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Abstract The marginalized two-part models, including the marginalized zero-inflated 
Poisson and negative binomial models, have been proposed in the literature for modelling 
cross-sectional healthcare utilization count data with excess zeroes and overdispersion. The 
motivation for these proposals was to directly capture the overall marginal effects and to 
avoid post-modelling effect calculations that are needed for the non-marginalized conven-
tional two-part models. However, are marginalized two-part models superior to non-mar-
ginalized two-part models because of their structural property? Is it true that the marginal-
ized two-part models can provide direct marginal inference? This article aims to answer 
these questions through a comprehensive investigation. We first summarize the existing 
non-marginalized and marginalized two-part models and then develop marginalized hurdle 
Poisson and negative binomial models for cross-sectional count data with abundant zero 
counts. Our interest in the investigation lies particularly in the (average) marginal effect 
and (average) incremental effect and the comparison of these effects. The estimators of 
these effects are presented, and variance estimators are derived by using delta methods and 
Taylor series approximations. Though the marginalized models attract attention because of 
the alleged convenience of direct marginal inference, we provide evidence for the impact 
of model misspecification of the marginalized models over the conventional models, and 
provide evidence for the importance of goodness-of-fit evaluation and model selection in 
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differentiating between the marginalized and non-marginalized models. An empirical anal-
ysis of the German Socioeconomic Panel data is presented.

Keywords Count data · Excess zeroes · Two-part models · Marginal inference · 
Marginalization · Healthcare utilization

1 Introduction

Count data collected in healthcare utilization studies exhibit remarkable features, including 
excess zeroes from the non-users of healthcare facilities, overdispersion, and multi-modal-
ity due to between-subject heterogeneity (Cameron and Trivedi 2005, 2013). The conven-
tional two-part count models, such as zero-inflated Poisson and negative binomial models 
and hurdle Poisson and negative binomial models, have long been used to accommodate 
these features when analyzing healthcare utilization data in health economics and health 
services research. Recently, several marginalized two-part count models were proposed in 
the literature. These marginalized models were largely promoted because the models can 
allegedly provide “direct” marginal inference, whereas their non-marginalized counterparts 
cannot do so. This article is devoted to determine whether it is true that the marginalized 
two-part models are superior to non-marginalized two-part models for count data with 
excess zeroes because of the claimed advantage of direct marginal inference.

Investigational studies in healthcare utilization in health economics and health services 
research often set up their primary outcome as the number of usages of healthcare facili-
ties, such as visits to primary care doctors or emergency department and days of hospitali-
zation after surgeries. A consequence of this is that the outcomes are count observations 
expressed numerically as non-negative integers. Excessive zeroes occur when the studies 
involve participants that do not use any healthcare facilities during the study period. To 
account for excess zeroes in count data, Lambert (1992) first introduced the zero-inflated 
Poisson (ZIP) models as a two-part mixture model that combined a regular Poisson model 
with a latent binary distribution that governs the probability of generating structural zeroes 
and generating the Poisson counts. Since then, the ZIP models have been one of the most 
popular models for count data with excess zeroes (Winkelmann 2008) and have been 
extended to multivariate settings (Li et  al. 1999) and models with random effects (Hall 
2000). Recently, Long et al. (2014) modified the ZIP models and developed the marginal-
ized ZIP (MZIP) models by specifying linear predictors for the overall mean of the count 
variable rather than using a linear predictor for the mean of Poisson component in the ZIP 
models. The MZIP models were claimed to be able to provide overall marginal effect infer-
ence while accommodating the mechanism of mixture of a random population and a degen-
erate component and also avoiding the misuse of conditional mean as the population mean.

A natural extension of the ZIP models is the zero-inflated negative binomial (ZINB) 
models proposed by Greene (1994), in which the Poisson model in the ZIP models is 
replaced by a negative binomial model and the component for structural zeroes remains. 
When equality of mean and variance fails even after structural zeroes are split, the ZINB 
models would be a better choice than the ZIP models. Ridout et  al. (2001) indicated a 
serious bias of parameter estimates by the ZIP modelling if the nonzero counts are over-
dispersed in relation to the ZIP models, and they provided a score test for testing the ZIP 
models against the ZINB models. As a parallel proposal with Long et al. (2014), Preisser 
et al. (2016) introduced the marginalized ZINB (MZINB) models and justified the MZINB 
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models by comparing parameter estimates with the ZIP and MZIP models from fitting sim-
ulated MZINB data. The rationale behind the MZINB models is identical to that of MZIP 
models in terms of seeking instant marginal inference. The difference is that the MZINB 
models specified the negative binomial distribution, rather than the Poisson distribution, to 
account for additional overdispersion.

Closely related to these zero-inflated models are the hurdle models that were originally 
proposed by Cragg (1971) and formally presented by Mullahy (1986). The hurdle models 
are dichotomous models combining a binary distribution of probing the count below or 
above the hurdle with a truncated count model above the hurdle. Hurdle-at-zero models are 
the most common hurdle models, among which the hurdle Poisson (Mullahy 1986) (HP) 
and hurdle negative binomial (HNB) models developed by Pohlmeier and Ulrich (1995) 
are the top choices in empirical analysis. Because of the complete separation of zero counts 
from the population of positive counts, hurdle models can accommodate count data with 
either zero-inflation or zero-deflation and either underdispersion or overdispersion based 
on the underlying count distributions. Although Kassahun et  al. (2014) and Tabb et  al. 
(2016) explored the marginalized hurdle models for panel count data, no research in the lit-
erature includes formal discussion of marginalized hurdle models for cross-sectional count 
data with excess zeroes.

The primary objective of this article is to rectify the previous misleading statement on 
the marginalized two-part models over their non-marginalized counterparts in characterizing 
the count data with excess zeroes. This article thoroughly defines and derives the (average) 
marginal and incremental effects of a covariate with respect to the overall marginal mean of 
count outcomes with excess zeroes in the context of four non-marginalized two-part models 
(the ZIP, ZINB, HP, and HNB models) and four marginalized two-part models (the MZIP, 
MZINB, marginalized hurdle Poisson, and marginalized hurdle negative binomial models). 
Among these models, it is the first time that the marginalized hurdle Poisson (MHP) and mar-
ginalized hurdle negative binomial (MHNB) models are formally proposed for cross-sectional 
data. Estimators and variance estimators are developed for the (average) marginal and incre-
mental effect in each of the models. The derived effects and their estimators demonstrate that 
both types of models, either non-marginalized or marginalized, can provide marginal inference 
on the overall marginal mean of count outcomes with excess zeroes. The marginalized models 
have simplified marginal and incremental effects, but there is not any extra computational bur-
den in estimating the effects by using the conventional models. Instead of promoting the use 
of marginalized two-part models, we emphasize that the two types of models should be taken 
as parallel competitors and that unjustified faith in either type of model will result in model 
misspecification bias in statistical inference, including the inference of marginal means. Com-
prehensive numerical studies were conducted and are reported in this article to illustrate the 
consequences on statistical analysis when the marginalized two-part models are misused for 
the data that are generated from the non-marginalized two-part models and vice versa. Sub-
stantial biases were observed in statistical inference in the numerical studies when either type 
of model was mistakenly replaced by its counterpart. We propose a solution to the possible 
misuse of either type of model, which is to conduct rigorous model comparison and selection 
by using the information reflected in the observed data. Simulation studies were conducted 
and are reported to investigate the three model comparison and selection criteria: the effect-
specific mean square error criterion (Dow and Norton 2003), the information criteria, and the 
Vuong’s closeness test (Vuong 1989). The studies verify that the information criteria can best 
select among the two types of models regardless of the magnitude of sample size. Although 
the performance of the mean square error criterion is acceptable, the Vuong’s closeness test is 
not an ideal tool for distinguishing the non-marginalized and marginalized two-part models.
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This article is organized as follows: Sect. 2 introduces the definitions of marginal and incre-
mental effects and their average effects; Sect. 3 reviews the two zero-inflated models (i.e. ZIP 
and ZINB models) and their marginalized peers (i.e. MZIP and MZINB models), including 
their effect estimation; Sect. 4 discusses the two hurdle models (i.e. HP and HNB models) 
and the marginalized hurdle models (i.e. MHP and MHNB models) with effect estimation; 
Sect. 5 derives the variance estimators of marginal effects, incremental effects, and their aver-
age effects in these two-part models; Sect. 6 provides a thorough discussion on the question of 
superiority of marginalized two-part models over non-marginalized two-part models; Sect. 7 
presents our simulation studies for comparison between ZIP and MZIP and between HNB and 
MHNB; Sect. 8 discusses model selection via effect estimates and shows further comparisons 
between paired models based on our simulation results; Sect. 9 reports an empirical analysis 
of German Socioeconomic Panel data using these models.

2  Marginal effects and average marginal effects

Let y be a count response variable (dependent variable) that takes the value of either a posi-
tive integer or zero. Let x = (x1, x2,… , xJ) be a vector of J covariates (independent variables). 
Denote �(x) = E (y|x) the expected value of y, then the marginal effect (Greene 2002), or 
partial effect, of the jth covariate xj on the expected overall outcome is defined as

where j = 1, 2,… , J . The marginal effect allows us to quantify the marginal change in the 
expected overall outcome when covariate xj changes by a small amount while holding other 
covariates x(−j) = (x1,… , xj−1, xj+1,… , xJ)

� constant. The marginal effect is a function of 
both unknown parameters and covariates, and is evaluated at a particular combination of 
covariate values, say x = x(0) , with the parameter estimates. Another quantity of interest 
in health economics and health services research is average marginal effect. Note that the 
marginal effect (1) represents the effect of the subpopulation that satisfies x = x(0) . This 
subpopulation may be a small or even negligible portion of the entire population. When 
the study objective is to assess the marginal effect on the outcomes in the entire population, 
the expected value of the marginal effect over the population distribution of all covariates 
is then the primary interest. This is quantified by the average marginal effect that is defined 
as

in which the expectation is taken with respect to x = (x1, x2,… , xJ).

When xj is a categorical covariate that represents multiple levels or experimental groups, 
the quantity of interest is usually the incremental effect (Greene 2002; Basu and Rathouz 
2005). The incremental effect is defined as

in which l1 and l2 are two levels of covariate xj . The incremental effect measures the differ-
ence in the expected overall outcome at the two levels of xj while holding other covariates 
x(−j) constant. When xj is binary that takes values 1 or 0, the incremental effect from level 
0 to level 1 is

(1)�j(x) =
��(x)

�xj
=

� E (y|x)
�xj

,

E {�j(x)} = E

{
��(x)

�xj

}
,

�j(x) = �(xj = l2, x(−j)) − �(xj = l1, x(−j)),
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The average incremental effect is defined as

in which the expectation is taken with respect to x(−j) = (x1, x2,… , x(j−1), x(j+1),… , xJ).

