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Abstract

South-east Queensland (Australia) streams were described by 21 local habitat variables that were chosen
because of their potential association with fish distribution. An Assessment by a Nearest Neighbour
Analysis (ANNA) model used large-scale variables that are robust to human influence to predict what the
values of each of the 21 local habitat variables at each site would be without modification from human
activity. The ANNA model used elevation, stream order, distance from source and longitude to predict the
local habitat variables; other candidate predictor variables (mean rainfall, latitude and catchment area)
were not found to be useful. The ANNA model was able to predict five of the 21 local habitat variables
(average width, sand (%), cobble (%), rocks (%) and large woody debris) with an R2 of at least 0.2. The
observed values of these five local habitat variables were used to model the distributions of individual fish
species. The species distribution models were developed using logistic regression based on a subset of the
data (some of the data were withheld for model validation) and a forward stepwise model selection
procedure. There was no difference in predictive performance of fish distribution models for model pre-
dictions based on observed values and model predictions based on ANNA predicted values of local habitat
variables in the withheld data (p-value = 0.85). Therefore, it is possible to predict the suitability of sites as
habitat for given fish species using estimated (estimates based on large-scale variables) natural values of
local habitat variables.

Introduction

The physical habitat of many rivers worldwide has
been degraded by human activities (Gorman &
Karr, 1978; Imhof et al., 1996; Kauffman et al.,
1997; Harper & Everard, 1998; Maddock, 1999;
Gafny et al., 2000; Hall et al., 2002). The physical
habitat, defined as the living space of instream
biota, is spatially and temporally dynamic due to
the interaction of the structural features of the
channel (channel size, channel shape, gradient,
bank structure and substrate) and the hydrological

regime (Maddock, 1999). The state of this living
space will influence biotic structure and organiza-
tion within rivers (Richards et al., 1996; Kauffman
et al., 1997; Richards et al., 1997; Maddock, 1999;
Davies et al., 2000). The state of the habitat is
influenced by factors operating at several spatial
and temporal scales (Frissell et al., 1986; Imhof
et al., 1996; Richards et al., 1996; Davies et al.,
2000). At the catchment scale, geology and climate
influence the habitat at the reach scale by affecting
stream hydrology, sedimentation, nutrient inputs
and channel morphology (Schumm & Lichty,
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1965; Knighton, 1984; De Boer, 1992; Richards
et al., 1996). In addition, operating at the local
scale, human influences, particularly land use and
land management practices, also influence reach
scale habitat (Richards et al., 1996). Therefore, in
the absence of human impacts it is conjectured
that the physical habitat of a site will largely be
predicted by catchment scale characteristics.

Physical habitat data in the absence of human
disturbance are required for the assessment of
habitat condition at a site (Maddock, 1999; Davies
et al., 2000). Information on unimpacted habitat
state would also be useful for predicting the po-
tential distribution of different fish species based
on their habitat requirements (Imhof et al., 1996).
Furthermore, the observed and potential (pre-
dicted) habitats may be compared with the habitat
requirements of a given species to ascertain whe-
ther the needs of the species are satisfied under the
observed site conditions and whether they can be
met if the site habitat is restored to its potential
condition (Imhof et al., 1996; Maddock, 1999).
However, pre-disturbance local habitat data are
usually unavailable and have to be predicted.

Most river-based predictive studies of species
distribution have been limited to predicting species
distribution based on the current habitat variables
(Armitage et al., 1987; Richards et al., 1996; 1997;
Olden & Jackson, 2002; Bond & Lake, 2003).
Thus, the usefulness of predicted local habitat
variables as input for species distribution models is
largely untested in rivers. Continuous variables are
generally more desirable for fitting models than
categorical variables because the latter require a
larger number of parameter estimates (i.e. a
parameter has to estimated for each category in
the variable), increasing the chances of less stable
models especially where the model is fitted to a
small dataset. Previous studies have predicted the
occurrence of habitat categories (Jeffers, 1998;
Davies et al., 2000) but our study attempts to
predict the values of continuous local habitat
variables for use in fish distribution models. The
performance of fish models based on predicted
local habitat variables may be reduced because the
species distribution predictions will be affected by
errors in the species distribution model as well as
errors in the predicted local variables. If model
performance on predicted local variables is as
good as the performance based on actual local

habitat variables then the former are useful for
predicting fish distribution.

