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Abstract In health services research, it is common to encounter semicontinuous data

characterized by a point mass at zero followed by a continuous distribution with positive

support. These are often analyzed using two-part mixtures that separately model the

probability of use to account for the portion of the sample with zero values. Commonly, but

not always, the second component models the continuous values conditional on them being

positive. Prior work examining whether such two-part models are needed to appropriately

draw inference from semicontinuous data compared to standard one-part regression models

has found mixed results. However, prior studies have generally used only measures of

model fit on a single dataset, leaving a definitive conclusion uncertain. This paper provides

a detailed evaluation using simulations of the appropriateness of standard one-part gen-

eralized linear models (GLMs) compared to a recently developed marginalized two-part

(MTP) model. The MTP model, unlike the one-part GLMs, explicitly accounts for the

point mass at zero, yet takes the same form for the marginal mean as the commonly used

GLM with log link, making the covariate effects directly comparable. We simulate data

scenarios with varying sample sizes and percentages of zeros. One-part GLMs resulted in

increased bias, lower than nominal coverage of confidence intervals, and inflated type I

error rates, rendering them inappropriate for use with semicontinuous data. Even when
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distributional assumptions were violated, estimates of covariate effects and type I error

rates under the MTP model remained robust.

Keywords Generalized gamma distribution � Health care expenditures � Log-skew-normal

distribution � Marginalized models � Two-part models

1 Introduction

Semicontinuous data, characterized by a ‘‘clumping’’ of zero values combined with a

positive, often skewed, distribution of continuous values, commonly arise in health ser-

vices research. For example, health care expenditures, substance abuse, and inpatient

length of stay can all be characterized by a portion of the sample who are non-users with

zero values and another portion with a distribution of positive values. Response data with

such features are often thought of as arising from two distinct stochastic processes: a binary

part governing the occurrence of zeros and a continuous part determining the observed

value conditional on it being a nonzero response.

To accommodate the two aspects of semicontinuous data, analysts often consider two-

part models. Most commonly, the binary part is modeled via logistic regression while the

log-transformed continuous component is modeled via standard linear regression, although

many other specifications have been used (Mullahy 1998; Blough et al. 1999). When

covariates are included in the regression models, covariates in the second, or continuous,

part are interpreted conditionally upon having observed a positive outcome.

As an alternative to two-part models, analysts often will fit a one-part generalized linear

model (GLM), usually with a log link to ensure that predicted values are non-negative.

GLMs incorporate both the zero and positively continuous values into a single stochastic

process rather than explicitly specifying a separate component to account for the point

mass at zero. In doing so, they permit direct interpretation of covariate effects on the

overall mean. Nonlinear least squares estimation (Mullahy 1998) and quasilikelihood

estimation (Buntin and Zaslavsky (2004)) have been proposed for fitting one-part models,

avoiding fully parametric assumptions. Empirical standard errors, which provide asymp-

totically valid inference even if the variance model is misspecified, may also be incor-

porated; however, their finite sample performance in the presence of many zero values has

not been fully evaluated.

This article addresses the common problem of estimating individual covariate effects on

the overall mean of a semicontinuous outcome. To accommodate this, we recently intro-

duced a fully parametric marginalized two-part (MTP) modeling approach that specifies

the same marginal mean model as a typical one-part GLM, while simultaneously

accounting for the point mass at zero (Smith et al. 2014). The MTP model parameterizes

covariate effects directly on the overall mean on the untransformed original scale via the

log link function, allowing parameter estimates to be interpreted as the multiplicative effect

on the overall mean. This approach also has the advantage of separately providing esti-

mates of covariate effects on the probability of incurring a positive-valued outcome as in

the first part of two-part models, as well as accounting for the zero-inflated and skewed

nature of many semicontinuous outcomes. While not examined in this article, random

effects can be easily incorporated into MTP models to address repeated measures and

clustered data (Smith et al. 2015).
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GLMs rely on fewer assumptions than MTP models, so it may be natural to question

whether one-part models fit to semicontinuous data perform better than MTP models in

terms of bias, precision, and type I error when interest lies in marginal inferences on the

overall mean. Duan et al. (1983), Diehr et al. (1999), Madden et al. (2000), and Buntin and

Zaslavsky (2004) have each compared the performance of ‘‘standard’’ two-part models

with various one-part models. In each case, the models were assessed using real datasets

and performance was determined using a combination of goodness of fit criteria and

predictive accuracy. Conclusions were mixed, with one-part models performing equally

well or better on some datasets (Diehr et al. 1999; Buntin and Zaslavsky 2004) and two-

part models exhibiting better performance on others (Duan et al. 1983; Madden et al.

