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Abstract

The nematofauna from the seaweeds Sargassum polyceratium Montagne, Hypnea musciformis Küetzing,
Padina gymnospora Küetzing and the seagrass Halodule wrightii Ascherson was studied in March 2001, at
Pedra do Xaréu, Pernambuco, Brazil, in order to investigate the associations of organisms, as well as the
relation between the plant architecture and the associated fauna. Soft sediments adjacent to phytal envi-
ronments were also investigated. Thirty-eight genera were found, including two new records
(Odontanticoma sp. and Wieseria sp.) for the Brazilian coast. Multivariate analyses were carried out in
order to verify the relation between nematode assemblages on plants and in sediments. The results showed
that these assemblages were different in structure and composition between macrophytes and sediments.
They were different in structure but not in composition among macrophytes, so the nematode biodiversity
was related to the structural features of macrophytes’ habitats.

Introduction

Nematodes are probably the most successful
infaunal metazoans, living in great abundance and
diversity inside sediments as well in close associa-
tion with other organisms, or even parasitic.
Although some species are only found in very spe-
cific biotopes, others are more widely distributed
(Bouwman et al., 1984).

The free-living meiofaunistic nematodes have a
vertical and horizontal distribution on a global
scale and are, frequently, dominant in sediments
from coastal areas to great ocean depths, at all
latitudes. They colonize all types of substrates such
as sediments, macrophytes and even artificial sub-
strates (Sharma & Webster, 1983; Bell et al., 1984;
Heip et al., 1985; Hall & Bell, 1993; Gourbault
et al., 1998; Atilla et al., 2003). Esteves (2002) ob-
served that, taking into consideration the extension

of the Brazilian coastland and the limited number
of studies carried out so far, there is a shortage of
knowledge about the biodiversity of this group.

The presence of seaweed increases both the
availability of food and the complexity of habitat.
It also provides a refuge for the fauna, in the
marine environments. The abundance of epifauna
and epiphyte on seaweed has been noted since
beginning of the 20th century (Mukai, 1971). Plant
species and their architecture and density have a
strong effect on the development of epiphytic
organisms (Heck & Wetstone, 1977; Hicks, 1977a;
Heck & Orth, 1980; Hicks, 1980; Bell & Westoby,
1986; Edgar & Moore, 1986; Gibbons & Griffiths,
1986; Johnson & Scheibling, 1987; Preston &
Moore, 1988; Albay & Aykulu, 2002).

The meiofauna can attain high densities on
algae with a complex surface morphology, which
facilitates the deposition of sediments and detritus
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(Hicks, 1980). According to Warwick (1977) the
faunal composition appears to be directly related to
the coarseness, silt content, growth form and tex-
ture of the seaweed. Studies about phytal have been
carried on seaweeds or seagrasses, either in relation
to the meiofauna community structure (Gunnil,
1982a; Coull & Wells, 1983; Gibbons & Griffiths,
1986; Preston & Moore, 1988; De Troch et al.,
2001, 2003), or on specific groups as Nematoda
(Moore, 1971; Warwick, 1977; Kito, 1982), Cope-
poda (Hicks, 1977a, b), Amphipoda (Tararam &
Wakabara, 1981; Gunnil, 1982b) and Acari
(Somerfield & Jeal, 1996).

Analyzing the structure of nematode commu-
nities in phytal aquatic environments, Heip et al.
(1985) detected common patterns, such as the fact
that the most abundant species are frequent on
different species of seaweed, although the domi-
nant genera on each seaweed seems to be different.

The present work analyzes the relationship be-
tween the free-living community of nematodes and
the physical structures of three seaweeds and one
seagrass species.Hypotheses are raised to explain the
question whether phytal marine nematodes associa-
tions are distinct from those observed in surrounding
sediments, and whether the habitat complexity
influences the structure of these communities.