In addition to the influence of local habitat
characteristics, fish distributions may also be
influenced by environmental factors at other spa-
tial scales. Riverine habitats are arranged in a
strongly hierarchical manner (Frissell et al., 1986)
and thus, various habitat elements at one scale
may act as determinants of species composition or
abundance at other subordinate scales. Barriers to
movement (e.g. cascades and waterfalls) or con-
nectivity between larval and adult habitats (e.g.
relative proximity to estuarine spawning areas for
catadromous species) are examples of landscape
filters (sensu Poff, 1997) that may determine which
subset of the total species pool potentially occur at
a local scale. Variation in local habitat character-
istics may then determine which of this subset of
species may actually be present. Fish distributions
are thus constrained by large-scale and local-scale
environmental factors and interactions with the
biology (e.g. resource requirements, life cycle and
movement) of the available species pool (Poff &
Ward, 1990; Poff & Allan, 1995; Schlosser, 1995;
Schlosser & Angermeier, 1995).

In this study, logistic regression models
(McCullagh & Nelder, 1989) of fish species’ pres-
ence–absence distribution are developed using
those observed local habitat variables that can be
accurately predicted from catchment-scale vari-
ables using the ANNA model (Linke et al., 2005).
The fish models are then used to make predictions
on samples that were withheld from the model
development stage. The predictions are based on
both observed local habitat variables and pre-
dicted local habitat variables of the withheld
samples to determine whether the predictive per-
formances are similar. In this study, local habitat
or site habitat refers to the reach-scale habitat
(�10�wetted width).

Methods

Study area and site selection

A full description of the study area, criteria for site
selection and methods for sampling fish and
estimating environmental variables is available in
Kennard et al. (2006) and Pusey et al. (2004) and
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only a brief overview is given here. The study area
was confined to three river basins in coastal south-
east Queensland, Australia (Fig. 1). Relatively few
rivers of south-east Queensland are free of human
disturbance. Study sites were therefore selected to
represent the best condition available (i.e. least
disturbed) within the study rivers, while also
ensuring that such sites were arrayed sufficiently
widely throughout each catchment to encompass

as much of the biological and environmental var-
iation as possible. Sampling was also limited to
river reaches that were wadable and hence could
be sampled effectively by electrofishing (i.e. gen-
erally less than 1.5 m maximum depth). Sampling
was conducted during periods at or near base-flow
conditions to avoid extreme flow events causing
bias in our fish sampling or measurement of local
habitat variables. Data used in this analysis were
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Figure 1. Location of the 53 study sites in three river basins in south-eastern Queensland. The inset shows the location of the study

area in Queensland, Australia.
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obtained from 53 sites sampled periodically (on
1–11 occasions) between 1994 and 1997.

Catchment-scale and local habitat variables

Catchment- and local-scale variables were selected
based on a conceptual model of the relationship
between processes at these two scales, and in
addition were guided by the work of Davies et al.
(2000) in the local region (see Table 1). In the
selection process, catchment-scale variables that
could potentially be modified by human influence
were avoided. Local habitat variables focused on
hydraulic, geomorphological and potentially eco-
logically important components of the habitat. A
general approach was taken in the choice of local
habitat descriptors because an objective of the
study was to predict local habitat for different fish
species, each potentially with differing habitat
requirements.