2000).

In particular, Buntin and Zaslavsky (2004) compared several one- and two-part models

with the goal of predicting Medicare expenditures using a sample of 10,134 elderly

Medicare beneficiaries with 8.6% of individuals having zero expenditures. They assessed

each model’s predictive ability via several metrics, including mean squared error and split-

sample cross-validation. They concluded that excess zeros in the data pose little problem

when fitting a one-part GLM and suggested one-part GLMs could be used across an array

of semicontinuous outcomes. While this comparison has been frequently cited as justifi-

cation of the appropriateness of one-part GLMs for use in semicontinuous data, exami-

nation of model fit on a single dataset with a comparatively small proportion of zeros does

not in general answer the question of whether one-part GLMs are appropriate to use when

data contain many zeros. More work is needed to assess model performance under the

presence of a greater proportion of zeros as well as the ability of one- and two-part models

to accurately estimate the effects of covariates.

Previously, model-estimated covariate effects across one- and two-part models were not

generally comparable because standard two-part models separately specified the proba-

bility of a positive expenditure and the level of expenditure conditional on it being positive,

thereby indirectly specifying a different parameterization for the overall marginal mean.

The recent introduction of the MTP model, however, provides an analytic approach that

explicitly accounts for excess zeros without sacrificing the direct interpretability of

regression parameters as covariate effects on the overall mean. The performance of the

MTP model has not been examined in comparison to one-part models, nor has a formal

simulation study comparing such one- and two-part models been conducted.

With this goal in mind, we conducted a series of simulation studies to compare the

performance of GLMs fit with quasilikelihood and various MTP models. We evaluate bias,

test size, and coverage of nominal 95% confidence intervals under varying data generating

mechanisms with proportions of zeros set at 10, 20, and 40% where inferential focus is on

the regression parameter estimates for the overall mean. Our simulation design was

motivated in part by an analysis to assess the impact of a behavioral weight loss program

on health care expenditures in the year following enrollment, presented in Smith et al.

(2014). In addition to the simulation study, we reanalyze the data from this weight loss

program using GLMs and MTP models and compare results.

The remainder of this paper is laid out as follows. Section 2 briefly reviews models

commonly used for semicontinuous data, while Sect. 3 discusses the details of the simu-

lations conducted. Section 4 shows the results of the simulations, and Sect. 5 presents the

results of the weight loss program analysis. Section 6 provides a discussion of the

implications of the results and points to areas for future research and investigation.
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2 Models for semicontinuous data

We begin with a brief review of models commonly used for semicontinuous data.

2.1 Standard two-part models

Traditionally, conventional two-part models have been used to analyze data with zero-

heavy outcomes. In these models, the binary part is commonly modeled via logistic

regression and the continuous component via a linear model for the natural log transformed

outcome conditional on the response being greater than zero. Specifically, the generic form

of the conventional two-part model, presented in Cragg (1971), Manning et al. (1981),

Duan et al. (1983) and elsewhere, can be written as

f ðyiÞ ¼ ð1� piÞ1ðyi¼0Þ � pigðyijyi [ 0Þ½ �1ðyi [ 0Þ ; yi � 0; i ¼ 1; . . .; n; ð1Þ

where pi ¼ PrðYi [ 0Þ, 1ð�Þ is the indicator function, and gðyijyi [ 0Þ is any density

function applicable to the positive values of Yi. This model is commonly parameterized as

logitðpiÞ ¼ z0ia and ð2Þ

li ¼ EðlnYijYi [ 0Þ ¼ x0ic: ð3Þ

To conduct inference on the overall mean EðYijxiÞ of the response Yi conditional on

covariates xi, the analyst must remove the conditioning on Yi [ 0 and transform back from

lnðyÞ space to y-space. As the error retransformation is a function of xi, the computation of

covariates effects and their interpretation must proceed with care (Mullahy 1998). A more

direct, two-part generalized linear model (GLM) specifies an exponential conditional

model (ECM) for the untransformed response in the second part as

EðYijYi [ 0; xiÞ ¼ expðx0ibÞ, which does not have the need for retransformation (Mullahy

