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Abstract We compared on eight dates during the ice-

free period physicochemical properties and rates of

phytoplankton and epipelic primary production in six

arctic lakes dominated by soft bottom substrate. Lakes

were classified as shallow (z \ 2.5 m), intermediate in

depth (2.5 m \ z \ 4.5 m), and deep (z [ 4.5 m),

with each depth category represented by two lakes.

Although shallow lakes circulated freely and interme-

diate and deep lakes stratified thermally for the entire

summer, dissolved oxygen concentrations were always

[70% of saturation values. Soluble reactive phospho-

rus and dissolved inorganic nitrogen (DIN = NO3
-–

N + NH4
+–N) were consistently below the detection

limit (0.05 lmol l-1) in five lakes. However, one lake

shallow lake (GTH 99) periodically showed elevated

values of DIN (17 lmol l-1), total-P (0.29 lmol l-1),

and total-N (33 lmol l-1), suggesting wind-generated

sediment resuspension. Due to increased nutrient

availability or entrainment of microphytobenthos,

GTH 99 showed the highest average volume-based

values of phytoplankton chlorophyll a (chl a) and

primary production, which for the six lakes ranged

from 1.0 to 2.9 lg l-1 and 0.7–3.8 lmol C l-1 day-1.

Overall, however, increased z resulted in increased

area-based values of phytoplankton chl a and primary

production, with mean values for the three lake classes

ranging from 3.6 to 6.1 mg chl a m-2 and

3.2–5.8 mmol C m-2 day-1. Average values of epip-

elic chl a ranged from 131 to 549 mg m-2 for the three

depth classes, but levels were not significantly different

due to high spatial variability. However, average

epipelic primary production was significantly higher

in shallow lakes (12.2 mmol C m-2 day-1) than

in intermediate and deep lakes (3.4 and

2.4 mmol C m-2 day-1). Total primary production

(6.7–15.4 mmol C m-2 day-1) and percent contribu-

tion of the epipelon (31–66%) were inversely related to

mean depth, such that values for both variables were

significantly higher in shallow lakes than in interme-

diate or deep lakes.

Keywords Primary production � Phytoplankton �
Epipelic � Arctic

Introduction

A pelagic-based paradigm has historically dominated

lacustrine research (Vadeboncoeur et al., 2003). Due

to spatial segregation, benthic habitats have often

been considered functionally independent from

pelagic environments (Carpenter et al., 1996) with
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parallel communities of microbes, primary producers

and consumers (Vadeboncoeur et al., 2002). How-

ever, many recent food web analyses indicate that

both benthic and planktonic phytomass contribute

directly or indirectly to the energetic requirements of

multiple zooplankton (Rautio & Vincent, 2007) and

fish taxa (Bootsma et al., 1996; Vander Zanden &

Vadeboncoeur, 2002), and there are some indications

that benthic primary production may be more

efficiently transferred to higher trophic levels than

pelagic phytomass (Heckey & Hesslein, 1995).

If littoral-pelagic linkages are crucial to lake

ecosystem function (Palmer et al., 2000; Schindler

& Scheuerell, 2002), any detailed food web analysis

must necessarily begin with an evaluation of both

pelagic and benthic primary production. Global

surveys indicate that inland waters are dominated

by small (\10 ha surface area), shallow (\10 m

mean depth, z) lakes that have a high ratio of littoral

surface to pelagic volume (Downing et al., 2006).

Accordingly, most lakes should show both a high

contribution of the benthic component to total

primary production and strong coupling between

benthic and pelagic habitats (Schindler & Scheuerell,

2002). Despite the acknowledgement that a holistic

view of lake dynamics must integrate benthic and

pelagic processes and that morphometric consider-

ations generally favor high rates of benthic

autotrophy, only about 30 studies worldwide have

partitioned lentic primary production between benthic

and pelagic components (Vadeboncoeur & Steinman,

2002).

Along a trophic gradient, benthic primary produc-

tion can be especially important in oligotrophic

systems where nutrient limitation of the phytoplank-

ton can favor benthic production by enhancing light

penetration to epipelic algae associated with nutrient-

rich sediments (Vadeboncoeur et al., 2001). Shallow

lakes and ponds are a characteristic feature of arctic

environments (Hobbie, 1984), where high optical

clarity and low levels of pelagic nutrients suggest that

the benthos should be important in whole lake

primary productivity. Although estimates of phyto-

plankton primary production for this region are

sparse, the contribution of the benthos to total

primary production is virtually unquantified. Benthic

and pelagic primary production have been simulta-

neously assessed in only a single deep (z = 10.2 m)

lake (Welch & Kalff, 1974) and a few shallower

(z \ 3 m) arctic lakes (Stanley, 1976; Ramlal et al.,

1994; Bonilla et al., 2005; Rautio & Vincent, 2007;

Whalen et al., 2006). Others (Vézina & Vincent,

1997; Bonilla et al., 2005) have compared total

community biomass (chlorophyll a (chl a)) between

the phytoplankton and benthic mats in ponds of the

Canadian High Arctic.

Omission of the benthic component leads not only

to a serious underestimate of total primary production

in arctic lakes, but also prohibits a full understanding

of food web dynamics. Logistic and financial con-

straints attendant to investigations at remote field

locations are frequently cited as reasons for our

imperfect knowledge of all aspects of arctic lake

dynamics. These arguments are especially applicable

to investigations of the biomass and activity of the

phytobenthos, which may require diver assistance or

timely transport and manipulation of undisturbed

substrates.