Sampling of local habitat variables and fish

Sites were usually between 70 and 80 m of stream
length and usually consisted of an entire meander
wavelength or riffle-run-pool sequence. Catch-
ment- and local-scale habitat variables were esti-
mated for each site according to a standard
protocol described in Pusey et al. (2004) (Table 1).
Catchment descriptors for each site were estimated
from 1:100,000 topographic maps using a digital
planimeter or from Geographical Information
Systems databases. Wetted stream width, mean
water velocity and water depth were measured at a
series of points located randomly throughout the
site. Usually 40–60 random points were surveyed
within each river reach. Substrate composition was
estimated for one square metre around each survey
point and allocated to each of seven substrate
classes (Table 1) as a proportional representation.
The abundance of submerged microhabitat struc-

Table 1. Catchment and local scale variables

Catchment scale variables Local scale variables

Rainfall (rainMEAN) Mean stream width (AVWIDTH)

Stream order (ORDER) Mean stream depth (AVDEPTH)

Altitude (ELEVATION) Maximum stream depth (MAXDEP)

Catchment area (CATAREA) Mean stream flow rate (AVFLOW)

Latitude (LATDEC) Maximum stream flow rate (MAXFLOW)

Longitude (LONDEC) Mud substrate (MUD)b

Distance of site from source (DISTSOURCE) Sand substrate (SAND)b

Distance of site from moutha Fine gravel substrate (FGRAVEL)b

Soil alkalinity/aciditya Coarse gravel substrate (CGRAVEL)b

Soil infiltration ratea Gravel substrate (FCG)b

Geologya Cobble substrate (COBBLE)b

Rock substrate (ROCKS)b

Bedrock substrate (BEDROCK)b

Macrophyte cover (MAC)b

Leaf litter (LL)b

Submerged overhanging vegetation (OHV)b

Submerged marginal vegetation (SV)b

Emergent vegetation (EV)b

Large woody debris (LWD)b

Small woody debris (SWD)b

Filamentous algae (FA)b

Undercut banks (UC)c

Root masses (RM)c

a Not used in final models
b Mean percentage of site area
c Mean percentage of site wetted perimeter.
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tures (aquatic macrophytes, filamentous algae, leaf
litter, submerged vegetation (mainly grasses),
emergent vegetation, submerged overhanging veg-
etation, large (>15 cm diameter) and small
(1 cm<diameter<15 cm) woody debris was also
estimated at each survey point. In addition, the
lineal extent (proportion of wetted perimeter) of
undercut banks and root masses was estimated
frommultiple transect segments (every 10 m) along
each bank. Average values (wetted width, depth
and velocity), or average proportion of mean wet-
ted site area (substrate composition and micro-
habitat structures) or stream bank (undercut banks
and root masses) were then calculated for each site.

Fish assemblages at each site were intensively
sampled using the procedures detailed in Pusey
et al. (1998). Individual hydraulic units (i.e. riffles,
runs or pools) within each site were sampled sep-
arately and data subsequently combined for the
entire site. Each hydraulic unit was blocked up-
stream and downstream with weighted seine nets
(11 mm stretched-mesh) to prevent fish movement
into or out of the study area. The site was sampled
using a combination of repeated pass electrofishing
(Smith-Root model 12B Backpack Electroshocker)
and supplementary seine netting until few or no
further fish were collected (usually four electro-
fishing passes and two seine hauls were required to
collect all fish present). The intensive sampling re-
gime described here has been demonstrated to
provide accurate estimates of species composition
and abundances at wadable stream sites (Pusey
et al., 1998) and intensive sampling of a single
meander wavelength is the appropriate spatial scale
at which to accurately and precisely characterise
local fish assemblages in south-eastern Queensland
streams and rivers (Kennard et al., 2006).

Modelling approach

Data analysis was carried out to determine which
local habitat variables could be predicted from
catchment-scale variables and whether the predic-
tions would be accurate enough for use in
fish presence–absence distribution models. The
Assessment by Nearest Neighbour Analysis
(ANNA) method (Linke et al., 2005) has the ability
to make predictions on continuous data and has
been used to predict the distribution of macroin-
vertebrate taxa among sites using catchment char-

acteristics. This study employs ANNA as a method
for predicting site habitat variables (instead of
taxa) from catchment-scale variables. ANNA finds
training sites that are most similar to a site of
interest in terms of catchment characteristics (using
a Euclidean dissimilarity index) and estimates each
of the local variables of the given site as the mean of
each of these variables for the selected training
sites. ANNA was used instead of other methods
like multiple regression because ANNA can predict
a suite of variables at once and does not assume
linearity or monotony in the models.