1998; Blough et al. 1999; Basu and Manning 2009).

Both the two-part GLM model and the conventional two-part model have limitations for

estimation of covariate effects on the overall mean. While marginal effects of covariates on

the overall mean can be calculated from these conditional two-part models (Belotti et al.

2015), the effects vary heterogeneously with each combination of values observed in the

other covariates in the model. In an attempt to derive a single marginal effect in the

presence of this heterogeneity, analysts have averaged over the effects calculated at each

combination of covariates, in a process often referred to as ‘‘recycled predictions’’ or

‘‘standardization’’. Specifically, the two parts must be combined as EðYijxiÞ ¼
PrðYi [ 0jxiÞEðYijYi [ 0; xiÞ and the exact form of this overall mean will depend on the

model specification and the assumed distribution. Moreover, the effect of a covariate on the

overall mean varies depending on the values of the other covariates in the model and the

effect of a continuous covariate further depends on a reference value (e.g., the effect of age

for 40 vs. 50 years differs from the effect of age for 50 vs. 60 years). The complex

relationships between marginal means and covariates inherently implies both non-linearity

and heterogeneity. However, interest may lie in a obtaining a single value to describe the

impact of a covariate. Analysts often produce a single value of a covariate effect by

averaging all individual’s specific treatment effects (often functions like contrasts or ratios

of predicted marginal means) over the entire study sample in a process commonly referred

to as recycled predictions. However, this averaging process does not recover the true

marginal effect if the true covariate effect is homogeneous on the overall mean or
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systematically varies via an interaction term relative to the overall mean (Smith et al. 2014;

Neelon et al. 2016).

Two-part models, therefore, do not in general provide homogeneous covariate effects on

the marginal mean on the original scale of the response variable. In addition to requiring

recycled predictions, they typically require resampling or the delta method to estimate the

variances of covariate effects. The problem of obtaining straightforward marginal infer-

ence may become prohibitive as the complexity of two-part GLMs increases, such as when

clustering and/or heterogeneity in scale parameters are modeled (Liu et al. 2010).

2.2 The MTP model

For independent observations, the generic form of a MTP model for semicontinuous data is

given by Eq. (1). To obtain interpretable covariate effects on the marginal mean, Smith

et al. (2014) proposed the MTP model that parameterizes the covariate effects directly in

terms of the marginal mean, mi ¼ E ðYiÞ, on the original (i.e., untransformed) data scale.

The MTP model specifies the linear predictors

logitðpiÞ ¼ z0ia and

E ðYiÞ ¼ mi ¼ expðx0ibÞ:
ð4Þ

Model-predicted means and standard errors can be easily obtained under this parame-

terization in a single step by estimating expðx0ibÞ at the desired values of the covariates.

SAS code (SAS Institute, Cary, NC) implementing the MTP model using PROC NLMIXED
is provided in Smith et al. (2014) and Neelon et al. (2016).

Most distributions with closed forms for the overall mean can be specified for the MTP

model. While commonly used for two-part models, the log-normal distribution imposes a

sometimes unrealistic condition of symmetry on the log-scale. Alternative distributions

such as the log-skew-normal or generalized gamma have been proposed for the continuous

part in an effort to relax these assumptions (Azzalini 1985; Chai and Bailey 2008; Manning

et al. 2005; Liu et al. 2010) and each take the log-normal distribution as a special or

limiting case.

