlihy

et al., 1998). The stream population in the region was

defined on the basis of digitized versions of U.S.

Geological Survey’s 1:100,000-scale topographic

maps. In order to get a more equitable distribution

of stream sizes, sample probabilities were set so that

roughly equal numbers of first-, second-, and third-

order streams would be sampled. A total of 256

unique sites, sampled for periphyton and water

chemistry once from late April to early July in

1993 and 1994, were used for this analysis.

Sampling design

A study reach was established around either side of

the selected sample sites with a total length equal to
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40 times the average wetted channel width (minimum

length 150 m). Each study reach was evenly divided

into 10 equal length intervals and 11 cross-section

transects were set up (including one transect at the

start and end of each reach).

Field sampling

Periphyton samples were collected from erosional

habitats at each of the 11 transects and combined into

a composite sample. Transects with visible water

movement were considered erosional habitat. At each

transect, periphyton was collected from a 12-cm2 area

of the stream bed using a 1.5-cm long piece of 3.9-cm

diameter PVC pipe as a template. Periphyton was

scraped from the upper surfaces of cobbles with a

toothbrush and rinsed with stream water. Composite

periphyton samples were then preserved with forma-

lin. Stream water samples were taken near the middle

of the stream in flowing water. Detailed field

methodology can be found in Pan et al. (1996).

Detailed information on the analytical procedures

used for each of the analyses can be found in U. S.

Environmental Protection Agency (1987).

Laboratory analyses

An aliquot of homogenized algal suspension was

acid-cleaned and mounted in HYRAX� to identify

and enumerate diatom species (Patrick and Reimer,

1966). A minimum of 500 diatom valves were

counted at 1,0009 magnification. Diatom taxonomy

followed mainly Krammer & Lange-Bertalot (1986,

1988, 1991a, b) and Patrick & Reimer (1966, 1975).

Data analysis

Weighted-average models: Weighted-averaging

regression and calibration were used to quantify

relationships between individual diatom taxon’s rel-

ative abundance and environmental variables (Birks

et al., 1990). The taxon’s optima was calculated as

Fig. 1 Map showing

location of the Mid-Atlantic

Highland region, U.S.A.

and location of study sites.

The solid lines are

ecoregional boundaries
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the mean of the measured environmental variables

weighted by the abundance of this taxon in all sites.

Tolerance was calculated as the weighted standard

deviation of the taxon abundance in all sites.

Tolerance values were corrected for bias by taking

into account the effective number of occurrences

(Hill’s N2) (Hill, 1973). Models were developed with

tolerance down-weighting and using inverse

de-shrinking methods. Cross-validation with leave-

one-out jack-knifing was used to validate the models.

WA regression and calibration and model validation

were performed using C2 v. 1.4 (Juggins, 2003).

Regression tree change point analyses: RT analy-

sis was used to explore the relationships between

each of the 10 most commonly occurring benthic

diatom taxa and in-stream environmental variables

and to identify biological thresholds along environ-

mental gradients. TP and pH change points were

identified as the first or second splits of the RT for

each diatom taxa. RT provides an alternative to linear

and additive models for regression problems. RT can

identify a set of important predictors (both numeric

and categorical), automatically handle interactions

between predictor variables, and illustrate hierarchi-

cal relationships among predictor variables (Venables

and Ripley, 2002). Regression trees are a subset of

top-down induction of decision trees that develop a

hierarchical set of recursive, binary partitioning rules

for classifying objects based on their values for

several attributes of each object (Quinlan, 1986). In

this study, the various water quality parameters

(Table 1) are the ‘‘attributes’’ or predictor variables

and the relative abundances of diatom taxa (Table 2)

are the ‘‘objects.’’ The ‘‘leaves’’ of the decision tree

represent the classes, and the ‘‘nodes’’ represent an

attribute-based decision criteria with a ‘‘branch’’ for

each possible outcome. Classes can be categorical

(CT) or continuous (RT).