A subset of the data was created by randomly
selecting one sample (a repeat visit) from each site.
This subset, referred to as the training data, was
used to develop the ANNAmodel. The site samples
not included in the training data were referred to as
the test data and used for model validation. ANNA
employed the leave-one-out approach (Fielding &
Bell, 1997) to make predictions on the withheld
samples. Thus, for a given test site, the values of
local habitat variables from other sites were used to
calculate this sites’ local habitat values. Even
though the test data were not spatially independent
from the training data, the use of the leave-one-out
approach for making predictions on the test data
would have avoided optimistic assessment of the
accuracy of the ANNA predictions.

The analysis involved predicting local habitat
variables on test samples and then using the vari-
ables that could be predicted as candidate
variables in the development of fish presence–ab-
sence models based on training data. For each fish
species, distribution predictions were made on test
samples based on actual local habitat variables
and on ANNA predicted habitat local variables.
Each of the predictions was assessed to determine
how well the model could discriminate between
occupied and unoccupied sites. The predictive
performances of the models on test samples using
observed and predicted local variables were com-
pared to determine if there was a difference in
model performance between the two sets of pre-
dictor variables.

Assessment of the predictive performance
of presence–absence models

Although prediction error is a more intuitive
measure of model performance, it is not appro-
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priate for presence–absence data because it is
influenced by the prevalence of the presence or
absence records (Fielding & Bell, 1997; Franklin,
1998). For instance, a model that predicts a species
that occupies 5% of the sample sites as being ab-
sent everywhere will have a low prediction error
simply because the species is not well represented
in the data set. A model performance measure
should incorporate the ability of the model to
correctly predict positive cases (sensitivity), i.e.
species presence, and the ability of the model to
correctly predict negative cases (specificity), i.e.
species absence (Fielding and Bell, 1997). The
ability of a model to discriminate between occu-
pied and unoccupied sites means that the predic-
tions from the model are a good index of species
distribution even if the actual predicted values do
not represent true probability of occurrence
(Pearce and Ferrier, 2000).

The receiver operating characteristic (ROC)
approach (Hanley & McNeil, 1982) is an increas-
ingly popular way of evaluating the performance
of diagnostic and predictive test systems (Hanley
& McNeil, 1983; Centor & Schartz, 1985; DeLong
et al., 1988) such as species presence–absence dis-
tribution models (Fielding & Bell, 1997; Pearce &
Ferrier, 2000). A ROC plot is obtained by plotting
model sensitivity vs. (1 – specificity) (Swets &
Pickett, 1982). The area under the curve (AUC) of
a ROC plot corresponds to the probability of
correctly predicting positive and negative cases
(Green & Swets, 1966). The AUC of a ROC plot
ranges between 0.5 (random) and 1 (perfect model)
(Fielding & Bell, 1997). A value of 0.8 for the
AUC means that for 80% of the time a random
selection from the positive group will have a score
greater than a random selection from the negative
class (Fielding & Bell, 1997).

For a given model, the observed and predicted
values of species occurrence can be used by the
ROC program of Atkinson and Mahoney (2001)
to calculate AUC of a ROC plot and to perform a
one sided z-test to determine whether the AUC is
significantly greater than 0.5. The program can
also compare the performance of different models
based on the same observations. Significance test-
ing for the comparison of the predictive perfor-
mance of different models is corrected for the
correlated nature of data using the DeLong et al.
(1988) method (Atkinson & Mahoney, 2001). The

program was used to calculate model predictive
performance and for the comparisons of model
performance in the stepwise model-building pro-
cess for fish distribution models.