3  Estimation of marginal effects: zero‑inflated models and marginalized 
zero‑inflated models

3.1  Zero‑inflated Poisson and negative binomial models

The zero-inflated Poisson (ZIP) model (Lambert 1992) for the count data with excess 
zeroes is a mixture of constant zeroes and a standard Poisson model. For the ith outcome yi , 
i = 1, 2,… , n , the ZIP model is given by

in which ci is a Bernoulli variable with mean �i = P(ci = 1) and y∗
i
∼ Poisson (�i) with a 

probability mass function (pmf) g(y∗
i
|�i) = e−�i�

y∗
i

i
∕y∗

i
! . The marginal pmf of yi in the ZIP 

model is

with E (yi) = �i(1 − �i) and var (yi) = �i(1 − �i)(1 + �i�i) . In contrast to the standard Pois-
son model, the overdispersion in the ZIP model is measured by var(yi)∕ E (yi) = 1 + �i�i . 
To further characterize the dependence of yi on the covariates, Lambert (1992) constructed 
a ZIP model as

in which xi = (xi0 ≡ 1, xi1, xi2,… , xiJ1 )
� and zi = (zi0 ≡ 1, zi1, zi2,… , ziJ2 )

� are two vectors of 
covariates that may or may not overlap with each other, � = (�0, �1,… , �J1 )

� is the vector 
of regression coefficients for the Poisson process and � = (�0, �1,… , �J2 )

� is the vector of 
regression coefficients for the excess zeroes, and �0 and �0 are regression intercepts. Let 
� = (��, � �)� denote the vector that contains all unknown parameters in the ZIP model, then 
the log-likelihood function of the model is

In (3), the observed data are represented by the collection of y = (y1, y2,… , yn)
� , 

x = (x�
1
, x�

2
,… , x�

n
)� , and z = (z�

1
, z�

2
,… , z�

n
)� . Estimates of the unknown parameters in the 

�j(x) = �(xj = 1, x(−j)) − �(xj = 0, x(−j)).

E {�j(x)} = E {�(xj = l2, x(−j)) − �(xj = l1, x(−j))},

yi =

{
0 if ci = 1;

y∗
i

if ci = 0,

f (yi) =

{
�i + (1 − �i)e

−�i , for yi = 0,

(1 − �i)e
−�i�

yi
i
∕yi!, for yi = 1, 2, 3,… ,

(2)ln(�i) = x�
i
� and logit(�i) = ln

(
�i

1 − �i

)
= z�

i
� ,

(3)

�(𝜃|y, x, z) = ∑
i=1,…,n; yi=0

ln(ez
�
i
𝛾 + e−e

x�
i
𝛽

) +
∑

i=1,…,n; yi>0

(yix
�
i
𝛽 − ex

�
i
𝛽 − ln yi!)

−

n∑
i=1

ln(1 + ez
�
i
𝛾 ).
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ZIP model can be obtained by maximizing (3) using numerical optimization methods. 
Lambert (1992) also derived the joint probability density function of yi and ci and the 
Expectation-Maximization (EM) algorithm for maximizing the complete log-likelihood 
function.

An extension of the ZIP model is the zero-inflated negative binomial (ZINB) model that 
assumes the count data with excess zeroes are observed from a mixture of constant zeroes and 
a standard negative binomial model. For the ith outcome yi , the ZINB model is given by

in which ci is still a Bernoulli variable with mean �i = P(ci = 1) but yi follows a negative 
binomial distribution NegBin (�i, �) with a pmf

The marginal pmf of yi in the ZINB model is

with E (yi) = �i(1 − �i) and var (yi) = �i(1 − �i)
(
1 + �i∕� + �i�i

)
 . The negative binomial 

model for y∗
i
 in the count component of the ZINB model represents the overdispersed y∗

i
 

in that var (y∗
i
)∕ E (y∗

i
) = 1 + �i∕� . The overdispersion in the ZINB model as a whole is 

measured by var (yi)∕ E (yi) = 1 + �i(1 + ��i)∕� . To describe the dependence of yi on the 
covariates, the ZINB model specifies that

as in (2). Let � = (��, � �, �)� denote the vector that contains all unknown parameters in the 
ZINB model, then the log-likelihood function of the model is

yi =

{
0 if ci = 1;

y∗
i

if ci = 0,

g(yi|�i, �) =
Γ(yi + �)

Γ(�)Γ(yi + 1)

(
�

� + �i

)�( �i

� + �i

)yi

, yi = 0, 1, 2,… .

(4)f (yi) =

⎧
⎪⎨⎪⎩

�i + (1 − �i)

�
�

� + �i

��

, for yi = 0,

(1 − �i)
Γ(yi + �)

Γ(�)Γ(yi + 1)

�
�

� + �i

��� �i

� + �i

�yi

, for yi = 1, 2,… ,

ln(�i) = x�
i
� and logit(�i) = z�

i
� ,

�(𝜃|x, z, y) = −

n∑
i=1

ln(1 + ez
�
i
𝛾 ) +

∑
i=1,…,n; yi=0

ln

{
ez

�
i
𝛾 +

(
𝛼

𝛼 + ex
�
i
𝛽

)𝛼
}

+
∑

i=1,…,n; yi>0

{ yi−1∑
j=0

ln (j + 𝛼) −
(
𝛼 + yi

)
ln
(
𝛼 + ex

�
i
𝛽
)

+ 𝛼 ln 𝛼 + yix
�
i
𝛽 − ln yi!

}
.

The marginal and incremental effects of the ZIP and ZINB models can be derived accord-
ing to the definitions given in Sect. 2 and the modelling framework of the ZIP model. The 
marginal expectation of the response yi in both the ZIP and the ZINB models possesses an 
identical expression as below:

E (yi|xi, zi) = �i(1 − �i) =
ex

�
i
�

1 + ez
�
i
�
.
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Here, to derive the marginal and incremental effects of the two models, we investigate the 
scenario, in which the first J0 covariates in xi are duplicated in zi ; that is, we assume that 
covariate xij in the vector xi and covariate zij in the vector zi are identical covariates for 
j = 1, 2,… , J0 with J0 ≤ J1 and J0 ≤ J2 . Then, the marginal effect �j(xi, zi, �) of covariate 
xij , or zij , with respect to the overall mean of response yi in the ZIP and ZINB models is

When xij is a categorical covariate, the incremental effect �j(xi(−j), zi(−j), �) from level l1 to 
level l2 in xij with respect to yi is

The estimates of the marginal and incremental effects �̂�j(xi, zi, �̂�) and �̂�j(xi(−j), zi(−j), �̂�) are 
obtained by substituting the unknown parameters � in �j(xi, zi, �) and �j(xi(−j), zi(−j), �) with 
their maximization likelihood estimates �̂� . The average marginal and average incremental 
effects of covariate xij with respect to the overall mean of response yi in the ZIP and ZINB 
models are

and

in which Fx,z(x, z) and Fx(−j),z(−k)
(x(−j), z(−k)) are the joint cumulative density functions of 

(x, z) and (x(−j), z(−k)) , respectively. Estimators of the average marginal and average incre-
mental effects are given by averaging the estimated marginal and incremental effects that 
are evaluated at the observed data:

3.2  Marginalized zero‑inflated Poisson and negative binomial models

The formulas of the (average) marginal and (average) incremental effects in the ZIP and 
ZINB models are complex as shown in Sect. 3.1. Especially, both the ZIP and the ZINB 
models cannot provide direct marginal inference on the overall mean of the response due 

�j(xi, zi, �) =
� E (yi|xi, zi)

�xij
=

ex
�
i
�

(1 + ez
�
i
� )2

{�j + ez
�
i
� (�j − �j)}.

�j(xi(−j), zi(−j), �) = E (yi|xi(−j), zi(−j), xij = l2, �) − E (yi|xi(−j), zi(−j), xij = l1, �)

=
e
x�
i(−j)

�(−j)+l2�j

1 + e
z�
i(−j)

�(−j)+l2�j
−

e
x�
i(−j)

�(−j)+l1�j

1 + e
z�
i(−j)

�(−j)+l1�j
.

�̄�j(𝜃) = E x,z(𝜂j(x, z, 𝜃)) = ∫ 𝜂j(x, z, 𝜃) dFx,z(x, z)

= ∫
ex

�𝛽

(1 + ez
�𝛾 )2

{𝛽j + ez
�𝛾 (𝛽j − 𝛾j)} dFx,z(x, z)

�̄�j(𝜃) = E x(−j),z(−j)
(𝜋j(x(−j), z(−j), 𝜃)) = ∫ 𝜋j(x(−j), z(−j), 𝜃) dFx(−j),z(−j)

(x(−j), z(−j)),

= ∫
(

e
x�
(−j)

𝛽(−j)+l2𝛽j

1 + e
z�
(−j)

𝛾(−j)+l2𝛾j
−

e
x�
(−j)

𝛽(−j)+l1𝛽j

1 + e
z�
(−j)

𝛾(−j)+l1𝛾j

)
dFx(−j),z(−j)

(x(−j), z(−j)),

(5)̂̄𝜂j(�̂�) =
1

n

n∑
i=1

�̂�j(xi, zi, �̂�) and ̂̄𝜋j(�̂�) =
1

n

n∑
i=1

�̂�j(xi(−j), zi(−j), �̂�).
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to the fact that these models does not connect a linear predictor of covariates directly to the 
overall marginal mean. Long et al. (2014) and Preisser et al. (2016) proposed marginalized 
versions of the ZIP and ZINB models, named marginalized zero-inflated Poisson (MZIP) 
model and marginalized zero-inflated negative binomial (MZINB) model, respectively. The 
MZIP model (Long et al. 2014) still assumes that the zero-inflated count outcome yi = 0 
when ci = 1 and yi = y∗

i
 when ci = 0 , in which the binary variable ci ∼ Bernoulli (�i) and 

y∗
i
∼ Poisson (�i) with a pmf g(y∗

i
|�i) = e−�i�

y∗
i

i
∕y∗

i
! . However, instead of specifying a lin-

ear model for the log of �i as in (2), the MZIP model assumes that the overall mean of the 
outcome is directly associated with a linear predictor of covariates:

in which vi = E (yi) . With � = (��, � �)� , the log-likelihood function of the MZIP model is

The MZINB model (Preisser et  al. 2016) assumes that the zero-inflated count out-
come yi = 0 when ci = 1 and yi = y∗

i
 when ci = 0 , in which ci ∼ Bernoulli (�i) and 

y∗
i
∼ NegBin (�i) with a pmf described in (4). To get a direct marginal interpretation on 

the overall mean of the response, as in the MZIP model, the same two regression equations 
are constructed in the MZINB model

in which vi = E (yi) . With � = (��, � �, �)� , the log-likelihood function of the MZINB model 
is

The specification of the MZIP and the MZINB models leads to

This concise representation on the overall mean response results in the simplified formulas 
of the marginal and incremental effects for the MZIP and the MZINB models. It can be 
derived that, for these models, the marginal and incremental effects of covariate xij , or zij , 
with respect to the overall mean of response yi are

(6)ln(vi) = x�
i
� and logit(�i) = z�

i
� ,

�(𝜃|y, x, z) = −

n∑
i=1

ln(1 + ez
�
i
𝛾 ) +

∑
i=1,…,n; yi=0

ln
{
ez

�
i
𝛾 + e−e

x�
i
𝛽
(1+e

z�
i
𝛾
)
}

+
∑

i=1,…,n; yi>0

{
yix

�
i
𝛽 + yi ln(1 + ez

�
i
𝛾 ) − ex

�
i
𝛽(1 + ez

�
i
𝛾 ) − ln yi!