To start, all objects are placed in one node (root

node). The tree is developed by splitting the objects

Table 1 Environmental variables (median (med), minimum

(min), and maximum (max) values) used in predicting relative

abundance of 10 most frequently occurring diatom taxa in Mid-

Atlantic Highland streams. Frequency of occurrence of each

variable in the regression trees (RT) and classification trees

(CT) based on presence–absence data of all 10 species is also

provided

Code Variable Med Min Max Frequency

RT CT

AM Ammonium (leq l-1) 0 0 17 0 0

ANC Acid neutralizing capacity (leq l-1) 271 0 5520 4 1

Ca Calcium (leq l-1) 359 28 5240 0 0

Cl Chloride (leq l-1) 69 8 716 1 3

COL Color (PCU) 6 0 62 0 0

COND Conductivity (lS cm-1) 84 12 612 1 0

DIC Dissolved inorganic carbon (mg l-1) 4 0 66 0 0

DOC Dissolved organic carbon (mg l-1) 2 0 6 0 0

K Potassium (leq l-1) 28 4 98 0 0

Mg Magnesium (leq l-1) 183 19 2599 0 0

Na Sodium (leq l-1) 106 7 1179 0 0

NN Nitrate + Nitrite (lg l-1) 18 0 722 1 2

pH pH 7.2 3.4 8.4 5 1

SI Silica (mg l-1) 6 1 19 1 1

SO4 Sulfate (leq l-1) 191 21 4103 2 0

TN Total nitrogen (lg l-1) 440 27 16260 0 0

TP Total phosphorus (lg l-1) 13 1 108 3 2

TSS Total suspended solids (mg l-1) 4.6 0 206 0 0

TURB Turbidity (NTU) 2.1 0.2 35 0 0

PCU: platinum–cobalt units, Conductivity reference temperature = 25�C, NTU: nephelometric turbidity units
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into two subsets or child nodes based on the decision

rule that results in two groups with the greatest within

group homogeneity or purity. Decision rules are then

applied to each group separately until either all

classes have been sorted or the tree has reach

maximum complexity. The effectiveness of the

decision rule at each split is evaluated as a function

of the decrease in impurity achieved by dividing the

sample according to that rule. In our study, impurity

within each child node was measured as deviance by

the Gini Index (Therneau & Atkinson, 1997). The

deviation after each split is calculated as

Di child ¼ Di;L þ Di;R

where Di,L is the deviance in the left child node, Di,R

is the deviance in the right child node, and Di child is

the total deviance in the split (Brieman et al., 1984).

For any given node, the decision rule that maximizes

the reduction in deviance (DD = Di - Di child) is

selected. For regression trees, this reduction in

deviance is equivalent to maximizing the between

group sum of squares (Therneau & Atkinson, 1997).

For CT, the end point of each tree is characterized

by the distribution of objects in each of the classes

along with a hierarchical set of decision rules (predic-

tor variables) that define it. For RT, the end point of

each tree is the predicted mean of the response variable

(e.g., relative abundance of Achnanthidium minutiss-

imum), number of objects in each group, and the

hierarchical set of decision rules (response variables)

that define it. Thus, the decision tree can be used to

classify other sets of data based on these rules. Only a

subset of attributes may be encountered on a particular

path from root to leaf and attributes may be encoun-

tered more than once. For each split, alternative

splitting variables are presented and evaluated using

an improvement index. The improvement index is

calculated as the number of sites in the branch times

the impurity index. It is the relative size of the

improvement index that gives an indication of the

utility of a variable in splitting the data rather than its

absolute value (Therneau & Atkinson, 1997).

A cross-validation procedure was used to determine

when to stop partitioning the data. Cross-validation

occurs by dividing the original data into several,

mutually exclusive datasets, and producing trees of

different sizes (numbers of splits). The dataset not used

to build the series of trees is then used to evaluate the

predictions of trees. The final tree size is selected by

examining the plots of relative predictive error versus

number of splits. For this study, the 1-SE stopping rule

was used (Therneau & Atkinson, 1997). For this rule,

any tree that is within one standard error of the tree

with the lowest relative predictive error is considered

as being equivalent to this tree and the simplest model

(fewest number of splits) among those within 1-SE is

selected. If splitting the relative abundance data based

on measured environmental variables did not result in

reduced predictive error, no tree was developed for

that taxon.