Local habitat prediction

An ANNA model was developed to predict local
habitat variables using the training data set. The
development of the ANNA model described here
follows the methods in Linke et al. (2005) with the
modification that the value of local habitat
variables were predicted for a given site instead of
taxa occurrence. For each local habitat variable
the predictive success was measured as the R2 from
the regression of the predicted and observed val-
ues. Geological and geomorphological variables
were available for use as predictors in the ANNA
model but their inclusion in earlier trials did not
improve the predictive performance of the model.
Therefore, only the simple predictor variables
(mean rainfall, catchment area, stream order, lat-
itude, longitude, distance from source and alti-
tude) were used in model construction. In the
ANNA model, the prediction residuals were cal-
culated as the difference between the range-stan-
dardized predicted and observed values of a local
habitat variable. The local habitat variable was
range standardized as shown below.

Standardized value=(input value)minimum of
input variable)/range of input variable.

The predicted value was standardized using the
minimum and range values used to standardize the
observed values of the respective local habitat
variables. A statistical threshold of R2 greater than
0.2 for predictions was used to select variables for
which the ANNA model had reasonable predictive
performance.

Fish distribution modelling

The local habitat variables that were predicted by
ANNA with an R2 greater than 0.2 in the test data
set were used as candidate predictor variables in
logistic regression models for fish species
distribution. An attempt was made to develop
distribution models for each of the nine fish species
in this study (see results), all of which are relatively
common and widespread in south-eastern
Queensland rivers and streams (Pusey et al., 2004).

64



Since the response was a fish species presence–ab-
sence variable the logistic regression models as-
sumed binomial error. Logistic regression models
for species distribution were developed using the
forward selection procedure (Draper & Smith,
1966) with a significance level of 0.05 for variable
entry. The training data set was small (53) and the
models had to be conservative; therefore, efforts
were made to avoid fitting the models with too
many variables so that models become training
data specific and not useful for independent data. If
a model is overfitted its parameter estimates or
standard errors may become extremely large and
predictive performance on independent data is re-
duced (Hosmer & Lemeshow, 1989). Therefore, a
lack of improvement in model predictive perfor-
mance or the appearance of large parameter esti-
mates or standard errors upon the addition of a
new variable to the model were also used as stop-
ping criteria for model building in order to avoid
overfitting the models. Making predictions on the
same data that the model is derived from leads to
optimistic measures of model performance (Field-
ing & Bell, 1997). Thus, a model specified from
each stage in the forward selection procedure was
fitted to 200 bootstrap samples containing 53
observations (sampled with replacement) (James &
McCulloch, 1990; Efron & Tibshirani, 1993) and
used to predict the training dataset in order to
obtain independent prediction estimates. A seed
was specified for the bootstrapping procedure so
that analysis could be repeated using the same 200
bootstrap samples. The mean of the predictions for
each training sample over the 200 bootstrap sam-
ples was taken as the probability of occurrence of a
given fish species. The bootstrapped predictions
were used to test whether the addition of a variable
improved model predictive performance at each
stage of the forward selection procedure. Model
performance improved where the AUC of a ROC

plot for a proposed model was significantly (sig-
nificance level of 0.05) greater than that of the
previous model (i.e. submodel). Where model per-
formance did not improve the previous model was
selected as the distribution model for the species.
For each species the selected model was fitted to the
200 bootstrap samples and used to make boot-
strapped predictions with the training data, test
data (withheld samples) based on observed values
of the selected local variable, and test data based on
the predicted values of the selected local variable.

Comparison of the predictive performance of fish
distribution models on test data based on actual
and predicted local habitat variables

The mean of the bootstrap predictions on each of
the withheld samples was taken as the probability
of occurrence of a given fish species. ANOVA was
used to test whether model predictive performance
differed with prediction type (fish distribution
predictions on withheld replicates based on ob-
served habitat local variables and fish distribution
predictions based on ANNA predicted habitat
local variables).