Logistics aside, analysis of the functional signif-

icance of linkages and feedbacks between benthic

and pelagic environments, beginning with an evalu-

ation of the distribution of whole lake primary

production between habitat types, is a regional

scientific imperative. Models of global climate

change predict an amplified annual surface air

temperature increase for the arctic relative to the

global mean (Prowse et al., 2006). Regionally, the

observed or predicted impacts of increased surface air

temperature include a reduction in annual snow

cover, thawing of permafrost and drainage of perma-

frost-based lakes, warming of lake waters, earlier ice-

out and longer growing seasons, enhanced nutrient

delivery to lakes, and shifts in terrestrial vegetation

that alter patterns of organic carbon loading to lakes,

which can in turn affect the underwater light climate

(Serrese et al., 2000; Overland et al., 2004; Hinzman

et al., 2005; Prowse et al., 2006; Schindler & Smol,

2006). The influence of altered hydrologic budgets

and perturbations to physical and chemical cycles of

arctic lakes on lake productivity and decomposition

processes is uncertain. However, low energy flow and

simple food web structure suggest a high sensitivity

of high latitude ecosystems to global environmental

change (Roots, 1989). The present contribution of

benthic habitats to total primary production in arctic

lakes is an informational gap that must be addressed

as a reference to assess lacustrine response to climate

change.
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Our study in the Arctic Foothills region of Alaska

was a component of a larger effort to relate

landscape-scale characteristics to lake productivity

and food web structure, while simultaneously com-

piling baseline information for future identification of

climate-mediated changes in limnological conditions

in this region. Within the framework of the overall

research objectives, we evaluated chl a levels,

determined rates of total primary production, parti-

tioned these biological variables between benthic and

pelagic habitats, and assessed the relationship of

these variables to physicochemical properties in

regionally representative lakes. To better understand

ecosystem function, we endeavored to capture the

regional variability in lake morphometric properties

and lake-catchment relationships, as well as the

spatial and temporal heterogeneity of target measure-

ments. Therefore, within five catchments we sampled

on eight occasions six lakes that varied widely in

mean depth and surface area. We hypothesized that

mean depth would be the master variable determining

the relative distribution of primary production

between benthic and pelagic habitats, but that total

primary production would remain constant across

lakes.

Methods

Site description

This study involved 6 lakes located at about 68�N,

149�W, some 20 km north of the Brooks Range in

Alaska, USA (Fig. 1). The regional physiography and

vegetation physiognomy of the study site typify the

95,000 km2 Arctic Foothills region of Alaska and are

Fig. 1 Location of the study lakes
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described in detail by Wahrhaftig (1965) and Walker

et al. (1994). Briefly, permafrost is continuous on the

landscape of low, rolling hills. Snow cover persists

for 7–9 months, and rivers cease to flow during

winter. Lakes and ponds are ice-covered for about

9 months and are surrounded by tussock tundra, wet

sedge tundra, or dwarf shrub communities. Well-

drained ridge tops are occupied by drier heath tundra.

The mean annual air temperature is -6�C, while

precipitation averages 20 cm per year, with roughly

40% occurring as snow (Ping et al., 1998).

Study lakes were generally accessed by helicopter

(less frequently by foot) and were sampled from an

inflatable raft. All lakes were located between 690

and 950 m a.s.l. and were selected to encompass a

range of mean depths (1–8 m) expected for the

majority of Arctic Foothill lakes. We classified our

lakes as shallow (z \ 2.5 m; GTH99 and NE8),

intermediate in depth (2.5 m \ z \ 4.5 m; I4 and I8),

and deep (z [ 4.5 m; GTH 100 and NE 12) when

qualitatively and quantitatively comparing values for

physicochemical and biological properties (Table 1).

The study lakes varied widely with respect to many

morphometric and catchment characteristics (Table 1).

Lake surface area ranged from 0.7 to 18.3 ha and

volume ranged from 14 to 642 9 103 m3. Watershed

area ranged from 13 to 3,010 ha, while the catch-

ment:lake area ratio ranged from 6 to 165. Maximum

and mean depths ranged from 2.8 to 17.5 m and from 1.3

to 7.6 m, respectively. Other morphometric character-

istics showed more uniformity. Shoreline development

factors ranged from 1.09 to 1.43, while depth ratios

ranged from 0.37 to 0.51.

Six lakes were chosen in three pairs (GTH 99 and

GTH 100; I4 and I8; NE 8 and NE 12) where each

member of a pair (Fig. 1) could be accessed by foot

and sampled on the same day following a single

helicopter drop-off. Distances between lake pairs

varied from 0.1 km (GTH 99 and GTH 100) to

3.2 km (I4 and I8). GTH 99 flows into GTH 100.

Otherwise, only I4 and I8 have clearly defined

surface inlets. All lakes have a single outlet stream

and a bottom substrate dominated by soft sediment

with few, if any, rooted macrophytes. The six lakes

span five catchments. Each member of lake pairs I4-

I8 and NE 8–NE 12 are in separate catchments,

while GTH 99 and GTH 100 share a common

catchment.

Sample collection

Lake pairs were sampled on eight occasions over a

3-year period, during late June through mid-August

of the ice-free season. Sampling of individual lake

pairs was conducted on three dates in 2001 and 2002

and on two dates in 2003.

Mid-lake profiles of water temperature and dis-

solved oxygen were obtained with a YSI Model

85 multiparameter water quality meter (YSI Incor-

porated, Yellowsprings, OH, U.S.A.). Profiles of

photosynthetic photon flux density (PPFD) were

determined with a LiCor LI-250 Quantum Meter

(LiCor Biosciences, Lincoln, NE, U.S.A.) interfaced

with an LI-192SA underwater quantum sensor.