Materials and methods

This study was performed on the north-eastern
Brazilian coast–Pedra do Xaréu Beach, Pernam-
buco (8� 18¢ 14¢¢ S; 34� 56¢ 45¢¢ W), a rocky beach
where Sargassum beds are present in the sub-
littoral areas throughout the year (Fig. 1). Sam-
pling was carried out at low tide in March, 2001, in
the lower intertidal zone. Four species, three sea-
weeds and one seagrass, were chosen due to their
morphology and abundance: Sargassum polycera-
tium, Halodule wrightii, Padina gymnospora and
Hypnea musciformis. H. wrightii (seagrass) was
collected in sandy sediments, and the algae were
collected from hard substrates. Ten samples of
each species were collected. Each one of them was
carefully enveloped in a plastic bag; the holdfast
was removed and kept in 4% formalin solution.
Ten samples of sediment were sampled using a
PVC corer with 10 cm2 internal area, as described
by Hope (see Higgins & Thiel, 1988), and then also

fixed with formalin 4% solution. At the labora-
tory, the faunistic samples were treated using
routine methods for meiofauna (humid sieving and
manual centrifugation) suggest by Elmgren (1973)
and sorted out using Dollfus plates and stereo-
scopic microscope. The animals were removed
manually using a needle, and permanent slides
were made for taxonomic and biological studies of
Nematoda, as described by Cobb (1917) and De
Grisse (1969). They were sorted into functional
groups according to Wieser (1953):

1A: selective deposit feeders: nematodes with a
very small unarmed buccal cavity;

1B: non-selective deposit feeders: nematodes with
unarmed buccal cavities of moderate size;

2A: epistratum feeders: nematodes with medium
size buccal cavities, provided with small teeth;

2B: predators or omnivores: nematodes with
wide buccal cavities, large teeth or other
powerful buccal structures.

The volume, height and width of the weeds
were measured after the animal extraction from

Figure 1. Map of studied area.
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the substrate, as described by Montouchet (1979)
and Hacker & Steneck (1990). The density is ex-
pressed by ml of seaweed. The K coefficient was
calculated to show the substrate structural com-
plexity: K=Volume/(heigth�width).

The similarity of nematode associations among
seaweeds and sediments was determined by non-
metric multidimensional scaling ordination (MDS)
on Log10 (X+1) transformed data, using the Bray
Curtis similarity index (Clarke, 1993). Formal
significance tests for differences in nematoda
community structure between habitats were per-
formed using the one-way ANOSIM test (Clarke,
1993).

The SIMPER (Clarke & Warwick, 1994) pro-
cedure was performed in order to determine which
nematodes genera were responsible for differences
between algal types (cut off 40%). The differences
between functional groups were tested with G-test
(Zar, 1996).

Data analysis was performed using the PRI-
MER (Plymouth Routines In Multivariate Eco-
logical Research) version 5.1.2 software package
(Clarke & Gorley, 2001).

Results

The physical structure of the macrophytes pre-
sented some distinct characteristics. The width was

very similar among them, showing means from
6.95 to 8.44 mm (Fig. 2), with no significant dif-
ferences (Table 1). All macrophytes were signifi-
cantly different in height. In relation to volume
data, only S. polyceratium was significantly dif-
ferent from other macrophytes, with a means of
16.7 ml. P. gymnospora was significantly higher in
relation to K, an indication of a larger area, at
least potentially, for nematodes colonization
(Table 2).H. wrightii was the tallest weed, but with
the lowest K. H. musciformis presented similarity
in width, height and volume values.

The nematodes were found on 26 macrophytes
out of 40 sampled phytal substrates. The gathering
of taxonomic data from a tropical phytal environ-
ment resulted in a list with 38 genera, including two
new records in Brazil (Odontanticoma sp. and
Wieseria sp.). The richness per macrophyte ranged
from 17 (Halodule wrightii) to 26 genera (Hypnea
musciformis). Only five genera occurred on all
macrophytes analyzed (Acanthonchus, Euchrom-
adora, Halalaimus, Paracyatholaimus and Visco-
sia), corresponding to 37% of the total number
of organisms. Halalaimus and Viscosia
occurred only on phytal substrates. 22 nematode
genera occurred only on one species: two on
H. wrigthi (Metalinhomoeus and Monoposthia),
eight on H. musciformis (Anticoma, Cyatholai-
mus, Graphonema, Longicyatholaimus, Odontanti-
coma, Prochromadora, Pseudochromadora, and

Figure 2. Comparison between measures of the macrophytes (means+Standard deviation, SD, n=10); Height and Width in cm;

Volume in ml. K=[Volume/(height � width)] � 100.
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Thalassomonystera), seven on S. polyceratium
(Comesa, Crenopharynx, Gammonema, Parach-
romadora, Paramesacanthion, Terschellingia,
Wieseria), and five on P. gymnospora (Belbola,
Paracomesoma, Paralongicyatholaimus, Pompo-
nema and Spirinia). The mean richness was 5.7

genera per sample (SD=5) (Fig. 3). The mean
diversity (Shannon–Wiener index) did not present a
significant difference (ANOVA, df=4; F=0.526;
p=0.717) within macrophytes neither between
macrophytes vs. sediment (Fig. 4).