}
.

ln(vi) = x�
i
� and logit(�i) = z�

i
� ,

�(𝜃|y, x, z) = −

n∑
i=1

ln(1 + ez
�
i
𝛾 ) +

∑
i=1,…,n; yi=0

ln

[
ez

�
i
𝛾 +

{
𝛼

𝛼 + ex
�
i
𝛽(1 + ez

�
i
𝛾 )

}𝛼
]

+
∑

i=1,…,n; yi>0

[
yi−1∑
j=0

ln(𝛼 + j) − (𝛼 + yi) ln{𝛼 + ex
�
i
𝛽(1 + ez

�
i
𝛾 )}

]

+
∑

i=1,…,n;yi>0

{
𝛼 ln 𝛼 + yix

�
i
𝛽 + yi ln(1 + ez

�
i
𝛾 ) − ln yi!

}
.

(7)E (yi|xi, zi) = ex
�
i
� .

(8)�j(xi, zi, �) =
� E (yi|xi, zi)

�xij
= �je

x�
i
�
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and

respectively. The estimates of the marginal and incremental effects are

The average marginal effect and average incremental effect of covariate xij with respect to 
the overall mean of response yi in the MZIP and the MZINB models are

and

respectively. Estimators of these average marginal and average incremental effects are 
again given by averaging the estimated marginal and incremental effects evaluated at the 
observed data:

4  Estimation of marginal effects: hurdle models and marginalized hurdle 
models

4.1  Hurdle Poisson and negative binomial models

Hurdle models ( Mullahy 1986) characterize the statistical processes that generate observations 
below the hurdle and above the hurdle. Hurdle models are two-component models, in which 
one component is a dichotomous model for a latent binary variable indicating outcomes below 
or above the hurdle and another component is, when the hurdle at zero is crossed, a truncated 
model for outcomes above the hurdle. In the hurdle models, a Bernoulli binary variable ci with 
a mean of �i is combined with a zero-truncated count variable y∗

i
 with a zero-truncated pmf

yielding the outcome yi through the mechanism

(9)
�j(xi(−j), zi(−j), �) = E (yi|xi(−j), zi(−j), xij = l2, �) − E (yi|xi(−j), zi(−j), xij = l1, �)

= e
x�
i(−j)

�(−j)+l2�j − e
x�
i(−j)

�(−j)+l1�j ,

(10)�̂�j(xi, zi, �̂�) = 𝛽je
x�
i
𝛽 and �̂�j(xi(−j), zi(−k), �̂�) = e

x�
i(−j)

𝛽(−j)+l2𝛽j − e
x�
i(−j)

𝛽(−j)+l1𝛽j .

(11)�̄�j(𝜃) = E x,z(𝜂j(x, z, 𝜃)) = ∫ 𝛽je
x�𝛽dFx,z(x, z)

(12)
�̄�j(𝜃) = E x(−j),z(−k)

(𝜋j(x, z, 𝜃))

= ∫
(
e
x�
(−j)

𝛽(−j)+l2𝛽j − e
x�
(−j)

𝛽(−j)+l1𝛽j
)
dFx(−j),z(−k)

(x(−j), z(−k)),

(13)̂̄𝜂j(�̂�) =
1

n

n∑
i=1

�̂�j(xi, zi, �̂�) and ̂̄𝜋j(�̂�) =
1

n

n∑
i=1

�̂�j(xi(−j), zi(−j), �̂�).

(14)g̃(y∗
i
) =

g(y∗
i
)

1 − g(0)
, y∗

i
= 1, 2, 3,… ,

yi =

{
0 if ci = 1;

y∗
i

if ci = 0,
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in which g(y∗
i
) that has support over the nonnegative integers including zero is a pmf before 

zero truncation. The marginal pmf of yi in the hurdle model is

The mean and variance of yi in the hurdle models are

in which �i and �2
i
 are the mean and variance, respectively, of the pmf g(y∗

i
) . In the hurdle 

models, the zero observations are below the hurdle and the positive counts are assumed to 
be produced from the zero-truncated count model when above the hurdle. Because the zero 
and positive count data are completely separated by the two parts of the models, the hurdle 
models can be used to fit both zero-inflated count data and zero-deflated count data. The 
zero inflation or deflation is determined by the magnitude of 1 − �i and 1 − g(0) or, equiva-
lently, the magnitude of �i and g(0). The overdispersion in the hurdle models is measured 

by 
var (yi)

E (yi)
=

�2
i

�i

+
�i − g(0)

1 − g(0)
�i.

Conventional hurdle models include hurdle Poisson (HP) model and hurdle negative bino-
mial (HNB) model. The HP model is constructed by specifying g(y∗

i
) , the pmf before zero 

truncation in (14), to be the pmf of Poisson (�i) . As such, the marginal pmf of yi in the HP 
model is

The HNB model is constructed by specifying g(y∗
i
) to be the pmf of NegBin (�i, �) . The 

marginal pmf of yi in the HNB model is

To characterize the dependence of yi on the covariates, the HP and HNB models set up two 
regression models as in (2):

f (yi) =

⎧
⎪⎨⎪⎩

�i, for yi = 0,
1 − �i

1 − g(0)
g(yi), for yi = 1, 2, 3,… .

E (yi) =
1 − �i

1 − g(0)
�i,

var (yi) =
1 − �i

1 − g(0)
�2
i
+

(1 − �i)(�i − g(0))

(1 − g(0))2
�2
i
,

f (yi) =

⎧⎪⎨⎪⎩

�i, for yi = 0,

1 − �i

1 − e−�i

⋅
e−�i�

yi
i

yi!
, for yi = 1, 2, 3,… .

f (yi) =

⎧⎪⎨⎪⎩

�i, for yi = 0,

1 − �i

1 − {�∕(� + �i)}
�
⋅

Γ(yi + �)

Γ(�)Γ(yi + 1)
⋅

�
�

� + �i

��� �i

� + �i

�yi

, for yi = 1, 2, 3,… .

ln(�i) = x�
i
� and logit(�i) = z�

i
� .
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Denote the parameter vector in the HP and HNB models by � = (��, � �)� and � = (��, � �, �)� , 
respectively, then the log-likelihood function of the HP model is

and the log-likelihood function of the HNB model is

The marginal and incremental effects of the HP and HNB models are considerably com-
plex. The marginal expectation of the response yi in the HP model is

 It can be derived that the marginal effect �j(xi, zi, �) of covariate xij , or zij , with respect to 
the overall mean of response yi in the HP model is

When xij is a categorical covariate, the incremental effect �j(xi(−j), zi(−j), �) from level l1 to 
level l2 in xij with respect to yi is

�(𝜃|y, x, z) = ∑
i=1,…,n; yi=0

z�
i
𝛾 −

n∑
i=1

ln(1 + ez
�
i
𝛾 )

+
∑

i=1,…,n; yi>0

{
yix

�
i
𝛽 − ln(ee

x�
i
𝛽

− 1) − ln yi!
}
,

�(𝜃|y, x, z) = ∑
i=1,…,n; yi=0

z�
i
𝛾 −

n∑
i=1

ln(1 + ez
�
i
𝛾 )

+
∑

i=1,…,n; yi>0

{
yi−1∑
j=0

ln (𝛼 + j) − ln yi! + 𝛼 ln 𝛼 + yix
�
i
𝛽

}

−
∑

i=1,…,n; yi>0

[
ln

{
1 −

(
𝛼

𝛼 + ex
�
i
𝛽

)𝛼}
+ (𝛼 + yi) ln(𝛼 + ex

�
i
𝛽)

]
.

E (yi|xi, zi) = ex
�
i
�

(1 + ez
�
i
� )(1 − e−e

x�
i
�

)
.

�j(xi, zi, �) =
ex

�
i
�+e

x�
i
�

(1 + ez
�
i
� )2(ee

x�
i
�

− 1)2

⋅

[(
ee

x�
i
�

− 1
){

�j + (�j − �j)e
z�
i
�
}
− �je

x�
i
�(1 + ez

�
i
� )
]
,
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The average marginal and average incremental effects of covariate xij with respect to the 
overall mean of response yi in the HNB model are consequently

and

The marginal expectation of the response yi in the HNB model is

Then, the (average) marginal and (average) incremental effects in the HNB model are

�j(xi(−j), zi(−j), �)

= E (yi|xi(−j), zi(−j), xij = l2, �) − E (yi|xi(−j), zi(−j), xij = l1, �)

=
e
x�
i(−j)

�(−j)+l2�j+e
x�
i(−j)

�(−j)+l2�j

{1 + e
z�
i(−j)

�(−j)+l2�j}{e
x�
i(−j)

�(−j)+l2�j − 1}

−
e
x�
i(−j)

�(−j)+l1�j+e
x�
i(−j)

�(−j)+l1�j

{1 + e
z�
i(−j)

�(−j)+l1�j}{e
x�
i(−j)

�(−j)+l1�j − 1}
.

�̄�j(𝜃) = ∫
ex

�𝛽+ex
�𝛽

(1 + ez
�𝛾 )2(ee

x�𝛽
− 1)2

⋅

[(
ee

x�𝛽
− 1

){
𝛽j + (𝛽j − 𝛾j)e

z�𝛾
}

− 𝛽je
x�𝛽 (1 + ez

�𝛾 )
]
dFx,z(x, z)

�̄�j(𝜃) = ∫
⎡
⎢⎢⎣

e
x�
(−j)

𝛽(−j)+l2𝛽j+e
x�
(−j)

𝛽(−j)+l2𝛽j

{1 + e
z�
(−j)

𝛾(−j)+l2𝛾j}{e
x�
(−j)

𝛽(−j)+l2𝛽j − 1}

−
e
x�
(−j)

𝛽(−j)+l1𝛽j+e
x�
(−j)

𝛽(−j)+l1𝛽j

{1 + e
z�
(−j)

𝛾(−j)+l1𝛾j}{e
x�
(−j)

𝛽(−j)+l1𝛽j − 1}

⎤⎥⎥⎦
⋅ dFx(−j),z(−j)

(x(−j), z(−j)).

E (yi|xi, zi) = ex
�
i
�

(1 + ez
�
i
� )

{
1 −

(
�

� + ex
�
i
�

)�} .
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and

respectively. The estimates of the marginal and incremental effects in the two models can 
be obtained by substituting the unknown parameters in the effects with their maximum 
likelihood estimates. Estimators of the average marginal and average incremental effects 
are obtained by averaging the estimated marginal and incremental effects that are evaluated 
at the observed data.

