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Amethod is presented for changing over from a single-layer shallow-water model to a multilayer model with

hydrostatic pressure profile and, then, to a multilayer model with nonhydrostatic pressure profile. The method

does not require complex procedures for solving the discrete Poisson’s equation and features high computa-

tion efficiency. The results of validating the algorithm against experimental data critical for the numerical dis-

sipation of the numerical scheme are presented. Examples are considered.
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The parameters of wind-driven waves for seaports, off-

shore structures, sea intakes, and other hydraulic-engineering

structures (HES) are usually determined:

— based on the regulations [1, 2], which take approxi-

mate account of wave diffraction and refraction, disregarding

the bottom topography;

— based on numerical models [3, 4], which also make

some assumptions. For example, some well-known numeri-

cal models (such as the SWAN spectral wave model) are not

phase-resolving and produce incorrect data in the space be-

hind the breakwater [4].

Such important phenomena as the nonlinear interaction

of currents and waves were either disregarded or described

rather approximately. For example, it was proposed in [4]

to use Mike21® software to compute the flow field to then

superimpose it on the wave field computed with CGWAVE.

It is not quite clear how to do that in solving an essentially

nonlinear problem. In [4], it is also pointed out that comput-

ing the flow and wave fields within the framework of a sin-

gle hydrodynamic problem requires excessive computational

power and, thus, is hardly feasible today. The extended ver-

sion of Mike21BW® allows describing both currents and

waves based on one- and two-dimensional Boussinesq mod-

els, but has limitations on the wavelength�depth ratio [5].

The limitations associated with the use of a Boussinesq-type

approximation to take into account the effect of non-hydro-

static pressure are described in [6]. Anyway, the

two-dimensional problem statement neglects the three-di-

mensional features of flow without which the algorithm fails

the tests presented below.

Another important aspect is the description of the irregu-

larity of waves and the wave spectrum in the presence of

complex bottom topography and shore-protection structures.

In these cases, the nonlinear interaction of harmonics in the

wave spectrum is of importance as well.

It is recognized that the Russian literature pays inade-

quate attention to the validation of numerical methods for

studying waves, though the foreign literature provides abun-

dance of experimental data and analytical solutions that can

be used for validation purposes.

Here, we use a unified multilayer free-surface flow

model without resort to the hydrostatic pressure hypothesis

and Boussinesq approximation. In other words, we the

closed three-dimensional system of hydrodynamic equations

is solved. Such models have actively been developed and

tested abroad over the last 10 years [6 – 14]. The model al-

lows for:

— different velocity (or direction) of the current at each

elevation, i.e., in each of the layers, which are not limited in

number;

— real pressure profile (the pressure is different at dif-

ferent points);
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— forces of friction (with the seabed and free surface);

— viscous terms (usually disregarded in foreign publi-

cations on wave problems [8, 14]);

— the Coriolis force;

— the effect of wind on the free surface;

— additional sources of currents at different depths: in-

takes, outlets, inflows.

Moreover, the model allows for heat transfer, vertical

temperature stratification, and the dynamics of ice cover for-

mation and bottom deformation. However, these problems

are not among wave problems and will be addressed in a sep-

arate paper.

Another application of the unified multilayer free-sur-

face flow model is the simulation of the effect of a solitary

wave (soliton or tsunami) on maritime HESs in earthquake

regions. Using the ordinary shallow-water equations (or even

the multilayer model) with the hydrostatic pressure hypo-

thesis to solve wave problems is unacceptable because such

an approximation produces a serrated wave profile with

vertical front. Accepting the hydrostatic pressure hypothesis

in modeling tsunamis would lead to correct results (that are

in agreement with the analytic solutions) only for a long soli-

tary wave [15].

Computational Algorithm

1. For further complication, we will use the single-layer

shallow-water model based on the Saint-Venant equations.

This model is well-known and was validated against prob-

lems with discontinuous solutions (for example, dam-break

waves); therefore, we will omit its description. The numeri-

cal scheme for the single-layer model with hydrostatic pres-

sure was detailed in [16, 17]. Features of this scheme are its

conservatism in mass and momentum, the second order of

accuracy in two coordinates and time (Hancock algorithm

[18, 19]), capability of dealing with discontinuous solutions

(HLLE, Roe, etc. schemes [18]), including the case of flow

spreading over the dry bottom. The control volume method is

used in plan, where the mesh can be either curvilinear or

irregular [19].