2.2.1 The log-skew-normal MTP Model

Smith et al. (2014) developed this model with gðyijyi [ 0Þ taking either the log-normal or

log-skew-normal (LSN) density. The LSN density relaxes the log-normal density’s

assumption of log-scale normality through inclusion of a shape parameter, j, allowing
skewness on the log-scale, with the log-normal density taking the special case of j ¼ 0

(Azzalini 1985). Smith et al. found that the LSN density displayed better properties and

more appropriately accounted for skewness commonly observed in semicontinuous data

than the log-normal distribution. For this reason, we utilize the LSN MTP model here and

omit the log-normal MTP model.

The generic form of the two-part LSN model for independent data is given by:

f ðyiÞ ¼ ð1� piÞ1ðyi¼0Þ � piLSNðyi; ni; r; jÞ½ �1ðyi [ 0Þ ; yi � 0; i ¼ 1; . . .; n; ð5Þ

where LSNð�; ni; r; jÞ denotes the LSN distribution with location parameter ni, scale

parameter r[ 0, and shape parameter j, all on the log scale, given by
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gðyijyi [ 0Þ ¼ 2

ryi
/

ln yi � ni
r

� �
U

j
r
ðln yi � niÞ

� �
; ð6Þ

where /ð�Þ and Uð�Þ are the probability density function and cumulative distribution

function, respectively, of the standard normal density. The marginal mean of Yi is then

given by:

E ðYiÞ ¼ mi ¼ 2pi exp ni þ
r2

2

� �
UðrdÞ; ð7Þ

where d ¼ j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
. In order to re-express the LSN likelihood as a function of b from

the MTP model in Eq. (4), we solve Eq. (7) for ni in terms of b:

ni ¼ ln mi � ln 2� lnpi � ln UðrdÞ½ � � r2

2

¼ x0ib� ln 2� lnpi � ln UðrdÞ½ � � r2

2
:

After plugging this expression into Eq. (5) above, parameter estimates can be obtained

using standard optimization routines such as Newton–Raphson or Fisher scoring.

2.2.2 The generalized gamma MTP model

Extending the ideas developed in Smith et al. (2014) and Smith and Preisser (2015), we

also consider the MTP model fit with a generalized gamma (GG) distribution. The gen-

eralized gamma is a flexible, three-parameter distribution that takes as special cases the

standard gamma, inverse gamma, Weibull, and log-normal distributions (Manning et al.

2005; Liu et al. 2010). The GG density is given by

gðyi; j; li; rÞ ¼
gg

ryiCðgÞ
ffiffiffi
g

p exp ui
ffiffiffi
g

p � g expðjjjuiÞ
� �

; ð8Þ

where g ¼ jjj�2
, ui ¼ signðjÞ logðyiÞ � lið Þ=r, li is the location parameter, r[ 0 is the

scale parameter, and j is the shape parameter. The GG density reduces to the log-normal

density as j ! 0. Thus, the LSN and GG distributions both take the log-normal distri-

bution as a special case, but in general, do not overlap.

Under the GG distribution, the marginal mean of Yi is given by (Manning et al. 2005;

Liu et al. 2010):

EðYiÞ ¼ mi ¼ expðx0ibÞ

¼ pi exp li þ
r logðj2Þ

j
þ log C 1=j2 þ r=j

	 
� �
� log C 1=j2

	 
� �� �
:

Following similar steps as done above for the LSN MTP model, we solve for li in terms of

b to obtain
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li ¼ logðmiÞ � logðpiÞ �
r logðj2Þ

j
� log C 1=j2 þ r=j

	 
� �
þ log C 1=j2

	 
� �

¼ x0ib� logðpiÞ �
r logðj2Þ

j
� log C 1=j2 þ r=j

	 
� �
þ log C 1=j2

	 
� �
:

By plugging this expression for li into the GG density given by Eq. (8) and plugging

this density into the generic form of the two-part model likelihood given by Eq. (1), the

GG MTP model involving covariates as shown in Eq. (4) can be fit by maximum likeli-

hood using standard optimization techniques.