𝜂j(xi, zi, 𝜃) =
𝜕 E (yi|xi, zi)

𝜕xij
=

ex
�
i
𝛽

(1 + ez
�
i
𝛾 )2

{
1 −

(
𝛼

𝛼 + ex
�
i
𝛽

)𝛼}2

⋅

[{
1 −

(
𝛼

𝛼 + ex
�
i
𝛽

)𝛼}
{𝛽j + (𝛽j − 𝛾j)e

z�
i
𝛾}

− 𝛽je
x�
i
𝛽

(
𝛼

𝛼 + ex
�
i
𝛽

)𝛼+1

(1 + ez
�
i
𝛾 )

]
,

𝜋j(xi(−j), zi(−j), 𝜃) = E (yi|xi(−j), zi(−j), xij = l2, 𝜃) − E (yi|xi(−j), zi(−j), xij = l1, 𝜃)

=
e
x�
i(−j)

𝛽(−j)+l2𝛽j

(1 + e
z�
i(−j)

𝛾(−j)+l2𝛾j )

{
1 −

(
𝛼

𝛼 + e
x�
i(−j)

𝛽(−j)+l2𝛽j

)𝛼}

−
e
x�
i(−j)

𝛽(−j)+l1𝛽j

(1 + e
z�
i(−j)

𝛾(−j)+l1𝛾j )

{
1 −

(
𝛼

𝛼 + e
x�
i(−j)

𝛽(−j)+l1𝛽j

)𝛼} ,

�̄�j(𝜃) = ∫
ex

�𝛽

(1 + ez
�𝛾 )2

{
1 −

(
𝛼

𝛼 + ex
�𝛽

)𝛼}2

⋅

[{
1 −

(
𝛼

𝛼 + ex
�𝛽

)𝛼}
{𝛽j + (𝛽j − 𝛾j)e

z�𝛾}

− 𝛽je
x�𝛽
(

𝛼

𝛼 + ex
�𝛽

)𝛼+1

(1 + ez
�𝛾 )

]
dFx,z(x, z),

�̄�j(𝜃) = ∫
⎡
⎢⎢⎢⎢⎣

e
x�
(−j)

𝛽(−j)+l2𝛽j

(1 + e
z�
(−j)

𝛾(−j)+l2𝛾j )

�
1 −

�
𝛼

𝛼 + e
x�
(−j)

𝛽(−j)+l2𝛽j

�𝛼�

−
e
x�
(−j)

𝛽(−j)+l1𝛽j

(1 + e
z�
(−j)

𝛾(−j)+l1𝛾j )

�
1 −

�
𝛼

𝛼 + e
x�
(−j)

𝛽(−j)+l1𝛽j

�𝛼�
⎤⎥⎥⎥⎥⎦
dFx(−j),z(−j)

(x(−j), z(−j)),
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4.2  Marginalized hurdle Poisson and negative binomial models

It is straightforward to construct marginalized hurdle Poisson and negative binomial models 
for cross-sectional count data with excess zero. However, it has not been officially reported in 
the literature, although Tabb et al. (2016) proposed marginalized random-effects hurdle Pois-
son and negative binomial models for panel count data. The marginalized hurdle models 
assume, as in the hurdle models in Sect. 4.1, that the zero-inflated count outcome yi = 0 when 
ci = 1 and yi = y∗

i
 when ci = 0 , in which the binary variable ci ∼ Bernoulli (�i) and y∗

i
 fol-

lows a zero-truncated distribution with a pmf g̃(y∗
i
) =

g(y∗
i
)

1 − g(0)
 , y∗

i
= 1, 2, 3,… . To achieve 

the goal of making direct inference on the overall mean of the outcome yi , the marginalized 
hurdle models specify as in (6) that

in which vi = E (yi) . The marginalized hurdle Poisson (MHP) model can be constructed 
by assigning g(y∗

i
) , the pmf before zero truncation, to be the pmf of Poisson (�i) , and the 

marginalized hurdle negative binomial (MHNB) model is constructed by assigning g(y∗
i
) , 

the pmf before zero truncation, to be the pmf of NegBin (�i, �).
It can be derived that, for the MHP model, the log-likelihood function is

in which � = (��, � �)� and � = (�1,�2,… ,�n) . For the MHNB model, the log-likelihood 
function is

in which � = (��, � �, �)� and � = (�1,�2,… ,�n) . The maximum likelihood estimates are 
obtained in the MPH and MHNB models by numerically solving �̂� = max𝜃 �(𝜃) in (15) 
and (17) but subject to (16) and (18), respectively.

ln(vi) = x�
i
� and logit(�i) = z�

i
� ,

(15)

�(𝜃,𝜇|y, x, z) = ∑
i=1,…,n; yi=0

{
z�
i
𝛾 − ln(1 + ez

�
i
𝛾 )
}

+
∑

i=1,…,n; yi>0

{
x�
i
𝛽 − ln yi! + (yi − 1) ln𝜇i − 𝜇i

}
,

(16)subject to ex
�
i
� =

�i

(1 + ez
�
i
� )(1 − e−�i )

, i = 1, 2,… , n,

(17)

�(𝜃,𝜇|y, x, z) = ∑
i=1,…,n; yi=0

{
z�
i
𝛾 − ln(1 + ez

�
i
𝛾 )
}

+
∑

i=1,…,n; yi>0

{
yi−1∑
j=0

ln(j + 𝛼) − ln yi! + x�
i
𝛽

}

+
∑

i=1,…,n; yi>0

{
(yi − 1) ln𝜇i + 𝛼 ln 𝛼 − (𝛼 + yi) ln(𝛼 + 𝜇i)

}
,

(18)subject to ex
�
i
� =

�i

(1 + ez
�
i
� )[1 − {�∕(� + �i)}

�]
, i = 1, 2,… , n,
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The specification of the MHP and MHNB models leads to E (yi|xi, zi) = ex
�
i
� , which is 

identical to the expression in (7) for the MZIP and MZINB models. Therefore, the (aver-
age) marginal and (average) incremental effects for the MHP and MHNB models, and their 
estimates, are given by (8)–(13).

5  Variance estimation of marginal effects

Asymptotic variances of the estimated marginal effects and average marginal effects can be 
derived using the delta method and Taylor series approximations. Note that the parameters 
� in the models summarized in Sects. 3 and 4 are estimated by maximizing their log-likeli-
hood functions. Under regular conditions, �̂�

P
⟶ 𝜃 as n → ∞ and

where In(�) = − E

(
�2�(�)

��2

)
 is the Fisher information matrix and 

[In(�)]
−1 = (1∕n)[I1(�)]

−1
P

⟶ 0 as n → ∞ . The observed Fisher information matrix is 

In(�̂�) = −
𝜕2�(𝜃)

𝜕𝜃2

|||||𝜃=�̂�
 . By the delta method, variances of the estimated marginal and incre-

mental effects �̂�j(xi, zi, �̂�) and �̂�j(xi(−j), zi(−j), �̂�) , as continuously differentiable functions of 
the parameters, can be estimated by

and

respectively.
To derive the variance estimator of the average marginal effect ̂̄𝜂j(�̂�) , the multivariate Tay-

lor’s theorem is applied for ̂̄𝜂j(�̂�) with respect to �̂� at the true value �:

where 𝜃 is some value between � and �̂� , and lim
�̂�→𝜃

h1(𝜃) = 0 in probability. Thus,

�̂�
D

⟶N(𝜃, [In(𝜃)]
−1),

(19)�var �̂�j
(xi, zi, �̂�) =

(
∇𝜃�̂�j(xi, zi, �̂�)

)�[
In(�̂�)

]−1(
∇𝜃�̂�j(xi, zi, �̂�)

)

(20)�var �̂�j
(xi(−j), zi(−j), �̂�) =

(
∇𝜃�̂�j(xi(−j), zi(−j), �̂�)

)�[
In(�̂�)

]−1(
∇𝜃�̂�j(xi(−j), zi(−j), �̂�)

)
,

̂̄𝜂j(�̂�) = ̂̄𝜂j(𝜃) +
(
∇𝜃

̂̄𝜂j(𝜃)
)�
(�̂� − 𝜃) + h1(𝜃)(�̂� − 𝜃),

(21)

var ( ̂̄𝜂j(�̂�)) = var ( ̂̄𝜂j(𝜃)) + var
((

∇𝜃
̂̄𝜂j(𝜃)

)�
(�̂� − 𝜃)

)

+ 2 cov
(
̂̄𝜂j(𝜃),

(
∇𝜃

̂̄𝜂j(xi, zi, 𝜃)
)�
(�̂� − 𝜃)

)

+ var
(
h1(𝜃)(�̂� − 𝜃)

)
+ 2 cov

(
̂̄𝜂j(𝜃)), h1(𝜃)(�̂� − 𝜃)

)

+ 2 cov
((

∇𝜃
̂̄𝜂j(𝜃)

)�
(�̂� − 𝜃), h1(𝜃)(�̂� − 𝜃)

)
.
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The first term on the right-hand side of (21) is estimated by 

�var ( ̂̄𝜂j(𝜃)) =
1

n(n − 1)

n∑
i=1

(
�̂�j(xi, zi, �̂�) − ̂̄𝜂j(�̂�)

)2

 . For the second term, the delta method 

gives

which implies E
((
∇𝜃

̂̄𝜂j(𝜃)
)�
(�̂� − 𝜃)

) P
⟶ 0, as n → ∞ . Therefore, the second term on the 

right-hand side of (21) is estimated by 
(
∇𝜃

̂̄𝜂j(�̂�)
)�
[In(�̂�)]

−1
(
∇𝜃

̂̄𝜂j(�̂�)
)
, in which 

∇𝜃
̂̄𝜂j(�̂�) =

1

n

n∑
i=1

∇𝜃�̂�j(�̂�) . In addition, the consistency of �̂� , the normality in (22), the fact 

that lim
�̂�→𝜃

h1(𝜃) = 0 as n → ∞ , and the Slutsky’s Theorem together indicate the remaining 

four terms in (21) approach 0 in probability as n → ∞ . Therefore, the estimator of 
var ( ̂̄𝜂j(�̂�)) is

It can be derived similarly that the estimator of var ( ̂̄𝜋j(xi, zi, �̂�)) is

Variance estimators (19), (20), (23), and (24) involve gradients of the marginal and 
incremental effects ∇��j(xi, zi, �) and ∇��j(xi(−j), zi(−j), �) that need to be derived specifi-
cally for each of the models in Sects. 3 and 4. For the marginalized models, i.e. the MZIP, 
MZINB, MHP, and MHNB models, the gradients of their marginal effects and incremental 
effects are

(22)
((

∇𝜃
̂̄𝜂j(𝜃)

)�
(�̂� − 𝜃)

)
D

⟶N

(
0,
(
∇𝜃

̂̄𝜂j(𝜃)
)�
[In(𝜃)]

−1
(
∇𝜃

̂̄𝜂j(𝜃)
))

,

(23)
�var ( ̂̄𝜂j(�̂�)) =

1

n(n − 1)

n∑
i=1

(
�̂�j(xi, zi, �̂�) −

1

n

n∑
i=1

̂̄𝜂j(�̂�)

)2

+

(
1

n

n∑
i=1

∇𝜃�̂�j(xi, zi, �̂�)

)�

[In(�̂�)]
−1

(
1

n

n∑
i=1

∇𝜃�̂�j(xi, zi, �̂�)

)
.