Mean density ranged from 0.6 to 4 individuals/
ml per macrophyte (Fig. 5). The five most abun-
dant genera comprised 50% of the total density
and 17 genera made up 95% of it. The densities
ranged from 0.0014 ind./ml (Hypodontolaimus) on
Halodule wrightii to 0.6 ind./ml (Chromadora) on
Sargassum polyceratium (Fig. 5).

A total of 32 genera were found in adjacent
sediments (mean=10.1, SD=5.75, n=9). From
these, 17 genera occurred only in this habitat. Two
genera comprised 55% of the total number of

Table 1. ANOVA one-way of macrophytes’ measures

Independent factor Dependent factor df MS df MS F p-level

Effect Effect Error Error

Weeds Height 3 631.5289 36 7.5400 83.7568 0.0001*

Width 3 4.8151 36 10.7540 0.4477 0.7204

Volume 3 209.2010 36 28.6354 7.3057 0.0006*

K 3 1052.0700 36 69.6968 15.0949 0.0001*

df=degree of freedom; MS = mean square.

Table 2. Post hoc Scheffé test of macrophytes’ measures

Factor Scheffé

Height 1 2 3 4

Volume 1 2 4 3

K 1 2 3 4

Halodule wrightii (1), Hypnea musciformis (2), Sargassum

polyceratium (3) and Padina gymnospora (4).

Figure 3. Nematodes genera richness and density (means+SD) on macrophytes at Pedra do Xaréu-PE; Brazil.

222



organisms. Among these, Dichromadora com-
prised 32.7%. The abundances ranged from 7 to
103 ind./10 cm2, with a mean of 54 ind./10 cm2

(n=9; SD=34.8). The presence of Euchromadora
and Chromadorina explained most of differences
between P. gymnospora and other macrophytes
(Table 3). Eurystominia had the greatest dissimi-
larity between H. musciformis and H. wrightii,
and between H. musciformis and S. polyceratium
(Table 3).

The most common feeding type was epistratum
feeders (2A). Thirty-two genera presented this
kind of buccal cavity. These individuals were
dominant on all substrates, followed by the car-
nivores/omnivores (2B), and deposit feeders (1A
and 1B). Almost half of epigrowth feeders genera
were specific to one substrate. S. polyceratium and
H. musciformis, with seven exclusive genera,
showed the highest specificity, while H. wrightii
had the lowest one, with two exclusive genera.

Figure 4. Nematofauna diversity (Shannon–Wiener index) on macrophytes at Pedra do Xaréu-PE; Brazil.

Figure 5. Mean density of major nematodes genera on macrophytes (means+SD) at Pedra do Xaréu-PE; Brazil.
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Three exclusive genera found on S. polyceratium
were deposit feeders. On H. musciformis , from the
seven exclusive genera, six were epistratum feeders
(Tables 4 and 5). According to the G-test, the
proportions of feeding types among macrophytes
were not significatively different (Table 4).

Taking into account sediment andmacrophytes,
Dichromadora sp., an epistratum feeder genus, was
the most abundant genus. Yet, this genus repre-
sented only 4.8% of the number of individuals on
the macrophytes, from which 86% were found on
P. gymnospora, and 32.7% of the number of
individuals in sediment.

Deposit feeders were represented by only four
species. However, the dominant genus on macro-
phytes was one of them: Halalaimus sp. Those
organisms were almost restricted (94%) to
H. musciformis and P. gymnospora.

The MDS analysis did not present a clear dif-
ference for the nematode communities among
macrophytes or between macrophytes and sedi-
ment (Fig. 6). Results of ANOSIM tests confirmed
that the structure of nematode assemblages were

not different among macrophytes, but showed
significative differences in nematode communities
present on macrophytes and those present in sed-
iments (R=0.388, p=0.001). These differences
were more evident when each macrophyte and
sediment were analyzed separately: H. wrightii
(R=0.736; p=0.001), H. musciformis (R=0.657;
p=0.002), S. polyceratium (R=0.778; p=0.001)
and P. gymnospora (R=0.461; p=0.001).