Incident irradiance was continuously recorded during

June through August with a LiCor LI-1400 data

logger and LI-192 terrestrial quantum sensor.

Opaque polyethylene bottles (1-l volume) were

filled in duplicate from a 2.2-l Van Dorn sampler

(Wildlife Supply Company, Buffalo, NY, U.S.A.) at

Table 1 Morphometric characteristics for six Arctic Foothill lakes

Lake Depth

classification

Surface

area (ha)

Volume

(9103 m3)

Maximum

depth (m)

Average

depth (m)

Depth

ratio

SDFa Catchment

area (ha)

C:L area

ratiob

GTH 99 Shallow 0.7 14 4.1 2.1 0.51 1.09 13 18

NE8 Shallow 5.0 63 2.8 1.3 0.45 1.39 28 6

I4 Intermediate 8.2 263 8.0 3.2 0.40 1.41 422 51

I8 Intermediate 18.3 642 9.5 3.5 0.37 1.43 3010 165

GTH 100 Deep 5.4 350 15.7 6.5 0.41 1.09 93 17

NE12 Deep 7.1 566 17.5 7.6 0.43 1.43 125 17

a Shoreline development factor
b Catchment:Lake area ratio
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depths corresponding to 50%, 22%, 10%, and 1% of

surface PPFD (depths determined from the underwa-

ter profile), while duplicate surface samples (100%

light depth) were collected into similar bottles by

hand immersion. One or two additional water sam-

ples were collected at approximately equally spaced

intervals between the bottom of the euphotic zone

(depth of penetration of 1% surface PPFD) and the

sediment surface if the euphotic zone did not extend

to the sediment surface.

Five sediment cores were collected from a depth of

about 0.25 m (defined here as the 100% light depth

for sediments) by hand-inserting from shore clear

polycarbonate cylinders (4.7 cm inside diame-

ter 9 50 cm length; 17.3 cm2 surface area) into the

sediment. Replicated (5) cores of similar dimension

were taken with a KB gravity corer (Wildlife Supply

Company, Buffalo, NY, U.S.A.) from locations in the

lake where the sediment surface corresponded with

the 50%, 22%, 10%, and 1% PPFD depths. Cores

(with overlying water) were capped on each end with

clear plugs and immediately covered with opaque

bags. Samples of water and sediment plus overlying

water were returned to the Toolik Lake Field Station,

located within a 30 km radius of the sampling sites

(Fig. 1).

Biological measurements

Phytoplankton chl a and primary production (14C

technique) determinations were made on water sam-

ples from the euphotic zone of each lake. Duplicate

chl a measurements were made fluorometrically with

a Turner Designs Model TD-70 fluorometer (Turner

Designs Inc., Sunnyvale, CA, U.S.A.) on filter-

trapped (Whatman GF/F) particulates following a

24 h extraction in a buffered 90% acetone solution.

Midway through the extraction filters were pulver-

ized, which gave a chl a yield not significantly

different from grinding after a 24 h extraction. The

methodology we used (Welschmeyer, 1994) does not

involve acidification, but maintains a desensitized

response to phaeopigments. Replicated (3), clear 73-

ml polystyrene bottles and a single opaque bottle of

similar size were filled with water from each depth

for primary productivity determinations. Each bottle

was amended with 39 kBq NaH14CO3 (specific

activity 2.0 GBq mmol-1) and clear bottles were

suspended at a central station in Toolik Lake at the

PPFD-specific depths corresponding to 100%, 50%,

22%, 10%, and 1% of the surface value (determined

as described above). Toolik Lake is optically similar

to all study lakes except GTH 99, which shows the

highest attenuation coefficient for radiant energy

(Table 2). Opaque bottles were secured in a shoreside

incubator. Logistic constraints precluded sample

incubation in the collection lakes. Incubations were

terminated after 24 h by filtration (Gelman Metricel

GN-6 filters; 0.45 lm pore diameter). Rinsed (5-ml

deionized water), air-dried filters were assayed

for radiocarbon incorporation into the particulate

fraction by liquid scintillation spectrometry with a

Packard Model 1900TR Liquid Scintillation Analyzer

(Packard Instrument Company, Downers Grove, IL,

U.S.A.).

Chlorophyll a and productivity measurements were

also made for the epipelon in the euphotic zone.

Determination of the sediment depth of the actively

photosynthesizing zone is problematic. Although

studies often indicate rapid attenuation of light in

the upper few mm, photosynthesis has been reported

to a depth of 1 cm in flocculent sediments (e.g.,

Vadeboncoeur & Lodge, 1998). Sediments here were

frequently (depending on sampling depth) very floc-

culent (porosity 84–98% v/v) and highly organic

(40–87%), making it difficult to consistently remove a

superficial layer of \2 cm in depth and suggesting

that the zone of photosynthesis likely extends to 1 cm

or more. Thus, we focused on the 0–2 cm layer

(defined as surface sediment) in chl a and epipelic

productivity determinations. Surface sediment from

duplicate cores was resuspended in 100 ml of deion-

ized water. A subsample of the suspension was filtered

(Whatman GF/F) and analyzed for chl a as described

above. The remaining three cores from each PPFD

level were extruded undisturbed into clear polycar-

bonate cylinders (12 cm length) similar in diameter to

the sample collection cores leaving a 2 cm layer of

overlying lake bottom water. Radiocarbon (39 kBq

NaH14CO3) was injected into the overlying water

while cores were gently rotated. We (Whalen et al.,

2006) previously showed that this method of H14CO3

addition immediately and evenly distributed the

radiocarbon into the superficial sediment.