(24)

�var ( ̂̄𝜋j(�̂�)) =
1

n(n − 1)

n∑
i=1

(
�̂�j(xi(−j), zi(−j), �̂�) −

1

n

n∑
i=1

̂̄𝜋j(�̂�)

)2

+

(
1

n

n∑
i=1

∇𝜃�̂�j(xi(−j), zi(−j), �̂�)

)�[
In(�̂�)

]−1

×

(
1

n

n∑
i=1

∇𝜃�̂�j(xi(−j), zi(−j), �̂�)

)
.

∇��j(xi, zi, �) = �je
x�
i
�

J1∑
m=0

ximu(m+1) + ex
�
i
�u(j+1),

∇��j(xi(−j), zi(−j), �) =
[
e
x�
i(−j)

�(−j)+l2�j − e
x�
i(−j)

�(−j)+l1�j
] J1∑
m=0,≠j

ximu(m+1)

+
[
l2e

x�
i(−j)

�(−j)+l2�j − l1e
x�
i(−j)

�(−j)+l1�j
]
u(j+1),
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where u(m) is a unit vector with 1 in the mth component and 0 in others. The length of u(m) 
is (J1 + J2 + 2) for the MZIP and MHP models and is (J1 + J2 + 3) for the MZINB and 
MHNB models. The gradients of the marginal effects and incremental effects for the non-
marginalized models, i.e. the ZIP, ZINB, HP, and HNB models, are considerably complex 
and are reported in “Appendix”.

6  Superiority of marginalized two‑part models over non‑marginalized 
two‑part models: true or false?

Several previous articles Long et al. (2014), Preisser et al. (2016) promoted the use of mar-
ginalized two-part models over the traditional non-marginalized two-part models for the 
count data with excess zeroes. It has been argued that the marginalized two-part models 
can provide “direct” marginal inference, which gives an impression that these models are 
superior to the non-marginalized two-part models. Is this really true?

Marginal inference and interpretation The discussion in Sects. 3 and 4 reveals that both 
types of models, either marginalized or non-marginalized, can provide marginal inference 
through marginal effects on the overall mean of count outcomes with excess zeroes. The 
difference is that estimators and variance estimators of the marginal effects that are derived 
from the non-marginalized models are a little more complex than the marginalized models. 
For example, the marginal effect of a covariate xij with respect to the overall marginal mean 

derived from the ZIP and ZINB models is 
� E (yi|xi, zi)

�xij
=

ex
�
i
�

(1 + ez
�
i
� )2

{�j + ez
�
i
� (�j − �j)} , 

whereas this marginal effect is 
� E (yi|xi, zi)

�xij
= ex

�
i
� in the MZIP and MZNB models. How-

ever, our numerical studies in Sect. 7 show that the numerical implementations of the mar-
ginal effect estimators for the two types of models are both convenient and computationally 
fast.

Furthermore, the argument that the marginalized two-part models can provide direct 
marginal inference is actually not precise. In health economics and health services research, 
what is concerned is the marginal effect on the overall mean of a response variable, not on 
any transformation of the overall mean. Only when a linear predictor is directly connected 
to the expectation of responses (e.g., E (yi|xi) = x�

i
� ) can a direct marginal inference be 

made through the regression coefficients and the marginal effects 
� E (yi|xi)

�xij
= �j . For the 

marginalized two-part models, it is obvious that the direct marginal inference can be made 
only for the logarithmic scale of the overall mean of the response 

� log E (yi|xi, zi)
�xij

= �j but 

not on the original scale.
Model misspecification and model selection The discussion in Sects. 3 and 4 reveals that 

the marginalized two-part models possess a linear representation in the logarithmic scale 
of the overall mean of outcomes but have a non-linear representation in the logarithmic 
scale of the mean of positive outcomes (in the marginalized hurdle models) or positive out-
comes with some zeroes (in the marginalized zero-inflated models). In contrast, the non-
marginalized two-part models possess a linear representation in the logarithmic scale of the 
mean of positive outcomes or positive outcomes with some zeroes but have a non-linear 
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representation on the other side. Therefore, the marginalized or non-marginalized two-part 
models are indeed two parallel competitors in modelling count data with excess zeroes, 
and neither type of model is superior to the other. It would be problematic to, by default, 
believe that the linear representation should be imposed to any side. Model misspecifica-
tion is always an issue when the assumed model is not true or is not close to the truth. In 
Sect. 7, we report the simulation studies that we conducted to show the consequences of 
model misspecification when fitting a marginalized model to the data generated from its 
non-marginalized counterpart and vice versa. Because of the bias that may be induced by 
model misspecification, it is recommended that data analysts follow formal model selection 
procedures to choose between the marginalized and conventional two-part models while 
making inference with the models. In Sect. 8, three model selection criteria are investigated 
to examine the performance of each of them in this particular setting.

7  Model misspecification: theories and numerical studies

In this section, we report the results gathered from the simulation studies that were con-
ducted to investigate the impact of model misspecification on marginal effects estimation in 
the conventional and marginalized two-part models for zero-inflated count data. The inves-
tigation on model misspecification was restricted to two scenarios: (1) the underlying true 
model that generates the simulated data is a conventional two-part model, but the corre-
sponding marginalized two-part model is fit to the data, and (2) the underlying true model 
is a marginalized two-part model, but the corresponding conventional two-part model is fit.

7.1  Theories on model misspecification

For either a marginalized or a nonmarginalized two-part model, consider the zero-inflated 
response variable y with its true probability density function g(y). Let {f (y;�), � ∈ Θ} be a 
parametric family of probability density functions that may be misspecified for y. White 
(1982) showed that, under suitable regularity conditions, there exists a �∗ ∈ Θ such that the 

quasi-maximum likelihood estimator �̂�(n) = argmax
𝜃∈Θ

1

n

n∑
i=1

log f (yi;𝜃) almost surely con-

verges to �∗ , in which �∗ minimizes the Kullback–Leibler distance between g(y) and f (y;�):

In addition, asymptotic normality holds for �̂�(n) as

and Vn(�̂�
(n))

a.s.
⟶V(𝜃∗) , where V

n
(�̂�(n)) = A

−1
n
(�̂�(n))B

n
(�̂�(n))A

n
(�̂�(n)), V(𝜃∗) =

A
−1(�∗)B(�∗)A(�∗), and

I(g(x) ∶ f (y;�)) = E g

{
log

g(y)

f (y;�)

}
.

√
n(�̂�(n) − 𝜃∗)

a.s.
⟶N(0,V(𝜃∗))

An(�) =

{
1

n

n∑
i=1

�2 log f (yi;�)

��k��l

}
, Bn(�) =

{
1

n

n∑
i=1

� log f (yi;�)

��k

� log f (yi;�)

��l

}
,

A(�) = E

({
�2 log f (y;�)

��k��l

})
, B(�) = E

({
� log f (y, �)

��k

� log f (y;�)

��l

})
.
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If either a marginalized or a non-marginalized two-part model is correctly speci-
fied (i.e., its corresponding counterpart is misspecified), there exists a �(0) ∈ Θ such that 
f (y;�(0)) = g(y) and the quasi-maximum likelihood estimator becomes the maximum like-
lihood estimator and �∗ = �(0) with the inverse of the Fisher’s information matrix as the 
asymptotic covariance matrix estimator. When the model is misspecified, the standard 
errors for �̂�(n) should be obtained from the sandwich estimator Vn(�̂�

(n)).

7.2  True ZIP models versus misspecified MZIP models

In the first simulation study, a total number of 500 data sets with three sample sizes 
n = 100 , 500, and 1000 were generated from the ZIP model, in which the linear predictors 
were specified as ln(�i) = �0 + xi1�1 + xi2�2 and logit(�i) = �0 + zi1�1 + zi2�2 with one con-
tinuous covariate xi1 = zi1 ∼ N(0, 1) and one binary covariate xi2 = zi2 ∼ Bernoulli(0.5) . 
When generating the simulated data sets, five combinations of � = (�0, �1, �2)

� (see Table 1 
for details of the combinations) were considered such that the average values of �i ’s range 
from approximately 4–15. We fixed � = (�0, �1, �2) = (0.5, 1,− 1) to maintain the average 
value of �i ’s (i.e., the average percentage of structural zeroes) to be around the intermedi-
ate value of 50% . Both the ZIP and MZIP models were then fit to each of the simulated 
data sets, and the true average marginal effect �̄�1(𝜃) of x1 and the true average incremental 
effects �̄�2(𝜃) of x2 given by the two models, as well as their estimates ̂̄𝜂1(�̂�) and ̂̄𝜋2(�̂�) , were 
calculated.

Table 1 reports the true value of the average marginal and incremental effects, the mean 
and standard deviation of effect estimates, and the mean of SEs given by the ZIP and 
MZIP models from fitting the 500 simulated data sets in three sample sizes. The results in 
Table 1 demonstrate that the estimated average marginal and incremental effects obtained 
from the underlying true model, the ZIP model, are unbiased across all combinations of 
� = (�0, �1, �2)

� and sample sizes. The finite-sample bias of the estimates of average mar-
ginal and incremental effects given by the misspecified MZIP model is larger than the one 
given by the true model, though the bias usually does not exceed two times of standard 
errors. The simulation results in Table 1 also show that, for both models, the average SE of 
the average marginal and incremental effects is close to the corresponding standard devia-
tion. In addition, the average SE evidently shrinks as the sample size increases from 100, 
500, to 1000. This piece of evidence verifies that the variance estimation procedure, which 
we derived in Sect. 5 based upon the asymptotic properties of marginal and incremental 
effects, are valid for the finite samples.

7.3  True MZIP models versus misspecified ZIP models

The investigational plan of the remaining three simulation studies is comparable to the first 
study in Sect. 7.2. In the second simulation study, 500 data sets were produced with sample 
sizes n = 100 , 500, and 1000 from the MZIP model by specifying the linear predictors 
as ln(vi) = �0 + xi1�1 + xi2�2 and logit(�i) = �0 + zi1�1 + zi2�2 with xi1 = zi1 ∼ N(0, 1) and 
xi2 = zi2 ∼ Bernoulli(0.5) . Note that ln(vi) = �0 + xi1�1 + xi2�2 is the linear predictor for 
marginal expectation of the counts including zeroes, instead of positive counts. As such, the 
expectation of positive counts satisfies �i = vi∕(1 − �i) = e�0+xi1�1+xi2�2 (1 + e�0+zi1�1+zi2�2 ) . 
Five combinations of � = (�0, �1, �2)

� (see Table  2) were used for data generation, 
and the averages of the resulting �i ’s range from approximately 3 to 11. The parameter 
� = (�0, �1, �2) = (0.5, 1,− 1) is also fixed yielding an average of �i ’s being around the 
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intermediate value of 50% . The ZIP and MZIP models were subsequently fit to each of the 
simulated data sets, and the true average marginal effects �̄�1(𝜃) of x1 and true average incre-
mental effects �̄�2(𝜃) of x2 , as well as their estimates ̂̄𝜂1(�̂�) and ̂̄𝜋2(�̂�) , were computed.