2. The next step of detalization is to change over to a

multilayer model by partitioning the flow into depth layers,

but still assuming hydrostatic pressure profile. This change-

over allows considering the different directions of currents at

the bottom and free surface when the wind load acts on the

surface of an enclosed body of water. Similar multilayer

models are widely used by oceanologists, but rarely applied

to HESs. The multilayer free-surface flow ó-model with hy-

drostatic pressure was detailed in [20 – 22]. It incorporates

mass and momentum exchange between neighboring fluid

layers, but does not permit variation in the layer proportion

with time. There are other multilayer models in which the

fluid mass in each layer is constant [23, 24] and there is no

mass exchange among layers. They also employ the control

volume method, but cannot solve even the problem of

wind-driven current in an enclosed body of water.

3. The final stage of detalization is the multilayer free-

surface flow model with nonhydrostatic pressure. Note that

the approach we use to correct the pressure profile can also

be applied to ordinary (single-layer) shallow-water models.

The method of deriving Poisson’s equation for pressure by

determining the velocity components at each time step from

the momentum balance equations and then substituting them

into the continuity equation is well-known. The same is true

for deriving the equation for pressure corrections in the case

to decomposition of equations [11, 25]. Such an approach

was frequently used in combination with ó-coordinates

[8, 26] or an other vertical discretization method [14]. Possi-

ble problems and limitations are the following.

The chief difficulty is to solve, rather than derive, the

discrete Poisson’s equation: iteration methods for solving it

converge poorly and consume most of the computation time.

This requires using rather complex iteration algorithms such

as Bi-CGSTAB [7, 9, 14], which is a variation of Krylov’s

method, or GMRES, which is compared with Bi-CGSTAB in

[11] and is incorporated, along with others, into Flow-3D®

commercial software (based on the VOF method), its conver-

gence being guaranteed only if the ratio of mash spacings in

the directions x, y, z is less than 10.

It is often difficult to use meshes that are irregular (in-

cluding triangular) in plan.

Improper discretization of the equation for the pressure

correction ÄP for ó-schemes may cause convergence prob-

lems in the case of flow spreading over the dry bottom.

Not all methods that use hydrostatic pressure profile can

deal with discontinuous solutions occurring in problems with

break waves and hydraulic jumps.

We attempt here to use the method of successive approx-

imations to determine ÄP, doing without complex algorithms

of solving Poisson’s equation. We will tend to derive a dis-

crete Poisson’s equation for ÄP that converges, i.e., its rela-

tive error å � 10–3 – 10–6 (depending on the type of problem)

is reached, in 10 to 30 (rather than hundreds of) iterations.

There should be no additional limitations on the ratio of

mesh spacings in x, y, z. The method should not introduce

considerable numerical dissipation and should be capable of

dealing with discontinuous solutions such as bores (break

waves).

The main application of the algorithm presented here

is to solve wave problems with adequate accuracy and com-

putational efficiency. We do not mean to compete with

Flow-3D®, which has been used by the VNIIG for five years

and proved to be effective in analyzing spillway and pen-

stock flows and in solving other problems of applied hydrau-

lics. However, using it to solve wave problems involves dif-

ficulties associated with very long computation time and se-

vere requirements to the computation mesh. The module of

solving wave problems built in the Mike21BW® software

(and, possibly, Mike 3) is based on the Boussinesq approxi-

mation, which introduces some limitations on its stability

and applicability.
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It is impossible to cover in one paper all the mathematics

and numerical algorithm implementing the three hierarchies

of the numerical model. A detailed description of the multi-

layer model and the procedure for correcting the pressure

profile can be found not only in [16, 22], but also in [27]

where there is also additional video materials. Therefore, we

now descend to examples.

Examples of Test Calculations

Propagation of a Solitary Wave (Soliton). This is a

typical test always used in similar studies [7, 10, 14]. The an-

alytic solution for the horizontal velocity u and the surface

profile ç is as follows [12]:

c g H h� �( ); � � � �( ) ;x x ct
H

h
0 3

3

4

u gh
H

h
� sech

2
( )� ; ç = h + H sech2(ö). (1)

The initial velocity u (0, t ) was specified on the left

boundary x = 0, according to (1). The length of the computa-

tional domain was 600 m, and the mesh consisted of 500

nodes. The initial position of the soliton crest x
0
= 80 m, the

soliton height H = 2 m, and the depth h = 10 m. The number

M of layers was varied from 1 to 12 and weakly affected the

results of this example. Figure 1 shows the soliton profiles at

different time points for the two-layer model. The dashed

line represents the analytic solution for t = 40 sec. The oscil-

lations of ç behind the soliton are not so high (less than

3 cm) as in many similar calculations [12]. This is owing to

the accurate (parabolic) approximation of the pressure pro-

file near the free surface [27]. The hydrostatic approximation

cannot be applied to solve this problem [15].