Two cores from each depth were placed in wire

frames within acrylic chambers covered with neutral

density screens to simulate the light environment at

the depths of sample collection. The remaining core
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from each depth was inserted into an opaque

chamber. Chambers were placed in the shallows

(25 cm depth) of a local pond for 24 h. Incubation

temperatures in epipelic and planktonic productivity

determinations differed by B3�C from the tempera-

ture of sample collection. Following incubation, the

0–2 cm layer of superficial sediment was rinsed into a

125-ml polyethylene bottle and immediately frozen.

Samples were later thawed, acidified to pH 3, and

purged with high purity N2 for 1 h to remove the

remaining DI14C. Dried (60�C), homogenized sam-

ples were weighed and subsamples were subjected to

high temperature (900�C) catalytic combustion in a

Harvey Model OX 600 Biological Material Analyzer

(R.J. Harvey Instrument Corporation, Hillsdale, NJ,

U.S.A.). The evolved CO2 was trapped in a scintil-

lation cocktail containing phenethylamine (Harvey

OX-161) and assayed for b-activity.

Chemical measurements

Alkalinity was determined potentiometrically. Freshly

collected sediment porewater at 1 cm below the

sediment surface was analyzed for dissolved inor-

ganic-C (DIC) by thermal conductivity gas

chromatography (Shimadzu GC8A Thermal Conduc-

tivity Gas Chromatograph; Shimadzu Scientific

Instruments, Columbia, MD, U.S.A.) using a gas

stripping technique (Stainton, 1973). Syringe-filtered

(0.45 lm pore diameter) water was stored frozen and

later analyzed for NO3
-–N + NO2

-–N (hereafter

referred to as NO3
-–N), NH4

+–N, and soluble reactive

phosphorus (SRP) using the Cu–Cd reduction, phenol

hypochlorite, antimony-phospho-molybdate complex-

ation methods, respectively (Parsons et al., 1984).

Detection limits for NO3
-–N, NH4

+–N, and SRP were

0.05 lM, while the precision for repeated analyses

(n = 10) at 0.2 lM N or P was\10%. Unfiltered water

was stored frozen and later analyzed for total nitrogen

(TN) and total phosphorus (TP) by persulfate oxidation

(Sólorzano & Sharp, 1980a, b). All nutrient determi-

nations were performed by automated flow injection

analysis using a Lachat QC 8000 Ion Analyzer (Lachat

Instruments, Loveland, CO, U.S.A.).

Calculations and data analysis

Attenuation coefficients for radiant energy, kd (m-1),

were calculated following Kirk (1994). Volume-

based rates of phytoplankton primary production

Table 2 Mean values (±1 SD) for selected variables in six Arctic Foothill lakes

Shallow Intermediate Deep

GTH 99 NE8 I4 I8 GTH 100 NE12

Attenuation coefficient, kd (m-1) 1.1 (0.4) 0.5 (0.1) 0.8 (0.1) 0.9 (0.2) 0.7 (0.1) 0.5 (0.1)

Percent lake volume in euphotic zone 98 (4) 100 (0) 95 (2) 88 (7) 81 (12) 83 (8)

Percent sediment surface in euphotic zone 94 (13) 100 (0) 85 (5) 72 (7) 50 (8) 59 (8)

Phytoplankton chlorophyll a

Volume-based (lg l-1) 2.9 (1.7) 1.3 (0.7) 1.5 (0.8) 1.4 (0.7) 1.3 (0.6) 1.0 (0.6)

Whole lake, area-based (mg m-2) 5.7 (3.3) 1.6 (0.8) 4.3 (1.2) 4.1 (1.8) 6.2 (1.4) 6.0 (2.0)

Epipelic chlorophyll a

Area-based (mg m-2) 458 (316) 235 (202) 544 (1094) 699 (1125) 422 (218) 258 (198)

Whole lake, area based (mg m-2) 474 (236) 430 (220) 581 (1037) 517 (622) 122 (56) 139 (28)

Phytoplankton primary production

Volume-based (lmol C l-1 day-1) 3.8 (2.7) 2.1 (1.0) 1.8 (1.7) 1.9 (2.3) 1.2 (1.1) 0.7 (0.4)

Whole lake, area-based (mmol C m-2 day-1) 3.6 (1.5) 2.8 (1.2) 5.9 (2.9) 5.6 (3.7) 4.8 (2.3) 3.8 (1.1)

Epipelic primary production

Area-based (mmol C m-2 day-1) 7.5 (6.5) 4.8 (5.0) 3.8 (6.7) 4.9 (5.5) 15.9 (18.0) 5.4 (6.0)

Whole lake, area based (mmol C m-2 day-1) 6.3 (5.5) 18.1 (16.8) 3.5 (5.1) 3.3 (3.0) 2.0 (1.1) 2.8 (2.3)

Total primary production (mmol C m-2 day-1) 10.0 (5.1) 21.0 (16.8) 9.4 (7.1) 8.9 (5.7) 6.8 (2.7) 6.6 (1.5)

Percent total primary production by epipelon 55 (23) 77 (17) 28 (18) 35 (21) 30 (14) 39 (24)

Lakes are classified as shallow, intermediate, or deep based on mean depth. See text for details
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and area-based rates of epipelic primary production

were calculated according to Wetzel & Likens (2000)

from available DI12C and the fraction of added

radiocarbon recovered from the filter (phytoplankton)

or combusted sediment (epipelon). Available DI12C

in the water column was determined from alkalinity

and pH determinations and temperature-corrected

acidity constants (Stumm & Morgan, 1996). Avail-

able porewater DI12C was calculated from the CO2

concentration measured in the headspace of pore-

water samples (1 cm depth) equilibrated in He-filled

serum vials and temperature-corrected values of

Henry’s constant (Weiss, 1974). An isotope discrim-

ination factor of 1.06 was assumed in all primary

productivity calculations (Wetzel & Likens, 2000).