Table  2 reports the true value of the average marginal and incremental effects, the 
mean and standard deviation of their estimates, and the mean of SEs given by the ZIP 
and MZIP models from fitting the simulation data sets. In Table  2, the estimated aver-
age marginal and incremental effects obtained from the underlying true model, the MZIP 
model, are still unbiased as expected. The misspecified ZIP model across all combinations 
of � = (�0, �1, �2)

� and the three sample sizes provides the effect estimates with larger bias. 
For both models, the average SE of the average marginal and incremental effects is close to 
the corresponding standard deviations and decreases as the sample size increases from 100, 
500, to 1000, which verified the validity of the variance estimation procedure in Sect. 5 for 
the finite samples.

7.4  True HNB models versus misspecified MHNB models

In the third simulation study, 500 data sets with sample sizes n = 100 , 500, and 
1000 were simulated from the HNB model with ln(�i) = �0 + xi1�1 + xi2�2 and 
logit(�i) = �0 + zi1�1 + zi2�2 , in which xi1 = zi1 ∼ N(0, 1) and xi2 = zi2 ∼ Bernoulli(0.5) . 
Five combinations of � = (�0, �1, �2)

� (see Table 3) were examined, such that the averages 
of �i ’s vary from approximately 3 to 11. The fixed parameter � = (�0, �1, �2) = (0.5, 1,−1) 
provides an average of �i ’s being around 50% . The scale parameter was fixed at � = 1.5 
for all data sets. After data generation, the HNB and MHNB models were fit to each of the 
simulated data sets. We calculated for each model the true average marginal effect �̄�1(𝜃) 
of x1 and true average incremental effects �̄�2(𝜃) of x2 , as well as their estimates ̂̄𝜂1(�̂�) and 
̂̄𝜋2(�̂�) . The simulation results were reported in Table 3. Evidently, effect estimates from the 
true HNB model have smaller bias than the ones from the misspecified MHNB model.

7.5  True MHNB models versus misspecified HNB models

In the fourth simulation study, we produced 500 data sets with sample sizes n = 100 , 500, 
and 1000 from the MHNB model using the linear predictors as ln(vi) = �0 + xi1�1 + xi2�2 and 
logit(�i) = �0 + zi1�1 + zi2�2 with xi1 = zi1 ∼ N(0, 1) and xi2 = zi2 ∼ Bernoulli(0.5) . We still 
considered five combinations of � = (�0, �1, �2)

� (see Table 4) yielding the averages of �i ’s var-
ying from approximately 4–13. As in the third simulation study, � = (�0, �1, �2) = (0.5, 1,−1) 
and � = 1.5 were fixed when generating simulation data. Then, the MHNB and HNB models 
were fit to each of simulated data sets. Table 4 presents the results of the average marginal and 
incremental effects in terms of the true value, the mean and standard deviation of their esti-
mates, and the mean of SEs given by the true and misspecified models. It is observed that the 
behavior of the effect estimates and the SEs of average marginal and incremental effects is as 
same as in the previous simulation studies.

The conclusion from the four back-to-back simulation studies is straightforward. No matter 
which type of model, the marginalized or conventional two-part model, is fit to the data, the 
estimates of marginal effects will be biased as long as the model is misspecified. The margin-
alized two-part models do not have any advantage to reduce such type of bias in estimating 
marginal effects of a covariate with respect to the expected outcomes.



203Health Serv Outcomes Res Method (2018) 18:175–214 

1 3

7.6  Robustness

The results from the above numerical studies are consistent with the presented theories in 
Sect. 7.1, in that the misspecified models have larger bias than the true models in the maxi-
mum likelihood estimation. Cross-comparison of the estimation biases produced by the mis-
specified ZIP and MZIP models reveals that the misspecified ZIP models induce smaller 
biases than the misspecified MZIP models (see the results on biases in Tables 1, 2). This indi-
cates that the maximum likelihood estimators of the MZIP models are less robust to model 
misspecification than the maximum likelihood estimators given by the ZIP models, which 
would be even worse if compared with Poisson models (Staub and Winkelmann 2013). The 
results on biases show that there is not significant difference in robustness on the maximum 
likelihood estimators given by the HNB and MHNB models with respect to model misspecifi-
cation (see the results on biases Tables 3, 4).

8  Model selection via marginal effects

When the primary interest of data analysis lies in estimating the (average) marginal or incre-
mental effect of a covariate with respect to the expected outcomes, the empirical mean square 
error (MSE) criterion (Dow and Norton 2003; Madden 2008) can be used for selecting the 
best model among the candidate models to estimate the effects. Suppose the goal of data anal-
ysis is to precisely estimate an incremental effect �j(xi(−j), zi(−j), �) or an average incremental 
effect �̄�j(𝜃) subject to a change of xj . The MSE of an effect estimator �̂�j(xi(−j), zi(−j), �̂�) or ̂̄𝜋j(�̂�) 
is equal to the variance of the estimators plus the square of its bias:

and

The MSE criterion selects the candidate model with the minimum MSE as the best model 
to estimate the corresponding marginal or incremental effect. Because in practice the 
true effects �j(xi(−j), zi(−j), �) and �̄�j(𝜃) are unknown in (25) and (26), the empirical MSEs 
(EMSEs)

and

(25)
MSE

[
�̂�j(xi(−j), zi(−j), �̂�)

]
= var

[
�̂�j(xi(−j), zi(−j), �̂�)

]
+ Bias2

[
�̂�j(xi(−j), zi(−j), �̂�)

]
= var

[
�̂�j(xi(−j), zi(−j), �̂�)

]
+
[
�̂�j(xi(−j), zi(−j), �̂�) − 𝜋j(xi(−j), zi(−j), 𝜃)

]2

(26)
MSE

[
̂̄𝜋j(�̂�)

]
= var

[
̂̄𝜋j(�̂�)

]
+ Bias2

[
̂̄𝜋j(�̂�)

]
= var

[
̂̄𝜋j(�̂�)

]
+
[
̂̄𝜋j(�̂�) − �̄�j(𝜃)

]2
.

(27)
EMSE

[
�̂�j(xi(−j), zi(−j), �̂�)

]
= var

[
�̂�j(xi(−j), zi(−j), �̂�)

]

+
[
�̂�j(xi(−j), zi(−j), �̂�) − �̂�c

j
(xi(−j), zi(−j), �̂�

c)
]2

(28)EMSE
[
̂̄𝜋j(�̂�)

]
= var

[
̂̄𝜋j(�̂�)

]
+
[
̂̄𝜋j(�̂�) − ̂̄𝜋c

k
(�̂�c)

]2
.
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are used to accomplish the mission of model selection. In practice, the true effect in (27) and 
(28) is replaced by the estimated effect �̂�c

j
(xi(−j), zi(−j), �̂�

c) or ̂̄𝜋c
k
(�̂�c) from a pre-specified 

model. Dow and Norton (2003) illustrated the use of the MSE criterion, through a Monte 

Table 5  Rates of selecting the true ZIP model over the misspecified MZIP model given by AIC/BIC and 
EMSE and rejection rates given by Vuong’s test

Sample size � = (�0, �1, �2) values AIC/BIC
rate (%)

EMSE ̂̄𝜂1
 rate (%) EMSE ̂̄𝜋2

 rate (%) Vuong’s test 
rejection rate 
(%)

100 (1.0, − 1, .10) 78.40 89.80 66.60 8.00
(− 2, 2.0, 2.0) 61.41 50.51 49.09 0.00
(2.0, 1.0, − .5) 71.80 68.40 52.40 1.00
(1.0, .50, 2.0) 81.80 68.00 56.40 13.00
(.50, 1.8, 1.0) 69.00 62.40 46.40 0.00

500 (1.0, − 1, .10) 98.00 82.60 66.00 53.20
(− 2, 2.0, 2.0) 78.20 70.40 59.40 3.00
(2.0, 1.0, − .5) 97.80 91.00 74.60 40.00
(1.0, .50, 2.0) 99.00 97.00 62.40 66.20
(.50, 1.8, 1.0) 92.20 84.20 62.20 20.00

1000 (1.0, − 1, .10) 99.80 88.20 68.00 82.80
(− 2, 2.0, 2.0) 90.40 79.80 67.60 16.60
(2.0, 1.0, − .5) 99.20 96.80 81.40 74.20
(1.0, .50,  2.0) 100.0 99.40 67.40 93.60
(.50, 1.8, 1.0) 98.20 90.60 71.60 51.80

Table 6  Rates of selecting the true MZIP model over the misspecified ZIP model given by AIC/BIC and 
EMSE and rejection rates given by Vuong’s test

Sample
size

� = (�0, �1, �2)
values

AIC/BIC rate (%) EMSE ̂̄𝜂1
 rate (%) EMSE ̂̄𝜋2

 rate (%) Vuong’s test 
rejection rate 
(%)

100 (.50, − 5, − .5) 79.00 52.20 64.40 3.80
(.50, − 1, .50) 83.60 28.00 60.80 9.00
(1.0, − 1, .10) 90.40 34.60 72.00 15.80
(− .5, 1.0, .50) 62.40 65.40 64.60 0.20
(1.0, 50, − .5) 75.20 70.20 74.20 4.40

500 (.50, − 5, − .5) 96.80 53.20 69.00 42.00
(.50, − 1, .50) 99.80 32.60 66.80 69.60
(1.0, − 1, .10) 100.0 40.20 74.40 86.80
(− .5, 1.0, .50) 88.20 73.00 72.80 15.00
(1.0, 50, − .5) 98.00 79.00 75.60 52.20

1000 (.50, − 5, − .5) 100.0 57.40 68.80 76.80
(.50, − 1, .50) 99.80 35.80 63.00 95.40
(1.0, − 1, .10) 100.0 37.00 75.80 100.00
(− .5, 1.0, .50) 96.00 74.80 77.80 38.40
(1.0, 50, − .5) 100.0 80.40 78.60 85.80
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Carlo example, for selecting between sample selection models and two-part models for cor-
ner solutions in semicontinuous data. This MSE criterion was referred as “an empirical MSE 
test” by Dow and Norton (2003). The competitors of the MSE criterion include the 

Table 7  Rates of selecting the true HNB model over the misspecified MHNB model given by AIC/BIC 
and EMSE and rejection rates given by Vuong’s test

Sample size � = (�0, �1, �2) 
values

AIC/BIC rate (%) EMSE ̂̄𝜂1
 rate (%) EMSE ̂̄𝜋2

 rate (%) Vuong’s test 
rejection rate 
(%)

100 (.80, − .5, .20) 71.37 87.30 74.80 5.24
(− .5, − .5, 2.5) 68.76 72.12 66.67 11.32
(2.0, − .5, -− 5) 68.75 87.50 71.77 8.06
(2.2, .50, − .5) 67.48 71.55 48.78 6.10
(1.5, .50, 1.2) 75.27 53.58 38.83 14.75