Results

The ANNA method was provided with latitude
(LATDEC), catchment area (CATAREA), mean
annual rainfall (rainMEAN), stream order (OR-
DER), longitude (LONDEC), distance from the
source (DISTSOURCE) and elevation (ELEVA-
TION) as candidate predictor variables. The first
three variables were not used in the actual ANNA
local habitat variable prediction model because
they were not selected as predictor variables by the
ANNA model as shown by their zero weights in
Table 2 (see Linke et al. (2005) for details on

Table 2. The ANNA weights given to each predictor variable along a given dimension in the prediction of local habitat variables; see

Linke et al. (2005) for details on assigning weights for large-scale variables

Dimensions rainMEAN ORDER LATDEC LONDEC CATAREA DISTSOURCE ELEVATION

1 0 1.24898 0 0 0 )3.66410 )3.31292
2 0 1.17926 0 0 0 1.70245 0

3 0 )2.33892 0 )1.85608 0 0 )1.74748

Variables with a weight of zero along the three dimensions are not used in the prediction of local variables.
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assigning variable weights). The ANNA model
was able to predict ROCKS, COBBLE, SAND,
LWD and AVWIDTH with an R2 greater than 0.2
(Table 3). The plot of the ANNA prediction
residuals for the LWD variable (Fig. 2) illustrates
the trend of positive residuals (over-estimates) at
the low end of the gradient and negative residuals
(under-estimates) at the high end of the gradient
that was evident in the residual plots for ROCKS,
SAND, COBBLE and AVWIDTH. The local
habitat variables that were predicted by
ANNA with an R2 greater than 0.2 were taken as
candidate predictor variables for modelling distri-
butions of the individual fish species using logistic
regression based on training data.

Logistic regression models were developed for
the individual distributions of the fish species
Retropinna semoni, Melanotaenia duboulayi,
Tandanus tandanus, Mogurnda adspersa, Pseu-
domugil signifer, Gobiomorphus australis and Phi-
lypnodon grandiceps. No models could be selected
for Hypseleotris galii and Ambassis agasizii using
the model building criteria employed in this study.
For each fish species, only a single local habitat
variable could be included in the logistic regression
models without over-fitting. The predictive per-
formances (as measured by the area under the
curve (AUC) of a ROC plot) of each species dis-
tribution model on the training samples, test
samples with observed values of local variables
and test samples with predicted local variables are
shown in Table 4. According to the one sided

Table 3. Local habitat variables that were successfully pre-

dicted (i.e. R2>0.2) on the test samples by the ANNA model

using catchment characteristics as predictor variables

Local variable R2 on test samples

AVWIDTH 0.37

SAND 0.22

COBBLE 0.28

ROCKS 0.65

LWD 0.42
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Figure 2. ANNA prediction residuals for the LWD showing a

tendency for high positive residuals (over-estimates) at the low

end of the gradient and high negative residuals (under-esti-

mates) at the high end of the gradient. The residuals were cal-

culated as the difference between the range-standardized (as

shown in the methods) predicted and observed values of the

LWD variable.

Table 4. The predictive performance of logistic regression models for fish species distribution as measured by the area under the curve

of a ROC plot (AUC) for each species and for each prediction type (training data predictions, test data predictions based on the values

of observed local habitat variables and test data predictions based on predicted values of local habitat variables)

Fish species Local habitat

variables selected in

fish distribution

model

AUC for bootstrapped

predictions on Training data

using actual local

variables

AUC for bootstrapped

predictions on Test data

using actual local

variables

AUC for bootstrapped

predictions on Test data

using predicted local

variables

Retropinna semoni COBBLE 0.82 0.67 0.57

Mogurnda adspersa ROCKS 0.64 0.68 0.56

Melanotaenia duboulayi AVWIDTH 0.84 0.64 0.67

Tandanus tandanus AVWIDTH 0.90 0.76 0.75

Pseudomugil signifer COBBLE 0.81 0.59 0.80

Gobiomorphus australis LWD 0.74 0.84 0.95

Philypnodon grandiceps LWD 0.80 0.74 0.68

Also shown are the local habitat variables selected by logistic regression models for each fish species.
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z-test (performed for each AUC calculation) all
the predictive performances in Table 4 were sig-
nificantly greater than an AUC of 0.5. The AUC
value for Gobiomorphus australis for test data
using predicted local habitat values was 0.95,
meaning that 95% of the time, a random selection
from the species present sites had a higher pre-
dicted probability of occurrence than a random
selection from the species absent sites. For some
species such as Gobiomorphus australis the logistic
regression model predictions of fish distribution in
withheld samples made using predicted habitat
variables were superior to the predictions derived
from observed values of the local habitat variable
(Table 4). A two factor ANOVA showed that
neither prediction type (predictions based on ob-
served values in withheld samples and predictions
based on ANNA predicted habitat local variables
in the withheld samples) (p-value=0.85) nor fish
species (p-value=0.13) affected model perfor-
mance.