Diatom abundances were measured as continuous

variables, allowing regression tree models to be

applied directly. For the regression models, species

data were double-square-root transformed to stabilize

variance in the species data. Due to the species-rich

nature of diatom data and fixed-count methodologies,

Table 2 Summary data for 10 most frequently occurring diatom taxa (mean and maximum (max) relative abundance, and number

sites) in Mid-Atlantic Highlands streams

Code Taxon Mean (%) Max (%) No. of sites

AB Achnanthidium biasolettianum (Grun.) Bukht. 10 71 149

AM Achnanthidium minutissimum (Kütz.) Czarnecki 25 80 239

EM Encyonema minutum (Hilse ex Rab.) D. Mann 4 55 182

FC Fragilaria capucina Desm. 5 29 189

GP Gomphonema parvulum (Kütz.) Kütz. 2 13 134

ND Nitzschia dissipata (Kütz.) Grun. 2 24 106

NP Nitzschia palea (Kütz.) W. Sm. 1 13 93

PL Planothidium lanceolatum (Bréb.) Round & Bukht. 3 32 126

RS Reimeria sinuata (Greg.) Koc. & Stoerm. 1 14 106

SU Synedra ulna (Nitz.) Ehr. 2 16 126
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the relative abundance of a taxon is often zero at

many sites, resulting in left-skewed data. As an

attempt to deal with left-skewed data, we created

trees for data transformed into presence–absence

(a special case of classification with 2 groups). RT

and CT analyses were performed using the rpart

package for R (Therneau & Atkinson, 1997; Atkinson

& Therneau, 2000).

Results

Diatom species and environmental characteristics

Water chemistry variables are presented in Table 1.

Stream water pH ranged between 3.4 and 8.4. Total

phosphorus ranged between 1 and 108 lg l-1. A total

of 619 diatom taxa were identified from the 256

stream sites. Average taxa richness at a site was 28

(range: 6–68). The relative abundances of the ten

most common taxa (based on frequency) are pre-

sented in Table 2. Achnanthidium minutissimum

(Kütz.) Czarnecki was the most common taxa, with

a mean relative abundance of 25% and was present at

239 sites. This taxon dominated the diatom assem-

blage at most sites, having a relative abundance

greater than 25% at 110 sites and a relative

abundance greater than 10% at 179 sites. A. biaso-

lettianum (Grun.) Round & Bukht., a small, stalked

taxon, similar in morphology to A. minutissimum, was

also very common, having a relative abundance

greater than 10% at 68 sites. Other common taxa

were much less dominant in a sample. Of the

remaining 10 most common taxa, the number of

sites in which their relative abundance was greater

than 10% ranged from 2 to 35.

Weighted-average models

WA pH models had relatively high predictive power

(WA r2 = 0.70, WA jack-knifed r2 = 0.64) and low

root-mean squared error of prediction (WA

RMSE = 0.44, WA jack-knifed RMSEP = 0.49).

Performance of WA TP models was lower (WA

r2 = 0.33, WA jack-knifed r2 = 0.30, RMSE

WA = 2.1 lg l-1, RMSEP = 2.3 lg l-1). The pH

optima for the ten most commonly occurring taxa

were all approximately neutral to slightly alkaline,

ranging from 7.0 (Gomphonema parvulum (Kütz.)

Kütz.) to 7.5 (Nitzschia dissipata (Kütz.) Grun.;

Table 3; Fig. 2). Species TP optima ranged from

oligotrophic to mesotrophic based on the suggested

trophic boundaries in streams presented in Dodds

et al. (1998; Table 4; Fig. 3). A. minutissimum had

the lowest TP optima (11 lg l-1), while Planothidi-

um lanceolatum (Bréb.) Round & Bukht. had the

highest TP optima (30 lg l-1).

Regression tree change point analysis

Regression trees were developed for nine of the ten

most commonly occurring taxa, with predictive

power ranging between 0.18 and 0.40 (Fig. 4). Based

on cross-validation, no RT could be developed for

Synedra ulna (Nitz.) Ehr. We present detailed results

of the RT for A. minutissimum relative abundance

data as an illustrative example. The final RT had two

splits (Fig. 4b, r2 = 0.34). Further splits did not

increase predictive r2 or reduce relative predictive

error. The explanatory variables used were pH and

TP. The first split was on pH, with low pH predicting

low A. minutissimum relative abundances. Alterna-

tively, the first split could have been on ANC, as the

improvement index for this variable was only slightly

lower than that of pH (Table 5). Twenty-six sites had

a pH \ 6.1 and a low (0%–28%) predicted relative

abundance of A. minutissimum (left node). The cross-

validation indicates that this node was relatively

homogeneous and not further divided. For sites with

Table 3 Regression tree change points (CP) predicting higher

relative abundance for pH and acid-neutralizing capacity

(ANC), weighted-average pH optima, and van Dam et al.