500 (.80, − .5, .20) 86.80 84.00 71.60 23.20
(− .5, − .5, 2.5) 84.11 73.84 66.20 20.72
(2.0, − .5, -− 5) 90.60 90.60 71.00 32.20
(2.2, .50, − .5) 86.36 81.41 66.12 21.90
(1.5, .50, 1.2) 90.91 57.50 54.77 37.73

1000 (.80, − .5, .20) 95.00 80.60 67.20 37.60
(− .5, − .5, 2.5) 92.60 76.20 65.60 29.80
(2.0, − .5, -− 5) 95.40 89.40 67.00 45.20
(2.2, .50, − .5) 94.99 87.89 68.69 37.37
(1.5, .50, 1.2) 95.79 66.09 62.13 55.69

Table 8  Rates of selecting the true MHNB model over the misspecified HNB model given by AIC/BIC 
and EMSE and rejection rates given by Vuong’s test

Sample size � = (�0, �1, �2) 
values

AIC/BIC rate (%) EMSE ̂̄𝜂1
 rate (%) EMSE ̂̄𝜋2

 rate (%) Vuong’s test 
rejection rate 
(%)

100 (− 1, .50, 2.0) 43.56 84.66 76.44 15.57
(− .5, − .2, 2.0) 67.34 60.41 70.81 12.72
(1.5, − .5, − .5) 65.73 33.67 56.11 3.81
(1.0, − .8, .50) 62.33 22.24 40.48 3.41
(1.5, .50, .50) 62.13 77.66 80.00 4.47

500 (− 1, .50, 2.0) 68.26 97.61 93.41 27.19
(− .5, − .2, 2.0) 96.09 71.95 76.78 47.59
(1.5, − .5, − .5) 91.80 32.20 60.00 20.80
(1.0, − .8, .50) 89.40 45.40 53.80 16.60
(1.5, .50, .50) 87.30 84.58 81.63 12.47

1000 (− 1, .50, 2.0) 85.47 97.23 94.46 60.93
(− .5, − .2, 2.0) 99.15 75.00 77.56 84.83
(1.5, − .5, − .5) 98.00 42.00 60.00 45.60
(1.0, − .8, .50) 95.40 53.40 60.80 35.60
(1.5, .50, .50) 93.04 85.32 80.10 29.60
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information criteria, such as the Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), and the Vuong’s closeness test. The Vuong’s closeness test (Vuong 
1989), or the Vuong’s test, is a likelihood-ratio-based test for examining whether two non-
nested models are equally close to the true data generating process. The Vuong’s test statistic 

is V =
√
n(m̄∕sm) , in which m̄ =

1

n

n∑
i=1

mi , sm =
1

n

n∑
i=1

(mi − m̄)2 , and mi = �i,0(�) − �i,1(�) is 

the ith term for observation i in the log-likelihood �0(�) under the null hypothesis model 
minus the ith term in the log-likelihood �1(�) under the alternative model. The Vuong’s test 
statistic asymptotically follows a standard normal distribution under the hypothesis that the 
two models are equivalent, and a standard Z-test is then applied.

To examine the performance of the above model selection criteria, subsequent numeri-
cal studies were conducted following the simulation studies in Sect. 7. In each of the out-
lined simulation studies in Sect.  7, we collected the observed likelihood values and cal-
culated the AIC and BIC values of the pair of true and misspecified models that were fit 
to each of the 500 simulated data sets. The best model was then selected based upon the 
AIC and BIC criteria for each pair of models. Note that the AIC and BIC values are iden-
tical through the four simulation studies, because the investigated true and misspecified 
models had the same number of unknown parameters. With the collected observed likeli-
hood values, the Vuong’s test with a significance level of 5% was also conducted for each 
pair of true and misspecified models with the misspecified model in the null hypothesis. 
The EMSEs of the average marginal and incremental effects in each pair of the models 
were calculated, in which the true effect estimates were taken to calculate the bias term. 
Tables 5, 6, 7 and 8 report the rates of selecting the true model over the misspecified model 
given by the AIC, BIC, and EMSE criteria among 500 simulation data sets. The tables also 
report rejection rates given by the Vuong’s test for each of the combinations of parameters 
and sample sizes. Among these criteria, the selection rates of AIC and BIC are the highest 
for most cases. The rates of selecting a true model given by AIC and BIC are mostly over 
90% when the sample size n = 1000 and more than 80% for n = 500 . Even for n = 100 , 
these rates are usually higher than 60%. There is not a clear trend of increase for the select 
rates of the EMSE criterion along with the increase of sample size. These rates mostly 
range from about 50–90%, but can be as low as 22% when the sample size is small. These 
rates in general do not exhibit a reliable pattern but acceptable. The Vuong’s test rejec-
tion rates do not perform well, especially for the sample sizes n = 100 and n = 500 , but 
the rates do increase with the growth of sample size. The simulation studies show that the 
information criteria are reliable in distinguishing between the standard and misspecified 
two-part models for count data with excess zeroes, and the Vuong’s test cannot differenti-
ate the models if the sample size is not large enough. The MSE criterion might be accept-
able to be effect-specific model selection approach; however, it should be noted that in 
practice, its performance can be dramatically influenced by the hypothesis of which model 
is consistent and therefore can be used to calculate the bias term.

9  Application

The German Socioeconomic Panel (GSOEP) data (1984–1995) (Riphahn et al.2003) are 
used for empirical analysis with the four conventional two-part models and their corre-
sponding marginalized models discussed in Sects. 3 and 4. The data were collected based 
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on annual face-to-face individual or computer-assisted personal interviews with household 
members aged 16 or over living in Germany for comprehensive information to measure 
stability and change in living conditions Frick (2006).

The pooled subsample of the GSOEP data (1984–1994) includes 7293 German citizens, 
aged 26 through 65 Riphahn et al. (2003). After removing missing values, the subsample 
only includes years 1984–1988, 1991, and 1994 with 14,243 male observations and 13,083 
female observations. The dependent variable is the number of doctor visits in the last 
3 months right before the survey with 37.09% observations as zero and the mean across the 
whole sample is 3.18 with a standard deviation of 5.69. One key independent variable is 
the public indicator which divides people into the group mandatorily insured by the public 
insurance and the group voluntarily with the proportions of 88.57 versus 14.33%. Among 
those with coverage of public insurance, about 2.12% purchased add-on insurance which 
takes up 1.88% of the whole data. The add-on insurance indicator is another key covariate. 
The age and degree of health satisfaction (using integer scales 0–10 meaning bad to well) 
are the only two continuous covariates. All other independent variables including gender 
and years are converted to dummy variables.

9.1  Statistical modelling

In our statistical modelling, all independent variables are considered in both parts, that is,

and the linear predictiors x′
i
� and z′

i
� and the link functions are specified as in Sections 3 

and 4. However, the estimates of � and � have different interpretations. The models involv-
ing negative binomial models contain an extra scale parameter � . All models have explicit 
log-likelihood functions except for the MHP and MHNB models. Their log-likelihood 
functions (15) and (17) are subject to nonlinear constraints (16) and (18). We used New-
ton-Raphson method for solving �i from these constraints at every iteration of maximizing 
the log-likelihood functions.

After fitting the data with the two-part models, we collected AIC, BIC, ̂̄𝜋public , ̂̄𝜋add-on , 
and the EMSE values of the two effects estimates, and conducted the Vuong’s test for each 
pair of models. Regarding the EMSE values of ̂̄𝜋public and ̂̄𝜋add-on , a pre-specified model 
must be selected for the true average incremental effect in (28), whereas the true model for 
real data is unpredicted, implying a parameter estimate consistency issue. Hence, for the 
purpose of comparison, both the conventional model and the corresponding marginalized 
model in each pair are selected as the pre-specified model and their estimated effects are 
used in (28), respectively.

9.2  Empirical results

Table 9 presents the results from fitting the two-part models. In general, all models provide 
positive and significant estimates 𝛽public varying from 0.136 to 0.208, indicating that the 
participants covered by public insurance see doctors more frequently than private insur-
ance cohort on a regular basis (for the zero-inflated models), or on need (for the hurdle 
models) or for the whole population (for the marginalized models). The MZINB model 
presents a non-significant negative estimate �̂�public ( − 0.178 ), while other models show 

xi = zi = {female, age, health, public insurance, add-on insurance,

year1985, year1986, year1987, year1988, year1991, year1994},
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significant negative estimates. This suggests that, under the MZINB models, there is not 
much difference of no regular doctor visits between public and private insurance cohorts, 
whereas under other models, there are substantial chances that public insurance cohort see 
doctors more regularly.

Coefficient estimates 𝛽add-on and �̂�add-on for add-on insurance are all negative but more 
diverse than for public insurance. Estimates of 𝛽add-on are significant for the ZIP, HP and 
HNB models with larger magnitudes than the nonsignificant estimates for the MZIP, ZINB, 
MZINB, MHP and MHNB models. In terms of �̂�add-on , the MZIP, HP, MHP, and HNB 
models give significant estimates with magnitudes ranging from 0.180 to 0.308; whereas 
the ZIP, ZINB, MZINB, and MHNB models show non-significant estimates with magni-
tudes varying from 0.073 to 0.724.

Table 10 compares results from these models. All models provide positive incremental 
effect estimate ̂̄𝜋public and negative estimate ̂̄𝜋add-on . The comparison of AIC and BIC sup-
port the HNB and MHNB models with smaller AIC and BIC values and the HNB model 
carries the smallest. Based on Vuong’s test, the two models are significantly different in 
modelling the GSOEP data, indicating that the HNB model is the best one among these 
models for the GSEOP subsample. In terms of EMSEs of incremental effect estimates of 
public insurance and add-on insurance, we use notations of EMSEC and EMSEM for the 
EMSE values calculated based on the conventional and the marginalized models in each 
pair as the pre-specified model, respectively. The results show that the HNB model has 
smaller EMSEC and EMSEM values of ̂̄𝜋public than the MHNB model; however, its EMSEC 
and EMSEM values of ̂̄𝜋add-on are larger than the MHNB model due to the large SE of 
̂̄𝜋add-on . Regarding the incremental effect estimates ̂̄𝜋public and ̂̄𝜋add-on , the results show that 
both effects are not significant to the overall healthcare utilization in terms of number of 
physician visits under both the HNB and MHNB models whereas the related parameter 
estimates are different stories, which seems to be a surprise to the initial motivation of the 
proposal of marginalized two-part models.