2.3 GLMs fit with quasilikelihood

GLMs fit using quasilikelihood require only the specification of the mean and variance, as

opposed to the full distribution, making them an attractive alternative when assumptions

regarding the underlying parametric distribution are questionable. Specifically, when using

a log link as is most commonly specified for health care expenditures, the overall mean

model is given by

E ðYiÞ ¼ mi ¼ expðx0ibÞ; ð9Þ

the same as specified in the MTP model. A commonly used family of variance functions is

the power family, taking the form

Var ðYiÞ ¼ qmki ¼ q expðx0ibÞ
k; ð10Þ

and methods have been proposed to assist in determining the optimal value of k (Manning

and Mullahy 2001; Park 1966; Basu and Rathouz 2005). Specifically, commonly used

values include k ¼ 0, constant variance, k ¼ 1, variance proportional to the mean, and

k ¼ 2, variance proportional to the square of the mean, or equivalently, standard deviation

proportional to the mean. Empirical ‘‘sandwich’’ variance estimators (Royall 1986;

Kauermann and Carroll 2001) are commonly paired with such GLMs, such that if the

variance is misspecified, they yield valid inference under many conditions where the

marginal mean model is correctly specified (Fitzmaurice et al. 2012). For this comparison,

we utilize the empirical standard errors and fit GLMs with k ¼ 0, 1, and 2, or with constant

variance, variance proportional to the mean, and standard deviation proportional to the

mean. Such models are implementable in most standard statistical software packages.

3 Simulation details

Given the limitations of standard two-part models in terms of marginal inference, we focus

here on comparing models specifically designed to directly model the marginal mean. In

this article, we compare five models: (1) two MTP models incorporating different para-

metric distributions; (2) three GLMs incorporating different mean-variance relationships fit

with quasilikelihood. These models take the same mean structure, providing easily com-

parable quantities, and fit the data on the original untransformed scale, so retransformation

methods are not required.
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3.1 Motivating example

To evaluate the performance of the MTP models and the GLMs, we conducted a series of

simulation studies motivated in part by the analysis of a behavioral weight loss program

that has been described in Smith et al. (2014). That study evaluated the effect of a system-

wide weight loss intervention (MOVE!) implemented by the Veterans Affairs (VA) health

care system beginning in 2006 to address the high prevalence of obesity among VA

patients (Kahwati et al. 2011). Briefly, the total expenditures in the year following

enrollment of 18,214 MOVE! enrollees were compared to those of 18,214 non-enrollees

who were matched to the enrollees on sex, race (white or non-white), marital status

(married or non-married), copay status (exempt vs. non-exempt), veterans integrated ser-

vice network (VISN) of residence, BMI, and comorbidity burden, assessed via the 2002

diagnostic cost group (DCG) score. The goal of the analysis was to assess whether MOVE!

enrollment was associated with a difference in mean total health care expenditures in the

following year. With 17% of the MOVE! enrollees having zero expenditures in the year,

results from one-part GLMs may have been unreliable, and use of the MTP model was

therefore motivated.

3.2 Mean structure and properties examined

Basing covariate distributions on those of the MOVE! study, all simulated data scenarios

considered here were generated assuming the following marginal mean structure:

E ðYiÞ ¼ mi ¼ expð6þ 0:2x1i � 0:01x2i þ 0:05x3iÞ; ð11Þ

where x1i � Bernoulli(0.5), x2i �Nð0; 1Þ, and x3i � Pois(1). Parameter values were chosen

to mimic similar distributions as those observed in the MOVE! data, while also main-

taining a similar magnitude difference between treatment arms. We considered three dif-

ferent scenarios for the distribution of the positive values of Yi: (1) distributed as LSN with

low log-scale skewness, (2) distributed as LSN with higher log-scale skewness, and (3)

distributed as generalized gamma (GG). For each of these three scenarios, we considered

data with approximately 10, 20, and 40% zeros to assess the influence of the size of the

discrete point mass on the performance of each model. Specifically, zeros were introduced

in the Yi’s with probability pi, where pi was given by logitðpiÞ ¼ 3� 2:4x1i þ 1:5x2i þ 2x3i,

logitðpiÞ ¼ 3� 4x1i þ 3:5x2i þ 2:5x3i, and logitðpiÞ ¼ 3� 7x1i þ 5x2i þ 2x3i to achieve

approximately 10, 20, and 40% zeros, respectively. For each of these nine combinations of

distributions and percentages of zeros, we evaluated datasets of sample sizes 200, 1000,