Table 3. Average dissimilarity between macrophytes and individual taxa with major contributions (cut off 40%)

H. wrightii H. musciformis S. polyceratium P. gymnospora

Halodule wrightii Eurystomina (24.0);

Acanthonchus (5.4);

Halalaimus (5.2);

Chromadorina (5.2)

Euchromadora (19.7);

Oncholaimus (12.8);

Chromadora (7.5)

Euchromadora (29.5);

Chromadorina (14.0)

Hypnea musciformis 85.72 Eurystomina (21.5);

Euchromadora (15.3)

Oncholaimus (8.7)

Euchromadora (24.8);

Chromadorina (14.5)

Sargassum polyceratium 76.70 82.65 Euchromadora (29);

Chromadorina (14.9)

Padina gymnospora 81.56 85.88 72.53

Table 4. Nematode feeding types found on macrophytes and in sediments at Pedra do Xaréu, PE, Brazil

Feeding types H. wrightii H. musciformis S. polyceratium P. gymnospora Sediments Total

1 A 1 1 4 1 2 4

1 B 1 4 1 3 6 10

2 A 9 15 9 12 18 32

2 B 5 6 5 6 6 14

G-value 1.789 0.484 5.962 0.441 0.448

G3;0.05= 7.815

(1A=selective detritivores; 1B=non-selective detritivores; 2A=epigrowth feeders/herbivores; 2B=carnivores/omnivores).

Figure 6. MDS ordination (stress=0,12) from transformed

abundances of nematodes on Sargassum polyceratium (D),
Hypnea musciformis (,) Halodule wrigthii (n), Padina gymnos-

pora (e) and sediment (h).
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Discussion

Studying meiofauna and seagrasses, Hall & Bell
(1993) found that resources provided by epiphytic
algae are probably related to algal morphology.
In experiments Lee et al. (1977) saw that the
attractiveness of a particular algal species varied
presumably depending on the specific animals
available in the community for recruitment at the
time of the experiments. The animals seem to be
selectively recruited to patches of some species of
algae but not to others, supporting the hypothesis
that selective recruitment of meiofauna can be one
of the mechanisms that establishes the spatial het-
erogeneity so often observed in natural colletions of
meiofauna.

Jarvis & Seed (1996) suggested that the linkage
between phytal meiofauna and microorganisms
might be as strong as that between the sediment
meiofaunal distribution and microorganisms pat-
ches. Literature suggests attraction of meiobenthic
taxa and particularly nematodes to microalgal
patches, explaining patchiness and distribution of
these animals both in the sediment and in the water
column (Warwick, 1977; Admiraal et al., 1983;
Trotter & Webster, 1983; Preston & Moore, 1988;
Blanchard, 1991; Martin-Smith, 1993; Jarvis &
Seed, 1996; Moens et al., 1999; Ullberg & Ólafsson
2003; Ólafsson et al., 2004).

Differences among the fauna of dissimilar algal
species has been shown by several authors (e.g.,
Edgar, 1983; Chemello & Milazzo, 2002), although
faunal variation among macrophytes within a sin-
gle locality is certainly more subtle (Edgar, 1983).
These affirmations match with our results, from
which we can deduce that, although the dominant
genera among the macrophytes are not the same,
the composition of nematode assemblages at Xaréu
Beach is similar on all phytal substrates.

In this study, Sargassum polyceratium and
Padina gymnospora showed larger structural

complexity (as revealed by their highest values of
K), when compared to other macrophytes. How-
ever, the higher diversities of genera were found on
H. musciformis and S. polyceratium. Our results
match those of Wieser (1951, 1959) where despite
the significant differences found among the struc-
tural complexity of the macrophytes, the structure
of nematode communities were not different
among the four substrates investigated. Studying
seagrasses (Halophila ovalis, H. stipulacea, Halod-
ule wrightii, Thalassia hemprichii and Syringodium
isoetifolium), De Troch et al. (2001) found no sig-
nificant effect of morphology on total meiofauna
and nematode densities; the overall effect of leaf
morphology and related biomass of the seagrass
species on meiofauna was indirect. They pointed
out that the habitat selected by the seagrass species
in view of its role in the succession, in terms of
grain size, organic matter and pigments determine
the associated meiofauna.