Discussion

This study showed that, with the use of a few
catchment-scale variables (stream order
(ORDER), longitude (LONDEC), distance from
the source (DISTSOURCE) and elevation (ELE-
VATION)) that are easily derived from maps, the
ANNA method was able to predict five local
habitat variables in the test data set with an R2

greater than 0.2 (Table 3). Similarly, Jeffers (1998)
was able to predict the occurrence of site features
based on only four map-derived variables (alti-
tude, slope, distance from source and height of
source above sea level). However, unlike Jeffers
(1998) where the probability of occurrence of a site
feature was predicted, we successfully predicted
the value of local variables on a continuous scale
from a few catchment characteristics that are rel-
atively cheap to acquire. Given that ANNA esti-
mates local habitat values from the nearest
neighbours, the pattern of positive residuals (over-
estimates) at the low end of a local habitat gradi-
ent and negative residuals (under-estimates) at the
high end of the gradient (as in the LWD example,
Fig. 2) should be reduced by using a larger train-
ing dataset so that more neighbours that are sim-
ilar are available. The successful prediction of local

habitat variables from catchment-scale variables
concurs with studies that have suggested that the
local habitat is influenced by factors operating at
larger spatial scales (Frissell et al., 1986; Imhof
et al., 1996; Richards et al., 1996; Davies et al.,
2000).

In future studies, the accuracy of the ANNA
habitat predictive model may be improved by
handling the temporal variation in the local habi-
tat variables in other ways. For instance, inclusion
of winter and spring samples in the training and
testing data sets is likely to have introduced tem-
poral variability, which cannot be accounted for
by the predictor variables used the ANNA model
(the predictors were all ‘‘static’’ in time). In addi-
tion to exaggerating the magnitude of residuals for
the local habitat predictions, the temporal effects
might have also obscured the relationships among
some local habitat variables and large-scale vari-
ables. Future modelling will account for the effects
of temporal variation in the values of local habitat
variables by either including appropriate anteced-
ent predictor variables, or by constructing separate
seasonal models.

The influence of human activities on local
habitat characteristics was not determined in this
study because only sites close to natural condition
were used. The ability to predict local habitat
variables in the absence of human impacts is useful
because the predicted values of variables can be
compared with observed values so that the degree
of habitat degradation at a site can be assessed.
However, the prediction accuracy of local habitat
variables would need to be improved (e.g.
accounting for seasonal variation in habitat vari-
ables) before using them to assess the habitat
condition of sites. As part of further research,
improved local habitat predictions will be used to
assess habitat condition in impacted sites.

Logistic regression models fitted with a single
local-scale habitat variable produced accurate
predictions of fish species distributions (Table 4).
These habitat attributes may be of direct impor-
tance for some species to satisfy critical life history
requirements or may represent local surrogates or
correlates for other large-scale physical factors
that influence fish distributions. Submerged phys-
ical structures such as rocks, cobbles and woody
debris are commonly used as a source of refuge,
spawning substrate and are likely to support
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invertebrate food resources for many fish species
present in south-east Queensland, including those
species considered here (Merrick & Schmida, 1984;
Pusey et al., 2004). The distribution and abun-
dance of these local habitat attributes is in turn
likely to be influenced by physical processes
operating at larger spatial scales (Frissell et al.,
1986; Imhof et al., 1996; this study). Large-scale
catchment features such as elevation, proximity to
river mouth have also been shown to influence fish
distributions within river systems (Pusey & Ken-
nard, 1996; Belliard et al., 1997; Pusey et al., 2004)
and can been used to accurately predict local fish
species composition in south-east Queensland riv-
ers (Kennard et al., 2006) and elsewhere (Joy &
Death, 2002; Olden & Jackson, 2002). Although
fish species respond to large-scale variables, Bond
& Lake (2003) showed that fish distributions were
more strongly associated with the presence of
habitat structure at the scale of metres suggesting
that, in disturbed rivers, fish abundances are lim-
ited by the low availability of habitat at these small
spatial scales. Thus, sensitivity of fish species to
local habitat variables may explain the high pre-
dictive performance of species distribution models
found in this study.