10,000, and 50,000 to assess the impact of sample size on model performance, resulting in

a total of 36 simulated scenarios with 1000 datasets each. In each case, the mean model of

the GLMs and MTP models fit to the data were correctly specified as

EðYiÞ ¼ expðb0 þ b1x1i þ b2x2i þ b3x3iÞ. Empirical sandwich variance estimators were

used for the GLMs.

To assess the performance of each model, we examined the bias of parameter estimates

and model-predicted ‘‘total expenditures’’, the simulated outcome. Total expenditure bias

was calculated as the average difference in an individual’s model-predicted total expen-

diture and their true theoretical mean total expenditure, based on their respective combi-

nation of covariates, calculated from Eq. (11). We also examined coverage probability of

nominal 95% Wald-type confidence intervals for each parameter as well as total expen-

diture predictions. For each of the 36 scenarios, we then re-generated data with b1 ¼ 0 to
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mimic a null hypothesis of no treatment effect for the binary variable x1i in order to

evaluate Type I error rates for each model at a nominal 0.05 significance level. The

simulations presented here examine the performance of both the log-skew-normal MTP

model (Smith et al. 2014) and the generalized gamma MTP model (Smith and Preisser

2015).

3.3 Simulation 1: log-skew-normal data

In the first set of simulations, we assumed the positive values of Yi followed the LSN

density shown in Eq. (6). Thus, in this simulation, the parametric assumptions of the LSN

MTP model were met, while those of the GG MTP were not. We set the scale parameter, r,
at 1.2 and set the log-scale skewness parameter j at 0.5 and 5.0 for the low log-scale

skewness and high log-scale skewness simulations, respectively.

3.4 Simulation 2: generalized gamma data

In the second set of simulations, we investigated the performance of the MTP models

relative to that of the one-part GLMs when the parametric distributional assumptions of the

LSN MTP model were not met and those of the GG MTP model were. As in Simulation 1,

we set the scale parameter, r, at 1.2, and we set the shape parameter, j, at 0.63 based on

the analysis from Liu et al. (2010).

4 Simulation results

4.1 Log-skew-normal with low log-scale skewness results

Descriptive statistics on the 36 simulated datasets are shown in Table 1. Percent relative

median bias and coverage probabilities of the 95% Wald-type confidence intervals for the

main binary covariate effect of interest from the models fit on the datasets generated from

the LSN distribution with low log-scale skewness are shown in Fig. 1. Across all simu-

lations and models, results were similar for each of the covariates, so only the main binary

covariate of interest is shown here. The remaining results can be found in the online

supplementary material. The LSN MTP model generally provided the least biased esti-

mates under all scenarios, which is expected given that the parametric assumptions of the

model were met. The GG MTP model also incurred minimal bias, lower than that of the

GLMs under almost all scenarios. Among all models, bias generally decreased with sample

size and was noticeably larger among the GLMs when the data had 40% zeros as opposed

to 10 or 20% zeros. In particular, estimates of b1, the treatment effect of main interest,

were negatively biased under the GLMs. With 40% zeros, the negative bias increased such

that, for sample sizes of 200 and 1000, the GLMs were on average producing negative

treatment effect estimates instead of positive ones.

The LSN MTP model maintained approximately 0.95 coverage probability for covariate

effects with all percentages of zeros. The GG MTP model often provided 0.95 coverage

probability, with some reduction seen with 40% zeros when the sample size increased to

10,000 or larger. Even with empirical standard errors, modest reductions in coverage

probability were seen for the GLMs with 20% zeros, with coverage ranging from 0.74 to
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0.93. With 40% zeros, coverage dropped significantly for the GLMs. In particular, cov-

erage for b1, the treatment effect, ranged from 0.48 to 0.79 for the GLMs with 40% zeros.