Following Miller et al. (1986), our 24 h incubations

were used to give day-rate estimates of phytoplankton

and epipelic primary production. The arctic summer

is characterized by continuous daylight such that

single 24 h incubation for phytoplankton production

gives an estimate only 13% lower than that provided

by summing the results of multiple consecutive

incubations over a similar time period (Whalen &

Alexander, 1984). High respiratory activity in sedi-

ment and a long incubation could potentially dilute

the radiocarbon label through photosynthetic with-

drawal of DI14C and production of DI12C, leading to

an underestimate of epipelic primary production. This

is not likely here for three reasons. First, the

incubation did not include a period of darkness that

would facilitate net accumulation of DI12C. Second,

total CO2 in the flocculent superficial sediment was

most frequently \50% higher than values calculated

for bottom water from alkalinity determinations,

suggesting low rates of respiration in superficial

sediment in this unproductive, cold environment.

Third, we recovered as photosynthate a maximum of

1.1% of the added radiolabel in midsummer

experiments.

Detailed bathymetric maps were prepared for each

lake from sonar-based depth assessment along multi-

ple GPS-mapped lake transects. The total biomass of

phytoplankton in the euphotic zone was estimated by

multiplying the mean volumetric chl a concentration

between consecutive sampling depths with the total

volume of water in that stratum and summing the

products. Likewise, the total biomass of epipelic

algae in the euphotic zone was estimated by multi-

plying the mean area-based chl a concentration

between consecutive sampling depths with the total

area of sediment surface within that stratum and

summing the products. Whole lake rates of phyto-

plankton and epipelic primary production were

estimated in a similar manner. These summed

biomass and productivity values were divided by

the lake surface area to give whole lake, area-based

(per m2 lake surface) estimates for these variables.

Comparisons of means for physicochemical and

biological variables were made by t-tests or single

factor Analysis of Variance coupled with Tukey’s

Honestly Significant Difference procedure (JMP

software; SAS Institute, Cary, NC, U.S.A.). Variables

expressed as percentages were arcsine square root-

transformed prior to analysis. All other data met

assumptions of normality and homoscedasticity.

Statistical analyses were conducted at a significance

level of a = 0.05.

Results

Physicochemical variables

Lakes classified as deep or intermediate in depth

showed thermal stratification, while shallow lakes

circulated freely (Fig. 2A). Dissolved oxygen con-

centrations showed little vertical variability

irrespective of mean depth and remained at [70%

saturation throughout the summer (data not shown).

Attenuation coefficients (kd) for radiant energy

showed no relationship with z, as the highest and lowest

mean values were associated with the two shallow

lakes, GTH 99 and NE8 (Table 2). Although the

distance between lakes was\100 m, the mean kd value

for GTH 99 was significantly greater than that for GTH

100. Average (±1 SD) euphotic depths for the six lakes

ranged from 4.8 ± 1.3 m in GTH 99 to 9.6 ± 1.4 m in

NE12. Essentially 100% of the lake volume and

sediment surface was contained in the euphotic zone

for shallow lakes (Table 2). Values decreased to about

90% of the lake volume and 80% of the sediment

surface for lakes of intermediate mean depth, and

further declined to roughly 80% of the volume and 55%

of the sediment surface for deep lakes. The decreases in

percent lake volume and percent sediment surface area

in the euphotic zone with increasing mean depth were

statistically significant (Table 3). Arctic Foothill lakes

begin to stratify thermally within days of ice-out such
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that the euphotic depth exceeded the mixing depth for

all lakes on all sampling occasions except for one date

for lake I4.

Nutrient concentrations showed little or no

vertical structure despite development of a hypo-

limnion in intermediate and deep lakes. Dissolved

inorganic-N (DIN = NO3
-–N + NH4

+–N) concen-

trations (Fig. 2B) were consistently low (\0.5 lM)

in all lakes except GTH 99, where averages for the

water column varied from undetectable to 17 lM.

In all lakes, however, NO3
-–N contributed little to

DIN. Nitrate concentrations were consistently near
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Fig. 2 Representative depth profiles for (A) temperature; (B)

dissolved inorganic nitrogen, DIN; (C) total nitrogen, TN; and

(D) total phosphorus, TP in Arctic Foothill lakes categorized

with respect to mean depth as shallow (NE8), intermediate in

depth (I4), or deep (NE12). Sampling dates were August 7,

2001 (NE8 and NE12) and July 19, 2001 (I4)

Table 3 Multiple comparison of means for physical and biological variables in Arctic Foothill lakes by Tukey’s honestly significant

difference procedure

Variable Depth category

Shallow Intermediate Deep

Percent sediment surface in euphotic zone 97a 78b 54c

Percent lake volume in euphotic zone 99a 91b 82c

Phytoplankton chlorophyll a

Volume-based (lg l-1) 2.1a 1.4ab 1.2b

Whole lake, area-based (mg m-2) 3.6a 4.2ab 6.1b

Epipelic chlorophyll a

Whole lake, area-based (mg m-2) 452a 549a 131a

Phytoplankton primary production

Volume-based (lmol C l-1 day-1) 3.0a 1.9b 0.9c

Whole lake, area-based (mmol C m-2 day-1) 3.2a 5.8b 4.3ab

Epipelic primary production

Whole lake, area-based (mmol C m-2 day-1) 12.2a 3.4b 2.4b

Total whole lake primary production (mmol C m-2 day-1) 15.4a 9.1ab 6.7b

Percent of total primary production by epipelon 66a 31b 34b

Mean values for each variable are given for lakes categorized as shallow, intermediate, or deep with respect to mean depth. Within

each row, different letter superscripts denote significant a posteriori differences between means (n = 16)
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or below the detection limit of 0.05 lM, except in