The usefulness of predicted values of local
habitat variables for the prediction of fish pres-
ence–absence distribution was assessed on with-
held samples by comparing the performance of fish
distribution models where the predictions were
based on observed values of local habitat variables
and where predictions were based on ANNA
predicted values of local habitat variables (Ta-
ble 4). Neither prediction type, nor fish species had
an effect on the predictive performance of logistic
regression species distribution models (two factor
ANOVA). Therefore, local habitat variables that
were predicted by the ANNA model with R2

greater than 0.2 were accurate enough to produce
fish presence–absence predictions comparable to
fish distribution predictions based on observed
local habitat variables.

The predictive performance of fish models
based on predicted local habitat variables was
dependent on the interaction among errors in the
predicted local habitat variables and errors in the
distribution of the species along the local habitat
variable. In some cases the estimates of the local
habitat variables based on catchment characteris-

tics resulted in fish distribution predictions supe-
rior to distribution predictions based on observed
values of habitat variables. For instance, there was
an improvement in Gobiomorphus australis pre-
diction when predicted values of LWD were used
instead of observed values of LWD (Table 4).
Gobiomorphus australis had low occurrence in the
low part of the LWD gradient but occurred more
frequently at higher values of LWD (Fig. 3). In
this case, under-estimates of LWD at the high end
of the LWD gradient did not adversely affect the
predictive performance of the fish distribution
model because the predicted LWD values were still
in the range of preferred habitat values for the fish.
In the midrange of the LWD gradient the predic-
tion, residuals were lower than at the extreme ends
(Fig. 2) and thus maintained good predictive per-
formance of Gobiomorphus australis distribution.
The overall improvement of Gobiomorphus aus-
tralis predictions suggest that the predicted LWD
values might have captured the long-term values of
LWD (as determined by the large-scale variables)
to which the fish species might be responding, in-
stead of the instantaneous observed values of the
local habitat variables. Retropinna semoni exem-
plified cases where the predictive performance of a
fish distribution model based on ANNA predicted
values for a local habitat variable was inferior to
the performance based on observed values of a
local habitat variable. The observed occurrence of
Retropinna semoni increased sharply from the low
end of the COBBLE gradient then plateaued from
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Figure 3. The distribution of Gobiomorphus australis along a

gradient of the observed values of LWD showing that the fish

species is not present at very low values of LWD but becomes

relatively more common at higher values of LWD.
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the mid-to-high range of the COBBLE gradient.
The ANNA model overestimated the values of the
COBBLE variable for samples in the low end of
the COBBLE gradient giving similar estimates of
COBBLE value to samples in the low and mid-
range of the COBBLE variable. Consequently, the
logistic regression model for Retropinna semoni
predicted similarly high probability of occurrence
in the low and mid-to-high range COBBLE sam-
ples leading to the poor distribution predictions of
Retropinna semoni based on ANNA estimates of
undisturbed values of COBBLE. However, given
that some fish distribution models had good
predictive performance based on ANNA predicted
values of local habitat variables, a determination
can be made about whether those fish species
could actually live at a site if the undisturbed
habitat was available.

There are many conservation implications in
being able to predict local habitat and fish distri-
bution in the absence of disturbance (Maddock,
1999; Davies et al., 2000; Olden & Jackson, 2002).
Information on the degree of habitat degradation
at a site could assist in the accurate diagnosis of
the mechanisms responsible for observed devia-
tions in biotic composition from that expected
from species distribution models. Combining
information derived from predictive models of
local habitat structure and biotic composition
should also enable managers to accurately identify
those sites that may be in need of habitat resto-
ration or remediation.
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