(1994) pH classification for 10 most frequently occurring

diatom taxa in Mid-Atlantic Highlands streams

Taxon CP Optima van Dam et al. (1994)

AB pH [ 6.7 7.3 Alkaliphilous

AM pH [ 6.1 7.2 Circumneutral

EM ANC [ 944 7.3 Circumneutral

FC pH [ 5.7 7.1 Circumneutral

GP ANC [ 1585 7.0 Circumneutral

ND ANC [ 1259 7.5 Alkaliphilous

NP 7.4 Circumneutral

PL pH [ 7.0 7.3 Alkaliphilous

RS pH [ 7.1 7.5 Circumneutral

SU 7.2 Alkaliphilous

Alkaliphilous taxa occur at mainly pH [ 7, Circumneutral taxa

occur mainly pH = 7
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pH [ 6.1 (right node), the second split was on TP.

Higher relative abundance was predicted for sites

with lower TP concentrations. For the 177 sites

with TP \ 28 lg l-1, highest relative abundance

(0%–83%) was predicted. These nodes were not split

further.

Overall, the variability in relative abundance of

common diatom species within the MAHA region

was determined primarily by pH/buffering capacity

and secondarily by nutrient concentration, particu-

larly TP (Table 5). The first split was on pH for the

RT of A. biasolettianum, A. minutissimum, Fragilaria

capucina Desm., and Reimeria sinuata (Greg.) Koc.

& Stoerm. and on acid-neutralizing capacity (ANC)

for the RT models of Encyonema minutum (Hilse ex

Rab.) D. Mann, G. parvulum, and N. dissipata

(Fig. 4). In addition, pH and/or ANC were important

predictors in the RT of all species, except N. palea
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Fig. 2 Relationship between pH and relative abundance for

(A) Achnanthidium biasolettianum, (B) Achnanthidium minu-
tissimum, (C) Fragilaria capucina, (D) Planothidium
lanceolatum, and (E) Reimeria sinuta at all sites. Solid lines

indicate regression tree change points for pH. Dashed lines

indicate weighted-average pH optima. Only taxa where pH was

an important predictor in the RT and/or CT were included
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(Kütz.) W. Sm. For all species where pH was an

important predictor, lower pH predicted lower abun-

dances. TP concentration was an important predictor

of relative abundance for several species, including

A. minutissimum, P. lanceolatum, and G. parvulum

(Table 5). TP was an alternative predictor for the

trees of both F. capucina and N. palea, with

improvement indices very similar to the primary

variable chosen for the split (Table 5). Eleven of the

nineteen environmental variables were not selected in

any of the cross-validated regression trees. These

included measures of dissolved cations, total sus-

pended solids, turbidity, total nitrogen, ammonium,

and both dissolved organic and inorganic carbon. For

most RT, two or three splits were able to predict

taxon relative abundance (based on cross-validation

r2 and relative predictive error) as well as trees with

more splits. Thus, for most species, pH and TP values

are enough to predict relative abundances. High

predictive power of RT using all sites was found for

A. minutissimum (r2 = 0.34) and P. lanceolatum

(r2 = 0.40; Fig. 4), two taxa with wide ranges in

relative abundances. The RT for species with

narrower ranges in relative abundances, including

N. palea and G. parvulum, were poor or no successful

tree was built (e.g., S. ulna).