GTH 99 where concentrations sometimes averaged

0.8 lM. In contrast to DIN, soluble reactive-P

concentrations were at or below the detection limit

(0.05 lM) in all lakes (data not shown). Total

nitrogen (Fig. 2C) and TP (Fig. 2D) varied little

across lakes, with mean values ranging from 11 to

33 lM and from 0.19 to 0.29 lM, respectively.

Consistent with the data for DIN, mean concentra-

tions of TN and TP were highest in GTH 99, but

were only slightly elevated (0.5 to 2-fold) relative

to the other five lakes.

Biological variables

Profiles of phytoplankton chl a consistently showed

homogeneous concentrations throughout the euphotic

zone in shallow lakes, but frequently showed elevated

levels at the base of the euphotic zone in intermediate

and deep lakes (Fig. 3A). As with nutrients, the highest

mean volume-based phytoplankton chl a concentration

was observed in GTH 99 (2.9 lg l-1), while compa-

rable means for the other five lakes ranged from 1.0 to

1.5 lg l-1 (Table 2). Overall, the mean volume-based

phytoplankton chl a concentration in shallow lakes was

significantly higher than in deep lakes due to the

influence of persistently high values in GTH 99

(Table 3).

Mean whole lake, area-based phytoplankton chl a

ranged from 1.6 to 6.2 mg m-2 with highest values

recorded in the deep lakes due to a more vertically

extensive euphotic zone (Table 2). Nonetheless, the

mean of 5.7 mg chl a m-2 for the shallow lake GTH

99 ranked midway among the study lakes due to the

influence of high mean volume-based chl a concen-

tration. Overall, the rank order of lake categories for

whole lake, area-based phytoplankton chl a was

reversed relative to the volume-based values, and

shallow lakes showed a significantly lower mean than

deep lakes, but the value for lakes of intermediate

depth did not differ significantly from either of these

averages (Table 3).

Epipelic chl a showed no pattern with depth and

demonstrated considerably more variability between

replicates taken at the same depth than volume-based

phytoplankton chl a (cf. Fig. 3A and B). Mean values

for whole lake, area-based epipelic chl a ranged over

a factor of about 5 when all lakes were considered,

122–581 mg m-2 (Table 2). However, epipelic chl a

concentrations did not differ among depth categories

(Table 3).

Despite periodically high phytoplankton chl a

values at the base of the euphotic zone in interme-

diate and deep lakes (Fig. 3A), volume-based rates of

phytoplankton primary production declined with

increasing depth in all lakes (Fig. 4A). Means ranged
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depth profiles of: (A)
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Arctic Foothill lakes
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mean depth as shallow

(NE8), intermediate in
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were August 7, 2001 (NE8
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from 0.7 to 3.8 lmol C l-1 day-1 (Table 2). In

accord with the chl a and nutrient data, GTH 99

showed the highest mean value. Evaluation of the

data by depth category showed a significant increase

in volume-based phytoplankton primary production

as mean depth declined (Table 3).

Whole lake, area-based phytoplankton primary

production ranged over a factor only slightly in excess

of two, 2.8–5.9 mmol C m-2 day-1 (Table 2). Con-

sistent with phytoplankton chl a, expression of primary

productivity on a whole lake, areal versus volumetric

basis reversed the position of shallow lakes when

means were rank-ordered according to depth catego-

ries. Shallow lakes showed significantly lower rates

than lakes of intermediate depth, while deep lakes were

not statistically distinguishable from the other two

depth categories (Table 3).

In agreement with epipelic chl a (Fig. 3B), epip-

elic primary production showed no pattern with depth

and high variability between replicate determinations

at each depth (Fig. 4B). Mean values for whole lake,

area-based epipelic primary production ranged over a

factor of about 9, from 2.0 to 18.1 mmol C m-2 -

day-1 (Table 2). Ranked data indicated a generalized

increase in epipelic primary production with decreas-

ing mean depth. Shallow lakes showed significantly

higher rates of epipelic primary production than

intermediate or deep lakes, which did not differ from

each other with respect to productivity by the

epipelon (Table 3).

Total primary production ranged over a factor of 3,

from 6.6 to 21.0 mmol C m-2 day-1 (Table 2). In

contrast, mean depth ranged over a factor of 6

(Table 1). Shallow lakes showed significantly higher

rates of total primary production than deep lakes, due to

high rates of productivity by the epipelon (Table 3).

Higher rates of production were accompanied by an

increased importance of the epipelon in overall lake

productivity. The epipelon accounted for roughly 33%

of total primary production in intermediate and deep

lakes, but up to 77% in shallow lakes (Table 2). The

relative contribution of the epipelon to total primary

production was significantly higher in shallow lakes

than in lakes classified as intermediate or deep, while

the importance of the epipelon was not significantly

different for these latter two depth categories

(Table 3).

Discussion

Although the study lakes were distributed across five

watersheds and varied widely in size, catchment:lake

area ratio, and thermal regime, five of the six lakes

were remarkably similar with respect to concentra-

tions of nutrients and values of kd. However, the
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average attenuation coefficient for the eight sampling

dates was higher in the shallow GTH 99 than in the

other lakes, and elevated nutrient concentrations,

particularly NH4
+–N, were episodically observed.