Median bias and coverage probabilities of the 95% Wald-type confidence intervals for

the total expenditure prediction from the models fit on the datasets generated from the LSN

distribution with low log-scale skewness are shown in Fig. 2. The GLMs generally

incurred more bias than the MTP models in total expenditure prediction, particularly for

the smaller sample sizes and greater proportion of zeros, with the exception of the GG

MTP model when the sample size was 50,000. A similar pattern was seen with coverage

probabilities, with very poor coverage seen among the GLMs when sample sizes were

small or there were a greater proportion of zeros. The LSN MTP maintained coverage near

0.95; the GG MTP suffered somewhat worse coverage for prediction with larger sample

sizes.

4.2 Log-skew-normal with high log-scale skewness results

Percent relative median bias and coverage probabilities of the 95% Wald-type confidence

intervals for the covariate effect of interest from the models fit on each of the datasets

generated from the LSN distribution with higher log-scale skewness are shown in Fig. 3.

The LSN MTP model again generally provided the least biased estimates under all sce-

narios, as its parametric assumptions were met. The GG MTP model also incurred minimal

bias for covariate effects. Similarly to the results above, bias generally decreased with

sample size, and among the GLMs, was noticeably larger when the data had 40% zeros as

opposed to 10 or 20%. Once again, estimates of b1, the treatment effect of main interest,

were negatively biased under almost all of the GLMs, and with 40% zeros, the GLMs were

(a) (b)

Fig. 1 Percent relative median bias and coverage of 95% Wald-type confidence intervals for b1, the binary
covariate effect of interest, from low log-scale skewness LSN data. a Percent relative median bias,
b coverage probability
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(a) (b)

Fig. 2 Median bias and coverage of 95% Wald-type confidence intervals for total cost prediction from low
log-scale skewness LSN data. a Median bias, b coverage probability

(a) (b)

Fig. 3 Percent relative median bias and coverage of 95% Wald-type confidence intervals for b1, the binary
covariate effect of interest, from high log-scale skewness LSN data. a Percent relative median bias,
b coverage probability
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on average producing negative treatment effect estimates instead of positive ones for

sample sizes of 200 and 1000.

For coverage probabilities, results were relatively similar to those from the LSN with

low log-scale skewness data. Coverage probabilities for the covariate effects remained

fairly close to 0.95 under the both MTP models. The coverage for b1 from the LSN MTP

model dropped to as low as 0.86 with a sample size of 200. Similarly to the previous

results, the GLMs incurred modest reductions in coverage probability with 20% zeros, with

coverage ranging from 0.73 to 0.94. With 40% zeros, coverage from the GLMs dropped

more significantly, with coverage for the treatment effect ranging from 0.48 to 0.80.

Median bias and coverage probabilities of the 95% Wald-type confidence intervals for

the total expenditure prediction from the models fit on the datasets generated from the LSN

distribution with higher log-scale skewness are shown in Fig. 4. The LSN MTP model, as

expected, has low bias and appropriate coverage probability. The GG MTP model, on the

other hand, experienced increased bias for the intercept, and therefore, the total expendi-

ture prediction.

Additionally, the GG MTP model suffered severe lack of coverage for the total

expenditure prediction when the sample size was 10,000 or greater. In this scenario,

coverage under the GG MTP model dropped to\0.0001 for the total expenditure pre-

diction. This is likely due to a combination of bias and underestimated standard errors, with

a larger problem seen in the high log-skewness LSN data than the low log-skewness

because the low log-skewness LSN data are closer to log-normally distributed, a special

case of the GG distribution. The LSN MTP model was the only model to provide suffi-

ciently good coverage for total expenditure predictions with 40% zeros and 10,000 or

greater subjects, with the next highest coverage probability being 0.76.