Transformation of a Sinusoidal Wave over a Sub-

merged Obstacle. Beji-Battjes Experiment (Delft, 1993).

A schematic of the experiment [28] and the profiles of the

free surface at t = 40 sec (final second of computation) are

shown in Fig. 2. The amplitude of the wave produced by the

wave generator (on the left) was equal to 1 cm and its period

was 2.02 sec. The bottom on the right had a 1:25 slope and

served as a wave absorber. The same bottom was in the nu-

merical model, and, as already mentioned, no problems be-

cause of waves running on the dry bank arose during the

computations. However, in many foreign studies, such as

[10], the bank on the right was replaced by a sponge layer.

This test is rather sensitive to numerical dissipation [7].

Therefore, a fine mesh (Äx = 1.25 cm) was used in [7, 10]

to numerically simulate the waves. We used a coarser mesh

(Äx = 2 cm), and the time step (of the order of Ät =

= 0.0067 sec) was chosen automatically based on the crite-

rion CFL = 0.9. In this problem, the three-dimensional nature

of the flow is manifested as dependence of the results on the

number of layers, especially at points 8 – 11 (wave gauges,

Fig. 2). At points 8 and 11, the single-layer model, as well as

many multilayer models [11], produces results that are far

from being in agreement with the experimental data [7, 10].

Figure 3 shows the results obtained with the six-layer model

(M = 6; uniform partition). At measurement points 4 – 6, the

agreement with the experimental data is good even for

M = 2 – 3.

Transformation of Waves over a Sloped Bottom

with an Elliptic Shoal. The previous two tests represented

a two-dimensional vertical section of the flow. The third test

example is three-dimensional. Its goal was to simulate an ex-

periment (schematized in Fig. 4) on wave propagation over a

complex bottom [29]. The blue lines show the initial depths,

while the eight lines on which the wave heights were mea-

sured are shown in red. In the coordinate system rotated by

ö = 20°

x1 = y cos ö + x sin ö; y1 = x cos ö – y sin ö

the bottom profile is described by
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Fig. 1. Propagation of a solitary wave: two-layer model. The

dashed line represents the analytic solution for t = 40 sec.
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Fig. 2. Schematic of the Beji-Battjes experiment [28]. The figures

with arrows indicate the locations of wave gauges.



Zb (x1, y1) = D – min(0.45, max[0.1; 0.45 – 0.02(5.84 + y1)]).

The wave generator created a sinusoidal wave of height

H
0
= 2A = 4.64 cm and period T = 1.0 sec. The total time of

experiment was 34 sec. It was sufficient for the wave pattern

to stabilize, but insufficient for the wave to reach the right

boundary. The maximum wave height H (from trough to

crest) at each point of the red lines (Fig. 4) was determined

during the last four seconds (four wave periods) of the exper-

iment. In the numerical experiment, this corresponded to the

determination of the minimum�maximum displacement of

the free surface at the measurement points of these lines

within each of the last four periods, followed by averaging

over the four measurements. The same experimental data

were used to validate the numerical models in [7, 14]. It ap-

peared that the accuracy of the results strongly depends

on the numerical dissipation of the scheme. For the algorithm

presented here, a two-layer model with a 750 × 500 mesh

(Äx = Äy = 4 cm; foreign researchers sometimes use Äx =

= 2.5 cm) is sufficient. The time step (of the order of Ät =

= 0.007 sec) was chosen automatically based on the criterion

CFL = 0.75. The wave generator was modeled by harmonic

variation in the flow over the entire depth on the left. Slip-

page boundary conditions were specified on the lateral walls

of the basin. Quadratic bottom friction corresponded to the

Manning coefficient n = 0.012. A no-flow condition was

specified on the right boundary, and a sponge layer (which is
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also used in Mike21BW®) absorbing the energy of the waves

was added to the last section of length L = 5 m of the compu-

tational domain. The coefficient of additional linear friction

on this section is as follows [7]:
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The calculated results are presented in Fig. 5. The maxi-

mum wave heights resulting from wave interference (mea-

surement lines 3, 4, 5) are predicted quite accurately. The run

time on an ordinary all-in-one PC (four processors) did not

exceed 40 min (though the programming language is

Delphi), processor utilization was about 98%, and the algo-

rithm was easily parallelized. The results obtained with a

mesh twice finer in all three coordinates are also in good

agreement with the experimental data.