Ammonium has been demonstrated to desorb from

resuspended lake sediment (Reddy et al., 1996;

Ogilvie & Mitchell, 1998), while high levels of TN

and TP in the water column are frequently associated

with resuspension of lacustrine sediments (Sønderg-

aard et al., 1992; Schelske et al., 1995; Reddy et al.,

1996; Hamilton & Mitchell, 1997). It is likely that

wind-generated mixing of superficial sediment is

responsible for periodically elevated nutrient levels in

GTH 99 rather than a difference in catchment

properties or catchment-lake relationships, as the

deep GTH 100 is located within 100 m of GTH 99

but shows physicochemical characteristics similar to

the other four lakes. Nutrient concentrations and

values of kd in NE8, which is shallower than GTH 99,

were consistent with those of intermediate and deep

lakes. Resuspension is related to the nonlinear and

interactive influences of fetch, wind velocity, and

depth (Scheffer, 1998). Low, rolling hills afford lakes

in this region varying degrees of protection from the

influence of wind, suggesting that not all shallow

lakes are subject to resuspension.

Exclusive of GTH 99, inorganic nutrient levels in

the study lakes agree well with surveys of lentic

systems from other regions of the circumpolar arctic,

where concentrations of NO3
-–N, NH4

+–N, and SRP

are generally below 0.5, 1.0, and 0.2 lM (Pienitz

et al., 1997a, b; Rühland & Smol, 1998; Duff et al.,

1999; Hamilton et al., 2001; Levine & Whalen, 2001;

Lim et al., 2001; Michelutti et al., 2002). Lake

surveys in the Arctic Foothill region (Kling et al.,

1992; Levine & Whalen, 2001) show similarly low

inorganic nutrient levels with occasional outliers that

may reflect sediment resuspension by wind.

In accord with nutrient and kd values, volume-based

mean chl a concentrations were remarkably similar and

independent of z for five of the study lakes, but were

elevated more than twofold in GTH 99. Overall, our

volume-based phytoplankton chl a concentrations

compare favorably with previous reports from surveys

in Arctic Foothill lakes (Kling et al., 1992; Levine &

Whalen, 2001; LaPerriere et al., 2003) and other

regions of the arctic (Pienitz et al., 1997a, b; Hamilton

et al., 2001; Lim et al., 2001; Michelutti et al., 2002),

which most frequently center around 1.5 lg l-1.

Volume-based rates of phytoplankton primary

production showed a significant inverse relationship

with z due to a calculated euphotic depth well in

excess of z for shallow lakes and progressively

deeper euphotic zones over which rates are integrated

in intermediate and deep lakes. As with chl a, the

average volume-based rate of phytoplankton primary

production in GTH 99 exceeded values for other

lakes. Although NE8 was shallower, the volume-

based rate of phytoplankton primary production was

only 55% of the value for GTH 99. Elevated chl a

and volume-based phytoplankton primary production

in GTH 99 relative to NE8 likely represent the effects

of wind, which can in shallow lakes both resuspend

meroplankton (Carrick et al., 1993; Schelske et al.,

1995; Hansson, 1996; Schallenberg & Burns, 2004)

and stimulate the phytoplankton by nutrient release

(Ogilvie & Mitchell, 1998; Schallenberg & Burns,

2004). Increases in phytoplankton chl a or primary

production upon nutrient addition in bottle bioassays

(Whalen & Alexander, 1983; Levine & Whalen,

2001), limnocorrals (O’Brien et al., 1992), and

whole-lake experiments (O’Brien et al., 2005) in

Arctic Foothill lakes point to a likely positive

response of the phytoplankton to wind-aided

increases in water column nutrients. However, com-

parison of the composition and biomass of the

phytoplankton and benthic algae (Carrick et al.,

1993) or the depth of entrainment of superficial

sediments by wind-induced resuspension (Schallen-

berg & Burns, 2004) is necessary to determine algal

recruitment from lake sediments.

Although high volume-based rates of phytoplankton

primary production were favored by an entirely

illuminated water mass and possibly elevated nutrients

in some shallow lakes, the low mean depth ensured

that average whole lake, area-based rate of phyto-

plankton production was significantly lower than the

value for intermediate lakes and at least qualitatively

less than that for deep lakes. Values of incident

irradiance during our 24 h incubations fell evenly

within the second and third quartiles for all daily

irradiance data continuously recorded from June

through August of each year, indicating that incuba-

tions were performed on representative days with

respect to insolation. Thus, we used the average daily

rates of area-based phytoplankton primary production

and a 100 day growing season (Miller et al., 1986) to

roughly estimate annual phytoplankton production
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rates of about 280–590 mmol C m-2. These rates fall

toward the low end of other reports for Arctic Foothill

lakes. A similar extrapolation produced estimates of

640 and 860 mmol C m-2 for GTH 112 and GTH 114

(Whalen et al., 2006), while Whalen & Alexander

(1986) and Miller et al. (1986) give values ranging

from 620 to 1,040 mmol C m-2 year-1 for intensive,

multi-year observations in Toolik Lake. Other reports

for the North American arctic (Hobbie, 1964; Kalff,

1967; Kalff & Welch, 1974; Welch et al., 1989) vary

from about 75–1,250 mmol C m-2 year-1, easily

encompassing our estimated rates.