At Pedra do Xaréu, Brazil, the nematode bio-
diversity was related to the structural features of
macrophytes’ habitats and the dominant genus
varied accordingly. Chromadora was dominant
on Sargassum polyceratium; Chromadorina, on
Halodule wrighti; and Halalaimus on Hypnea
musciformis and Padina gymnospora. The shape
of Padina gymnospora with a large surface helps
detritus settlement that provides more food sources
since generally phytal meiofauna do not feed on the
host plant tissues (Gee &Warwick, 1994; Chemello
& Milazzo, 2002; De Troch et al., 2003). Particu-
larly increased levels of detritus cause large in-
creases in nematode population (Wieser, 1954;
Mukai, 1971; Findlay, 1982; Findlay & Tenore,
1982; Trotter & Webster, 1983; Preston & Moore,
1988; Gourbault & Decraemer, 1993).

The highest densities were observed on Padina
gymnospora although the highest genera richness
was found on Hypnea musciformis. Albay &
Aykulu (2002) found that the plant architecture

Table 5. Exclusive nematode genera on macrophytes and in sediments at Pedra do Xaréu, PE, Brazil

Feeding types H. wrightii H. musciformis S. polyceratium P. gymnospora Sediments Total

1 A 0 0 3 0 0 3

1 B 1 1 0 1 2 5

2 A 1 6 2 3 3 15

2 B 0 0 2 1 1 4
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and their position in the littoral region affected the
epiphytic algal colonization and their consumption
by invertebrates. In our case we observed that
nematodes found only on Padina gymnospora and
Halodule wrightii did not exhibit well developed
sensilla. Perhaps because of the higher amount of
detritus present on the algae, these animals do not
need well developed sensilla to look for food.
Among the nematodes found only on Sargassum
polyceratium and Hypnea musciformis, it was
possible to find nematodes with well developed
sensilla, specially on Sargassum polyceratium that
shows a more elaborate morphology with vesicles
and curled loaves. This shape allows less deposit of
detritus and the animals must be capable of
looking for their food. The same was reported by
Bouwman et al. (1984) where nematodes from
Aufwuchs (nematode associations on macro-
phytes, cyanophytes and decaying materials drif-
ted ashore) do not need to select food, so sensory
organs are not essential in this biotope. This agrees
with Edgar (1999) when he says that invertebrate
communities are primarily structured by food
availability.

In this study, the most abundant phytal nema-
todes genera belong to the Chromadoridae.
Chromadorids are frequently associated with mar-
ine macrophytes (Trotter & Webster, 1983). This
predominance is the same for Plymouth area and
Chile (Heip et al., 1985). Chromadoridae is always
dominant or well represented on phytal habitats
(Moore, 1977; Kito, 1982; Trotter &Webster, 1983;
Bouwman et al., 1984; Heip et al., 1985; Wetzel
et al., 2002; Atilla et al., 2003). Among the genera
of the family, Chomadora is the most commonly
found on different algae and in different locations.
Palmer (1988) reports the presence of Chromado-
ridae in the water column or at the sediment sur-
face, which may facilitate settlement on the algae.
Wieser (1954) used dominance of Chromadoridae
as an indicator of the degree of sedimentation in
littoral areas.

Oncholaimidae is greatly abundant in nema-
tode associations among algae in Great Britain
(Warwick, 1977), but at Xaréu Beach this family
was poorly represented. The dominance of Mon-
hysteridae as observed by Wieser (1954), where
Theristus was the main genus, and by Hopper &
Meyers (1967) did not match our results either,
since this family was also poorly represented.

The dominance of Chromadoridae also reflects
the dominance of epigrowth-feeders (2A). Some
researchers have suggested that population of epi-
growth feeders increases during the summer
months. This might be associated with the increase
of light and consequently the epiflora, especially
diatoms, which are a major food source for these
species (Hagerman, 1966; Tietjen & Lee, 1973;
Warwick, 1977; Trotter & Webster, 1983, Wetzel
et al., 2002). The NE region of Brazil has ‘summer’
conditions during almost the entire year. Light is
always present and temperature is never under
20 �C. This may explain the dominance of this
feeding type.

Trotter &Webster (1983) emphasized that some
recent studies have considered the abundance and
distribution of particular feeding types and the
parameters affecting this ecological pattern. On the
other hand, Warwick (1981) said that the occur-
rence of a species in a specific biotope is not only
determined by its feeding behavior, but also factors
such as reprodutive capacity, tolerance to envi-
ronmental conditions, competition and predation,
which all play roles in the survival strategy of
nematode species (Bowman et al., 1984). Based on
experimental studies in a soil food web,Mikola and
Setälä (1998) found out that species-specific effects
were observed more than functional group effects,
so the functional group probably does not perform
the same or a very similar function but in marine
environments similar studies are scarce (Moens &
Vincx, 1997; DeMesel et al., 2003). Riera & Hubas
(2003) mentioned that previous experimental and
field studies have revealed the complexity of feeding
strategies of meiobenthos. In spite of plant and
shore site choice potentially competing species are
frequently encountered on the same plant (Seed &
Boaden, 1977).