Calculations for Real Hydraulic-Engineering Struc-

tures. Two additional examples were numerically analyzed

to test the efficiency (speed) of the software and its stability

for complex bottom configurations inherent in real objects.

One example is the S1 navigation pass (with the floating

gates open) of the St. Petersburg Flood Protection Barrier

(Fig. 6). The computational domain was 929 m along the

x-axis (along the wavefront) and 1395 m along the y-axis

(along the wave propagation). The mesh consisted of

465 × 448 nodes, and the depth was divided into five layers.

The dynamics of the flow (identical on all depth) for genera-

tion of irregular waves was specified on the right boundary:

five harmonics with different phases and amplitudes and an

average wave period of 8 sec, the height (from trough to

crest) of a harmonic with this period being 2 m. The left

boundary was a wall-the Sommerfeld boundary condition

was not specified there. The time of computation for full-

scale conditions was 240 sec, and the total time of computa-

tion was about 35 min. Despite wave runup on moles and

banks, the algorithm remained stable, the time step of the nu-

merical scheme was absolutely stable, and Poisson’s equa-
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tion was solved in 15 iterations even after ten time steps.

In the right lower corner of the figure (near the mole),

so-called clapotis was observed [4]. Though a wave of me-

dium length covered only 26 nodes of the mesh, it appeared

sufficient, as was noticed in solving the test problems (30 to

35 nodes per wavelength is optimal). This is due to the sec-

ond order of accuracy of the model in coordinates. Disabling

this option drastically worsened the accuracy of computa-

tion. The waves quickly died away, and the results obtained

with coarser and finer mashes were no longer in agreement.

The other example is four cylindrical footings of an off-

shore drilling platform (Fig. 7). The footings, each of radius

10 m, were located at the corners of a square with a diagonal

length of 100 m. The square was turned by 30° to the wave-

front arriving from the left. The initial depth was 20 m, and

the waves were irregular, as in the previous example (the av-

erage period 8 sec; the average wave height 4 m). The wave

spectrum is not important for test computations. The compu-

tational domain was 200 m in width and 350 m in length, the

mesh spacing Äx = Äy = 0.3 m, and the depth was divided

into eight layers to determine the wave load on each footing.

The Sommerfeld boundary condition was specified on the

right boundary (Fig. 7). The wave generator was intention-

ally placed close to the footings to show how the waves re-

flected from them alter the wave pattern, even near the left

boundary. When numerically solving such problems or when

conducting physical experiments in a wave basin, it is, obvi-

ously, necessary to place the wave generator at a greater dis-

tance to enlarge the modeled domain. Note that the method

described here also allows calculating the loads on each of

the footing with allowance for the phase, which is important

for testing the stability of the whole structure.

CONCLUSIONS

The proposed method of solving wave problems based

on the three-dimensional multilayer free-surface flow model

has demonstrated high computational efficiency and, what is

more, reliability. Not all examples against which it was

tested have been presented. All the examples demonstrated

the good convergence of the iterative determination of the

pressure correction ÄP or the stability of the whole algo-

rithm. The algorithm is of the second order of accuracy in

both time and coordinates. This allows solving wave prob-

lems sensitive to numerical dissipation. It is not required to

select the parameters of the algorithm to solve a specific

problem; it is sufficient to select an appropriate mesh.

Spreading of the flow over the dry bottom, such as wave

run-up on a bank, does not present difficulties. The algorithm

can easily be adapted to irregular meshes and parallelized.

The method remains stable even when solving problems

of the propagation of a bore or modeling hydraulic jumps.

It is planned to conduct a series of computations for similar

problems to compare with Flow-3D®. A version of the algo-

rithm is being developed for irregular meshes. The software

as it stands can be used to analyze the transformation of

wind-driven waves or tsunamis in water areas with complex

configuration of the bottom and breakwaters.
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