Few studies have assessed epipelic chl a concen-

trations in high latitude lakes. Our data qualitatively

show lower concentrations in deep lakes than in

intermediate and shallow lakes. However, high spa-

tiotemporal variability and limited sampling reduced

our ability to detect any statistically significant differ-

ences among lake classes. Our mean values of epipelic

chl a are similar to previously reported concentrations

of 332–575 mg m-2 in Arctic Foothill lakes (Whalen

et al., 2006; Gettel et al., 2007). However, they are

generally higher than the 19–409 mg chl a m-2

reported for subarctic epipelon (Sorsa, 1976; Björk-

Ramberg, 1983; Björk-Ramberg & Ånell, 1985;

Hansson, 1992; Liboriussen & Jeppesen, 2003) and

the 20–379 mg chl a m-2 observed in algal mats of

ponds in the high arctic (Bonilla et al., 2005; Rautio &

Vincent, 2007). High epipelic chl a concentrations here

and in other Arctic Foothill lakes relate at least in part

to sampling methodology, as the 2 cm sediment

sample depth in Arctic Foothill studies by Whalen

et al. (2006) and Gettel et al. (2007) exceeds the

B1 cm common to many prior reports. Viable pig-

ments and live algae have frequently been reported to

several cm below the sediment surface (Stanley, 1976;

Cariou-LeGall & Blanchard, 1995), including sedi-

ments below the zone of active photosynthesis (Sand-

Jensen & Borum, 1991). Thus, variability among

studies in the depth of sediment sampled renders

difficult both cross-site comparisons of epipelic chl a

values and correlation of photosynthetic rates to

pigment concentrations.

Rates of epipelic primary production in our study

lakes are in accord with other, highly variable, arctic

data. Moreover, in contrast to chl a data, values are

less likely to be influenced by the depth of sediment

processed. Using assumptions analogous to those

for phytoplankton productivity, we calculate that

200–1,810 mmol C m-2 year-1 was fixed in our

lakes by the epipelon. Somewhat lower lake-wise

variability and rates were reported by Stanley (1976)

for six shallow (z = 0.2 m) tundra ponds,

330–830 mmol C m-2 year-1. Other rates for a

shallow coastal lake and two other Arctic Foothill

lakes (all at z = 2–2.2 m) vary from 190 to

370 mmol C m-2 year-1 (Stanley, 1976; Whalen

et al., 2006) and are somewhat lower than the value

of 630 mmol C m-2 year-1 that we calculate for

GTH 99, which is of comparable mean depth. An

additional report (Ramlal et al., 1994) for shallow

(z = 1.5 m) Lake 118 in the Northwest Territories

(Canada) gives a much higher value of

2,810 mmol C m-2 year-1.

The relative contribution of epipelic algae to total

primary production was constant at about 32% for

intermediate and deep lakes, but was significantly

higher at 66% for shallow lakes. Collectively, these

and observations for other arctic lakes with mud

bottoms suggest the relative importance of epipelic

primary production remains reasonably level with

decreasing z to a break point of about 2 m (Fig. 5A).

Below this point, the epipelon increasingly contrib-

utes to total area-based primary production with

decreasing depth, as irradiance at the sediment

surface increases while the euphotic water volume

declines. The availability of nutrients constrains

phytoplankton productivity, while light is generally

considered to limit epipelic productivity (Liboriussen

& Jeppesen, 2003). Even cyanobacterial mats in

ultraoligotrophic ponds of the Canadian High Arctic

have been demonstrated to be nutrient sufficient

(Bonilla et al., 2005). Experimental fertilizations at

subarctic and temperate latitudes (Björk-Ramberg &

Ånell, 1985; Vadeboncoeur et al., 2001; Liboriussen

& Jeppesen, 2003) have been demonstrated to

alter light-nutrient relationships to effect a redistri-

bution of primary productivity from benthic

to pelagic compartments without changing total

primary production. Likewise, a lake survey along a

eutrophication gradient (Vadeboncoeur et al.,

2003) showed a narrow range of total production

but a decline in the benthic fraction with increasing

water column nutrient content. Low water column

nutrient concentrations (Levine & Whalen, 2001;

Michelutti et al., 2002) as well as relatively restricted

ranges of values for kd (Chalfant, 2004) and possibly

depth ratios (Table 1; also Whalen et al., 2006) may
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ensure that with some exceptions z serves as a master

variable determining the distribution of a relatively

narrow range of rates of total production (Fig. 5B)

between the epipelon and phytoplankton in unpol-

luted arctic lakes dominated by soft substrate

(Fig. 5A).

The relationship in Fig. 5A for the epipelon in

geographically diverse arctic lakes conforms to a

conceptual biphasic model advanced by Vadebonco-

eur & Steinman (2002) relating z to the importance of

benthic productivity in lacustrine systems. The dom-

inance of mud bottoms in Arctic Foothill lakes

guided our epipelic emphasis. Additional, more

spatially extensive observations are needed to firmly

establish the linkage between depth and the distribu-

tion of lacustrine primary production in arctic

regions, and these should include other benthic

substrata which may show different rates of produc-

tivity (e.g., Welch & Kalff, 1974; Vadeboncoeur &

Lodge, 2000). Nonetheless, our analysis of the rates

and distribution of primary production between

benthic and pelagic habitats provides for the first

time the underpinning for a comprehensive analysis

of food web structure in Arctic Foothill lakes along a

gradient of mean depths. Further, our study estab-

lishes a necessary and valuable baseline for

identifying photoautotrophic responses to regional,

climate-mediated changes in lacustrine physicochem-

ical conditions.
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Sólorzano, L. & J. H. Sharp, 1980a. Determination of total

dissolved nitrogen in natural waters. Limnology and

Oceanography 25: 751–754.
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