Classification trees based on presence–absence

data with high predictive power and low misclassi-

fication rates (range: 22%–30%) were developed for

N. dissipata, N. palea, P. lanceolatum, and R. sinuata

(Fig. 5). CT showed that the presence of common

diatom taxa was determined by pH/buffering capacity

and nutrient concentration. For N. dissipata and

R. sinuata, lower pH/lower buffering capacity pre-

dicted the absence of these species. Similar to the RT

for P. lanceolatum, its CT predicted the presence of

this taxa at higher TP concentrations. While chloride

was the primary predictor of the first split of the CT for

N. palea, its improvement index was not much higher

than that of TP (Improvement Index: Cl = 24,

TP = 17; Table 6), suggesting that TP could also

have been selected for the first split. Higher concen-

trations of TP also predicted the presence of N. palea.

No classification tree based on presence–absence data

was developed for A. minutissimum, as it was only

absent from 17 sites.

Change points identified by RT occurred under a

range of pH conditions for the common diatom

taxa. For A. biasolettianum, A. minutissimum, and

F. capucina, change points from higher to lower

abundance were at slightly acidic pH (5.7–6.7), while

for R. sinuta, the change point was at neutral (7.1) pH

(Fig. 4). TP change points occurred under a range of

TP conditions (Fig. 4). For P. lanceolatum, TP

change point was 18 lg l-1, with shifts from high

to low abundance occurring at this concentration. For

A. minutissimum, TP change points only occurred

for pH [ 6.1. The TP change point was 28 lg l-1 for

Table 4 Regression tree change points (CP) predicting higher

relative abundance for total phosphorus (TP, lg l-1),

weighted-average (WA) TP optima, published WA optima

(with study range TP in parenthesis), and van Dam et al. (1994)

trophic classification for 10 most frequently occurring diatom

taxa in Mid-Atlantic Highlands streams

Taxon CP WA Pan

et al.

1996

Schönfelder

et al. 2002

Soininen &

Niemela 2002

Potapova

et al. 2004

Ponader

et al. 2007

Winter &

Duthie 2000

Leland &

Porter 2000

van Dam

et al. 1994

(3–472) (9–1687) (2–190) (6–761) (6–731) (5–215) (40–1200)

AB 14 Meso

AM \28 11 17 21 27 33 33 35 Oligo-eutra

EM 18 32 35

FC 12 32 35 Meso

GP [6 16 38 33 50 52 57 220 Eutra

ND 21 53 35 63 50 110 Meso-eutr

NP 28 62 93 58 70 35 180 Hyper

PL [18 29 47 86 58 52 32 210 Eutra

RS 21 50 47 57 Meso

SU 9 123 33 59 48 42 220 Oligo-eutra

Meso = Mesotraphentic, Meso-eutr = meso-eutraphentic, Eutra = eutraphentic, Hyper = hypereutraphentic, Oligo-eutra = oligo-

eutraphentic
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sites with pH [ 6.1, with shifts from high relative

abundance at sites below this concentration to

medium relative abundance at sites with TP greater

than 28 lg l-1. For G. parvulum, the TP change point

only occurred at sites with low ANC. For sites with

ANC \ 955 leq/l, TP [ 6 lg l-1 predicted high

relative abundance. Change points for pH were not

identified for E. minutum, G. parvulum, and

N. dissipata. Change points for TP were not identified

for A. biasolettianum, E. minutum, F. capucina, or

N. dissipata.

Discussion

Regression tree and weighted-averaging approaches

provided different, yet complementary, information

on the complex relationships between common

stream diatoms and environmental variables. While

WA provides information on the optimal conditions

for a taxon for a single environmental variable, RT

both highlights the interactive effects of multiple

predictors and can identify breakpoints at which

taxa’s abundance change from one state to another. In

our study, change points identified by regression trees

highlighted the interaction between stream acidity

(pH and ANC) and TP in shaping the relative

abundance of common diatoms in MAHA streams.

Stream water pH and ANC were important determi-

nants of diatom species composition in another study

of MAHA streams (Pan et al., 1996). Acid mine

drainage affects approximately 4% of the streams in

the MAHA region (US EPA, 2000) and has been

shown to have profound effects on stream periphyton

communities (Verb & Vis, 2000; Brake et al., 2004).

For most common taxa, RT illustrated that TP is only

an important variable under circumneutral to alkaline

conditions. The performance of our WA models also

reflected the importance of pH in these streams.