The nematode densities ranged from 0 to
0.6 ind./ml. Low densities of Nematoda are well
recognized in phytal habitats, (Mukai, 1971; Kito,
1975; Hicks, 1977b; Coull & Wells, 1983; Johnson
& Scheibling, 1987; Preston & Moore, 1988;
Curvêlo & Corbisier, 2000; Oliveira et al., 2000),
and perhaps due to this fact, few authors have
worked with density data (Kito, 1982; Mukai
1971). Kito (1975) measured densities in square
centimeters of seaweed. He found values ranging
from 2.05 to 1287.77 ind./10 cm, and 1.40 to
368.90 ind./g, while Mukai (1971), reported
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densities ranging from 44.90 to 116.35 ind/sea-
weed on Sargassum serratifolium in the Japan sea.
We can deduce nematode phytal densities from
our results multiplying those values obtained by
known plant volume. Thus, we have 0 to 175 ind./
plant in this work, a similar range to those values
reported by Mukai (1971).

The presence of a different nematode commu-
nity associated to the macrophytes compared to
the interstitial community confirmed one of the
initial hypotheses of this work.

While 22 genera out of 38 were exclusive for
phytal, in the sediment more than 50% were
exclusive for interstitial habitat. Hopper & Meyers
(1967) found that nematodes living on seagrass beds
were not really epiphytic due to the large amount of
detritus derived from the plants. These authors said
that these habitats contain a typical fauna, includ-
ing Metoncholaimus, Daptonema, Spirinia and
Gomphionema the dominant genera. However, the
epigrowth feeders Dichromadora, Nudora, Paracy-
atholaimus, Spirobolbolaimus, Desmodora and
Epacanthion were the most abundant interstitial
genera in our results. Nevertheless, the dominant
feeding type was similar in sediments and on plants.
Several authors affirmed that the presence of mac-
rophytes increase food availability, habitat com-
plexity and shelter for the fauna. It could explain the
similar trophic pattern found between the two
communities, phytal and interstitial.

Moore (1971) pointed out a characteristic phy-
tal genera association: Anticoma, Thoracostoma,
Phanoderma, Enoplus, Oncholaimus, Paracanthon-
chus, Chromadora and Euchromadora and most of
these were found at Pedra do Xaréu, Brazil.

Epigrowth feeders/herbivores dominated on all
substrates at Xaréu Beach. These results are similar
to those obtained by Warwick (1977), Moore
(1971) and Kito (1982), who described epistratum
feeders’ dominance on phytal environments. The
presence of predators/omnivores on H. muscifor-
mis, an algae generally found in tide pools and
sheltered habitats, might be the consequence of the
seaweed structure, which is fine, occurs in tufts, and
does not offer physical protection to the associated
communities. Moore (1971) pointed out that some
trophic groups may be related to the habitat
structure and/or environmental condition: bigger
individuals, predators, are better able to exploit the
macrophytes habitats, which are exposed to wave

action, while the smaller individuals, epistrate
feeders, usually dominate sheltered areas. Wieser
(1959), studying the nematode fauna associated to
macroalgae holdfasts in Chile, has found in an
exposed beach, a co-dominance between epistra-
tum feeders and predators/omnivores genera. The
dominance of epigrowth feeders in this study sug-
gests that the food webs in these shallow systems
(phytal and sediment) are based on detritus and
benthic primary producers (Moore, 1971; War-
wick, 1977; Findlay, 1982; Findlay & Tenore, 1982;
Coull & Wells, 1983; Edgar, 1983; Trotter &
Webster, 1983, Gee & Warwick, 1994; Wetzel
et al., 2002).

Bouwman et al., (1984) concluded that the
nematode species are adequately adapted to inter-
stitial biotopes not only in their morphology but
also in their behavior, which was the reason they
found quite different species on phytal habitat.

Conclusions

The phytal nematofauna from Xaréu Beach (Per-
nambuco, Brazil) was not different among the
macrophytes, but the dominant genera associated
to each species were different, suggesting that the
substrate structural complexity may influence each
genus’ biology, but not the assemblage structure.
The major trophic groups are epigrowth feeders,
suggesting the existence of a benthic food web
based on detritus and benthic primary producers.
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