10  Conclusion

This article reviews four two-part models for cross-sectional count data with abundant 
zeroes (the ZIP, ZINB, HP, and HNB models) and two marginalized models (the MZIP 
and MZINB models) and proposes two other models (the MHP and MHNB models). We 
argue that the facility of marginalization of two-part models cannot be taken as a reason 
to choose marginalized models over the non-marginalized models to fit such data. Instead, 
appropriate model selection procedure should be followed to find the best model. In this 
article, we derive estimates and variance estimates of the (average) marginal effects and 
(average) incremental effects of covariates with respect to the overall mean outcomes for 
these two-part models. The average effect estimates given by the true models are unbiased 
in the simulation studies, and the irregular bias of average effect estimates given by the 
misspecified models is observed. Two pairs of non-marginalized and marginalized models 
are compared by using three model selection criteria in the simulation studies. The results 
confirm the reliability of the AIC and BIC criterion. In summary, despite marginalized 
two-part models can help in estimating overall marginal effects of covariates on the trans-
formed expectation of count outcomes, this advantage should not be over-emphasized. Oth-
erwise, model misspecification may lead to inaccurate statistical inference. When the two-
part models include a large number of covariates, penalized maximum likelihood methods 
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such as the least absolute shrinkage and selection operator, smoothly clipped absolute 
deviation (SCAD), or minimax concave penalty (MCP) are recommended to be applied to 
conduct variable selection. It has been shown that these methods can provide comparable 
estimation, but are more robust than the traditional stepwise variable selection in terms of 
variable selection (Wang et al. 2015).
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Appendix: Gradients of marginal effects

Gradients of marginal effects in the ZIP and ZINB models

Recall that ZIP and ZINB have the identical expression of marginal expectation of response 

yi : E (yi|xi, zi) = �i(1 − �i) =
ex

�
i
�

1 + ez
�
i
�
 and as a consequence share the same marginal and 

incremental effect formulas. The difference is the parameter � , where � = (��, � �)� for ZIP 
models and � = (��, � �, �)� for ZINB models.

To simplify computation and notations, we introduce a pair of infinitely differentiable 
functions on the number line: pZIP(t) = et and q(t) =

1

1 + et
 with 

ṗZIP(t) = p̈ZIP(t) = pZIP(t) = et and q̇(t) = −
et

(1 + et)2
 , q̈(t) = −

et

(1 + et)2
⋅
1 − et

1 + et
 , for 

∀ t ∈ ℝ . Even “ZIP” is used in the superscript of function p and its derivatives, their 
expressions are exactly the same for ZINB. The � and superscript of p will not be restated 
again in this subsection. The following discussions are identical for both ZIP and ZINB 
unless indicated otherwise.

Considering a continuous covariate xij in our regression models, we adopt the simplified 
notations: pZIP

i
, ṗZIP

i
, p̈ZIP

i
, qi, q̇i, q̈i which are pZIP, ṗZIP, p̈ZIP, q, q̇, q̈ evaluated at x′

i
� and z′

i
� , 

respectively. Then, the marginal mean of yi is E (yi|xi, zi) = �i(1 − �i) = pZIP
i

qi and hence 
the marginal effect with respect to xij is 𝜂j(xi, zi, 𝜃) = 𝛽jṗ

ZIP
i

qi + 𝛾jp
ZIP
i

q̇i.
If the covariate xj , or zj , is categorical, to rewrite its incremental effect from level l1 to l2 , 

the values of pZIP, ṗZIP, p̈ZIP at x�
i(−j)

�(−j) + l2�j and x�
i(−j)

�(−j) + l1�j will be denoted as 

pZIP
2i

, ṗZIP
2i

, p̈ZIP
2i

 and pZIP
1i

, ṗZIP
1i

, p̈ZIP
1i

 , respectively; values of q, q̇, q̈ at z�
i(−j)

�(−j) + l2�j and 
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z�
i(−j)

�(−j) + l1�j will be represented by q2i, q̇2i, q̈2i and q1i, q̇1i, q̈1i , respectively. Then, the 

incremental effect with respect to xij is �j(xi(−j), zi(−j), �) = pZIP
2i

q2i − pZIP
1i

q1i.
The gradients of marginal and incremental effects are

where u(m) is a unit vector of dimension J1 + J2 + 2 for ZIP and dimension J1 + J2 + 3 for 
ZINB with 1 in the mth component and 0 in others.

Gradients of marginal effects in the HP models

For HP models, we introduce functions: pHP(t) = et+e
t

ee
t
− 1

 and use the same q as ZIP. Then,

where �(t) = et

ee
t
− 1

 , �̇�(t) = 𝜎(t){1 − et − 𝜎(t)} , �̈�(t) = �̇�(t){1 − et − 2𝜎(t)} − et𝜎(t).

Using the similar notations for p,  q and their derivatives as for ZIP and ZINB mod-
els in Sect.  1, the marginal mean is rewritten as E(yi|xi, zi) = pHP

i
qi , the marginal 

effect with respect to continuous covariate xij is 𝜂j(xi, zi, 𝜃) = 𝛽jṗ
HP
i
qi + 𝛾jp

HP
i
q̇i , and 

the incremental effect with respect to categorical covariate xij from level l1 to level l2 is 

�j(xi(−j), zi(−j), �) = pHP
2i
q2i − pHP

1i
q1i , where � = (��, � �)� . Then, the formulas of gradients of 

marginal and incremental effects are in the same forms as ZIP models (29) with different lay-
outs of pHP and its derivatives ṗHP and p̈HP.

Gradients of marginal effects in the HNB models

The parameter in HNB models is � = (��, � �, �)� , and we adopt the same q function in ZIP, 
ZINB, and HP models but define a new function p by pHNB(t, �) = et

1 − �(t, �)
 , where 

�(t, �) = ��(t, �) , �(t, �) = �

� + et
 , and 𝛼 > 0 . We will use the same notations in terms of q 

(29)

∇𝜃𝜂j(xi, zi, 𝜃)

=
(
𝛽jp̈

ZIP
i

qi + 𝛾jṗ
ZIPq̇

) J1∑
m=0

ximu(m+1) + ṗZIP
i

qiu(j+1)

+
(
𝛽jṗ

ZIP
i

q̇i + 𝛾jp
ZIP
i

q̈i
) J2∑
m=0

zimu(J1+m+2) + pZIP
i

q̇iu(J1+j+2),

∇𝜃𝜋j(xi(−j), zi(−k), 𝜃)

=
(
ṗZIP
2i

q2i − ṗZIP
1i

q1i
) J1∑
m=0,≠j

ximu(m+1) +
(
l2ṗ

ZIP
2i

q2i − l1ṗ
ZIP
1i

q1i
)
⋅ u(j+1)

+
(
pZIP
2i

q̇2i − pZIP
1i

q̇1i
) J2∑
m=0,≠j

zimu(J1+m+2) +
(
l2p

ZIP
2i

q̇2i − l1p
ZIP
1i

q̇1i
)
⋅ u(J1+j+2),

pHP(t) = et + 𝜎(t), ṗHP(t) = et + �̇�(t), p̈HP(t) = et + �̈�(t),
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and its derivatives evaluated at z′
i
� , z�

i(−j)
�(−j) + l2�j and z�

i(−j)
�(−j) + l1�j , as introduced in previ-

ous sections.
With simple computation, we can get derivatives of pHNB with respect to t and 𝛼 > 0 .  

In particular, ṗHNB
t

(t, 𝛼) = pHNB
(
1 − pHNB𝜌𝜏

)
 , p̈HNB

t
(t, 𝛼) = ṗHNB

t
(t, 𝛼)

(
1 − 2pHNB𝜌𝜏

)
+

(� + 1)
(
p
HNB

)2
��(1 − �) , ṗHNB

𝛼
(t, 𝛼) = pHNB𝜌(ln 𝜏 + 1 − 𝜏)∕(1 − 𝜌) , and p̈HNB

t𝛼
(t, 𝛼) = {

ṗHNB
𝛼

(t, 𝛼) ⋅(1 − pHNB�� − pHNB�)
}
−
{
(pHNB)2�et∕(� + et)2

}
 , where � = �(t, �) ,  

� = �(t, �) for simplicity of notations, �̇�t(t, 𝛼) = 𝜏(𝜏 − 1) , 𝜏tt(t, 𝛼) = 𝜏(𝜏 − 1)(2𝜏 − 1) ,  
�̇�𝛼(t, 𝛼) = e

t∕(� + e
t)2 �̇�t(t, 𝛼) = 𝛼𝜌(𝜏 − 1) = −et𝜌𝜏 , �̈�

tt
(t, 𝛼) = 𝛼𝜌(𝜏 − 1){(𝛼 + 1)𝜏 − 𝛼}  

= ��2et(et − 1) , �̇�𝛼(t, 𝛼) = 𝜌(ln 𝜏 + 1 − 𝜏).
For functions pHNB, ṗHNB

t
, p̈HNB

tt
, ṗHNB

𝛼
, p̈HNB

t𝛼
 evaluated at fixed values of (x�

i
�, �) are 

denoted by pHNB
i

, ṗHNB
ti

, p̈HNB
tti

, ṗHNB
𝛼i

, p̈HNB
t𝛼i

 , respectively. Values of pHNB, ṗHNB
t

, ṗHNB
𝛼

 at fixed 

values of 
(
x�
i(−j)

�(−j) + l2�j, �
)
 and 

(
x�
i(−j)

�(−j) + l1�j, �
)
 are denoted by pHNB

2i
, ṗHNB

2ti
, ṗHNB

2𝛼i
 , and 

pHNB
1i

, ṗHNB
1ti

, ṗHNB
1𝛼i

 , respectively.

By using p, q notations, the marginal mean of yi can be rewritten as E(yi|xi, zi) = pHNB
i

qi , the 
marginal effect with respect to continuous covariate xij is 𝜂j(xi, zi, 𝜃) = 𝛽jṗ

HNB
ti

qi + 𝛾jp
HNB
i

q̇i , 
and the incremental effect with respect to categorical covariate xij from level l1 to level l2 is 
�j(xi(−j), zi(−j), �) = pHNB

2i
q2i − pHNB

1i
q1i.

Then, the formulas of gradients of marginal and incremental effects are in the same forms 
as ZIP models (29) with different layouts of pHP and its derivatives ṗHP and p̈HP . The gradi-
ents of effects with respect to parameter � are

where u(m) is a unit vector of dimension J1 + J2 + 3 with 1 in the mth component and 0 in 
others.

∇𝜃𝜂j(xi, zi, 𝜃)

= +
(
𝛽jp̈

HNB
tti

qi + 𝛾jṗ
HNB
ti

q̇i
) J1∑
m=0

ximu(m+1)ṗ
HNB
ti

qiu(j+1)

+
(
𝛽jṗ

HNB
ti

q̇i + 𝛾jp
HNB
i

q̈i
) J2∑
m=0

zimu(J1+m+2) + pHNB
i

q̇iu(J1+j+2),

∇𝜃𝜋j(xi(−j), zi(−k), 𝜃)

=
(
ṗHNB
2ti

q2i − ṗHNB
1ti

q1i
) J1∑
m=0,≠j

ximu(m+1) +
(
l2ṗ

HNB
2ti

q2i − l1ṗ
HNB
1ti

q1i
)
⋅ u(j+1)

+
(
pHNB
2i

q̇2i − pHNB
1i

q̇1i
) J2∑
m=0,≠j

zimu(J1+m+2) +
(
l2p

HNB
2i

q̇2i − l1p
HNB
1i

q̇1i
)
⋅ u(J1+j+2)

+
(
ṗHNB
2𝛼i

q2i − ṗHNB
1𝛼i

q1i
)
u(J1+J2+3),
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