While the WA pH model performed well (r2 = 0.70),

performance of the WA TP model was poor

(r2 = 0.33). Nutrients and pH often interact to

structure the stream diatom assemblages (e.g., Leland

& Porter, 2000; Soininen & Niemalä, 2002). WA

nutrient optima models have been less-successful

when pH gradients are important (e.g., Hall & Smol,

1992; Reavie et al., 1995; Pan & Stevenson, 1996).

Environmental change points identified by RT take

into account hierarchical relationships between envi-

ronmental variables, and therefore, might provide

more accurate information on where diatom species

abundances shift along environmental gradients.
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Fig. 3 Relationship between total phosphorus (TP) and

relative abundance for (A) Achnanthidium minutissimum, (B)

Gomphonema parvulum, and (C) Planothidium lanceolatum at

all sites. Solid lines indicate regression tree change points for

TP. Dashed lines indicate weighted-average TP optima. Solid

circles indicate sites used in change point calculation. Open

squares indicate sites not used in change point calculation

because they fell out at the first RT break. Only taxa where TP

was an important predictor in the RT and/or CT were included
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pH
< 6.7 > 6.7

SO4> 265 < 265LOW
32%
(61)

MED
47%
(70)

HIGH
88%
(125)

 A. biasolettianum r2 = 0.18

pH
< 6.1 > 6.1

TP
> 28 < 28LOW

28%
(26)

MED
67%
(53)

HIGH
83%
(177)

A. minutissimum r2 = 0.34

ANC
< 141 > 141

SiO2> 7 < 7LOW
23%
(76)

MED
42%
(69)

HIGH
55%
(111)

E. minutum r2 = 0.14

pH
< 5.7 > 5.7

ANC
> 1797 < 1797LOW

3%
(19)

MED
7%
(29) HIGH

46%
(170)

F. capucina r2 = 0.20

SO4< 383 > 383

MED
30%
(38)

ANC
> 955 < 955

TP
< 6 > 6LOW

4%
(60)

MED
21%
(41)

HIGH
32%
(155)

G. parvulum r2 = 0.12

ANC
< 388 > 388

LOW
17%
(146)

HIGH
24%
(110)

N. dissipata r2 = 0.23

TP
< 18 > 18

pH
< 7.0 > 7.0

MED
27%
(84)

P. lanceolatum r2 = 0.40

NO3
< 16 > 16

LOW
9%
(83)

MED
17%
(16)

COND
> 315 < 315

MED
14%
(13)

HIGH
34%
(60)

Cl
< 78 > 78

LOW
5%

(135)

HIGH
14%
(121)

N. palea r2 = 0.18

pH
< 7.1 > 7.1

LOW
14%
(114)

HIGH
31%
(142)

R. sinutar2 = 0.20

(a)

(c)

(e)

(b) 

(d)

(f)

(g)

(h) (i)

Fig. 4 Regression tree

structure for relative

abundance of (a)

Achnanthidium
biasolettianum, (b)

Achnanthidium
minutissimum, (c)

Encyonema minutum, (d)

Gomphonema parvulum, (e)

Fragilaria capucina, (f)
Nitzschia dissipata, (g)

Planothidium lanceolatum,

(h) Nitzschia palea, and (i)
Reimeria sinuta. Terminal

nodes give maximum

relative abundance for that

branch and number of sites

in that group (in

parenthesis). The values

beside each split represent

the critical threshold of

given variables, which

provide the basis for that

split. Only taxa where

relative predictive power of

the RT was [0 were

included
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The autecological information gained through our

study augments previous work on diatom species–

environmental relationships in streams. The WA pH

optima for the 10 most commonly occurring taxa

were circumneutral to alkaline (7.0–7.5), agreeing

with WA optima developed for Swedish and Hun-

garian streams (Kovács et al., 2006). WA pH optima

of A. biasolettianum,G. parvulum, N. dissipata,

P. lanceolatum, and S. ulna agreed with van Dam

et al.’s (1994) autecological classification (Table 3).

Table 5 Predictor variables for each split and their improve-

ment index (in parenthesis) and alternative split variables and

their improvement index (in parenthesis) for regression tree

(RT) models

Taxon Split RT RT—alternative splits

AB 1st pH (0.11) ANC (0.06) SO4 (0.04)

2nd SO4 (0.09) COND (0.06) TURB (0.06)

AM 1st pH (0.23) ANC (0.22) TP (0.08)

2nd TP (0.16) NTL (0.10) NO3 (0.09)

EM 1st ANC (0.08) COND (0.06) pH (0.06)

2nd SiO2 (0.08) SO4 (0.07) COND (0.05)

FC 1st pH (0.08) ANC (0.06) TP (0.03)

2nd ANC (0.07) TP (0.05) SO4 (0.04)

3rd SO4 (0.07) TP (0.05) ANC (0.03)

GP 1st ANC (0.05) TP (0.04) COND (0.04)

2nd TP (0.09) NO3 (0.07) TN (0.06)

ND 1st ANC (0.23) pH (0.22) COND (0.19)

NP 1st Cl (0.18) TP (0.17) TN (0.15)

PL 1st TP (0.22) NO3 (0.11) TN (0.11)

2nd NO3 (0.19) TN (0.11) Cl (0.09)

3rd pH (0.19) ANC (0.14) TP (0.09)

4th COND (0.15) ANC (0.11) SO4 (0.10)

RS 1st pH(0.24) ANC (0.19) COND (0.12)

The improvement index is calculated as the number of sites in

the branch times the change in impurity index. The number of

splits to retain for each species was based on cross-validation

results and 1—SE stopping rule

pH
< 7.2 > 7.2

80/47 31/98

R. sinuta (MR: 30%)

ANC
< 332 > 332

N. dissipata (MR: 24%)

NO3
< 17 > 17

66/12

29/88

SiO2
< 4 > 4

6/1 19/35

Cl
< 67 > 67

35/95

14/22

N. palea (MR:25%)

TP
< 15 > 15

74/16

Cl
< 67 > 67

P. lancelatum (MR: 22%)

TP
< 18 > 18

6/24

25/105

NO3
< 11 > 11

40/8

14/23

Cl
< 48 > 48

8/3

(b)

(d)

(a) (c)Fig. 5 Classification tree

structure based on

presence–absence for (a)

Nitzschia dissipata, (b)

Nitzschia palea, (c)

Reimeria sinuta, and (d)

Planothidium lanceolatum.

Terminal nodes give

number of sites in each

class (presence/absence).

Predicted class for each

branch shown in bold. The

values beside each split

represent the critical

threshold of given variables,

which provide the basis for

that split.

MR = misclassification

rate. Only taxa where

relative predictive power of

the CT was [0 were

included

Table 6 Predictor variables for each split and their improve-

ment index (in parenthesis) and alternative split variables and

their improvement index (in parenthesis) for classification tree

(CT) models. The improvement index is calculated as the

number of sites in the branch times the change in impurity

index. The number of splits to retain for each species was based

on cross-validation results and 1—SE stopping rule

Taxon Split CT CT—alternative splits

ND 1st ANC (21) pH (20) TN (20)

2nd NO3 (13) TN (11) SO4 (5)

3rd SiO2 (3) NO3 (3) SO4 (3)

NP 1st Cl (24) TP (17) COND (15)

2nd TP (10) SiO2 (4) TURB (4)

PL 1st Cl (15) NO3 (15) TN (14)

2nd TP (9) TN (6) NO3 (3)

RS 1st pH (19) ANC (18) COND (13)
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RT change point analysis predicted higher relative

abundance at higher pH for all taxa, where pH was an

important predictor variable. The change point from

low to high abundance identified for all species were

lower than their WA optima (Fig. 2). While WA

provides an idea of the environmental conditions

where abundance is maximized, change point anal-

ysis provides information as to where along the

environmental gradient the onset of major shifts in

abundance occur.

RT change point analysis appeared to characterize

certain taxa’s relationship with TP better than WA

approaches. Performance of the WA TP model was

weak, indicating that species optima derived from

this method might not be accurate. The WA TP

optima developed in our study tend to be lower than

published optima (Table 4). This might potentially be

due to the lower maximum TP concentration in

streams in our study compared with many other

studies (Table 4). An assumption of WA optima

calculations is that the species distribution is unimo-

dal with respect to the environmental variable of

interest and the optima will be calculated as the

weighted midpoint of this distribution. Consequently,

if the maximum TP concentration in a study is high,

calculated TP optima will tend to be higher. For both

P. lanceolatum and G. parvulum, change points

predicting a shift to high relative abundance were at

lower TP concentrations than optima generated by

WA in this study. While both of these taxa are

considered eutraphentic by van Dam et al. (1994),

indicating tolerance to elevated TP, our results

suggest that increases in abundance may occur at

relatively low TP concentrations (6 lg l-1 and

18 lg l-1 for G. parvulum and P. lanceolatum,

respectively). In contrast, for A. minutissimum, the

change point indicating a shift to lower relative

abundance occurred at a higher TP concentration than

our calculated WA optima. This species is charac-

terized as oligotrophic to eutraphentic (van Dam

et al., 1994), indicating that it can tolerate a wide

range of nutrient conditions. Because change point

analysis identifies where species shift relative abun-

dance states, it may provide more refined

environmental preferences than WA optima, which

is solely based on a mathematical average. Based on

our change point analysis, A. minutissimum may be

considered to tolerate oligotrophic to mesotrophic

conditions.

While WA optima approaches are common in the

diatom autecological literature, the utility of regres-

sion tree approaches in exploring species–

environmental preferences has yet to be demonstrated.

In this study, RT and CT with high predictive power

and low misclassification rates were developed for

several of the common diatom species, including A.

minutissimum, P. lanceolatum, R. sinuta, N. dissipata,

and N. palea. We feel that the strength of RT and CT

analysis may depend on the distribution of individual

species throughout the study region and how well their

abundance is characterized at any given site. In our

study, RT had the highest predictive power for species

that were dominant within samples and had a wide

range of relative abundances throughout the study sites

(e.g., A. minutissimum). We feel that RT works well in

these instances because the abundance of these species

has been well-characterized within the sample and can

therefore be accurately modeled. Transformation of

relative abundance data into categories and subsequent

CT analysis might provide an alternative to RT for less

common species whose relative abundance might not

be well-characterized by the fixed count methodolo-

gies commonly employed in diatom studies. Our CT

analyses had misclassification rates comparable to CT

of fish abundance (misclassification rate 22–25%;

Hershey et al., 2006) and tree species (misclassifi-

cation rate 20–71%; Iverson & Prasad, 1998). N.

dissipata, N. palea, and R. sinuata have low ranges in

relative abundance and were found at less than half of

the sites in the study. While presence–absence abun-

dance categories seem to provide a successful

alternative when developing trees for less-well repre-

sented and characterized diatom species, there are a

few issues of concern with these types of data

transformations. For N. dissipata, P. lanceolatum,

and R. sinuta, CT predicted presence better than

absence. For example, the CT for N. dissipata

predicted presence correctly 90% of the time, while

only predicted the absence class correctly 60% of the

time. This finding contrasts CT for fish species

abundance, where misclassification of fish absence

was only slightly higher (25%) than misclassification

of species presence (22%; Hershey et al., 2006). For

diatom relative abundances generated through fixed-

count methods, zero relative abundance does not

necessarily mean that a species is not present at a site,

but rather that it was not encountered during the fixed

count, and thus an absence in the count does not
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necessarily equate to being truly absent from the site

For larger species, such as fish, where counts are

usually generated by trapping and identifying most of

the individuals within the stream reach, presence–

absence data probably reflects true presence–absence.

In conclusion, RT analysis illustrated the impor-

tance of the interaction between pH and TP in

shaping the abundance of common diatom species in

the MAHA region and complemented traditional

weighted-averaging approaches to modeling species–

environmental relationships. Change points identified

by RT analysis provided more refined information on

where relative abundance of common diatom species

shifted along pH and TP gradients. Several authors

have put forth hierarchical models of variables

structuring stream algal distribution and abundance

(e.g., Biggs, 1996; Stevenson, 1997). While our

study, and most other diatom autecological studies,

focused only on water quality variables, we feel that

regression tree approaches have the potential to

increase our understanding of how interactions

among environmental variables shape stream diatom

assemblages. In addition, we feel that tree approaches

could be used in conjunction with other modeling

approaches (e.g., Generalized additive models) to

provide insight into interaction terms and also as a

framework for developing and interpreting WA

optima.
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