(a) (b)

Fig. 4 Median bias and coverage of 95% Wald-type confidence intervals for total cost prediction from high
log-scale skewness LSN data. a Median bias, b coverage probability
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4.3 Generalized gamma results

Percent relative median bias and coverage probabilities for the covariate effect of interest

from the models fit on each of the datasets generated from the GG distribution is shown in

Fig. 5. Under this scenario, when the parametric assumptions of the LSN MTP model were

no longer met, bias in the estimation of covariate effects remained low for the LSN MTP

model regardless of sample size or percentage of zeros. The GG MTP incurred almost no

bias as expected given that the parametric assumptions were met. The GLMs again per-

formed much better with 10 or 20% zeros than with 40%, and the bias incurred appeared to

decrease with sample size. Even with a sample of 50,000, however, the estimate of

treatment effect under the GLMs with 40% zeros was strongly negatively biased, and with

the smaller sample sizes, often resulted in estimates of treatment effect that were in the

wrong direction.

Similar trends were seen in the coverage probabilities. Coverage for the covariate effect

parameters remained close to 0.95 under the LSN MTP model regardless of sample size or

percentage of zeros. The GG MTP model maintained coverage probability near 0.95 in all

cases. Similar to the results using the LSN data, the GLMs showed a modest reduction in

coverage with 20% zeros, with values ranging from 0.74 to 0.94. With 40% zeros, how-

ever, coverage for the GLMs dropped significantly for all parameters. In particular, cov-

erage for b1, the treatment effect, ranged from 0.48 to 0.77 in this scenario.

Median bias and coverage probabilities of the 95% Wald-type confidence intervals for

the total expenditure prediction from the models fit on the datasets generated from the GG

distribution are shown in Fig. 6. When the parametric assumptions of the LSN MTP model

were no longer met, the LSN MTP model incurred more bias in estimating the intercept,

(a) (b)

Fig. 5 Percent relative median bias and coverage of 95% Wald-type confidence intervals for b1, the binary
covariate effect of interest, from GG data. a Percent relative median bias, b coverage probability
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b0, and subsequently, in total expenditure prediction. Notably, the bias in the intercept and

total expenditure prediction did not improve with increased sample size. Coverage prob-

abilities for the total expenditure prediction under the LSN MTP model dropped to as low

as 0.25. The LSN MTP outperformed the GLMs with regards to coverage for total

expenditure prediction with 40% zeros when the sample size was smaller (200 or 1000).

With 10,000 or 50,000 subjects, however, the LSN MTP model coverage of total expen-

diture prediction dropped substantially and the GLMs provided higher coverage, particu-

larly for the lower percentage of zeros. The GG MTP model was the only model to provide

sufficiently good coverage for total expenditure prediction with 40% zeros and 10,000 or

greater subjects, with the next highest coverage probability being 0.73.

4.4 Type I error rates

Type I error rates from each of the models re-run on data simulated with b1 ¼ 0 under each

of the distributions are shown in Fig. 7. Type I error rates remained close to 0.05 for the

LSN MTP model under all scenarios. Type I errors for the GG MTP model remained close

to 0.05 under most scenarios, but increased substantially when fit to the LSN data with low

log-skewness, particularly for larger sample sizes; for the sample size of 10,000, the type I

error under the GG MTP model increased to 0.32, and with a sample size of 50,000

increased to as high as 0.94. Type I errors remained at least somewhat inflated under

almost all scenarios with 20 or 40% zeros for the GLMs, but were near 0.05 with only 10%

zeros. When the data contained 20% zeros, the GLM type I error rates ranged from 0.07 to

0.16. With 40% zeros, they ranged from 0.21 to 0.52. Type I errors seemed to generally

(a) (b)

Fig. 6 Median bias and coverage of 95% Wald-type confidence intervals for total cost prediction from GG
data. a Median bias, b coverage probability
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decrease with increasing sample size for the GLMs, but particularly with 40% zeros, rates

remained significantly higher than the nominal 0.05 significance level at all sample sizes

examined.

(a) (b)

(c)

Fig. 7 Type I error rates at nominal significance level 0.05 for LSN and GG data. a Low log skewness LSN
data, b high log skewness LSN data, and c GG data
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5 MOVE! study analysis

To assess the impact of model choice in our motivating example described in Sect. 3.1, we

fit the two MTP models and the three one-part GLMs to the same data, using the same

mean model. In order to evaluate the effect of MOVE! enrollment on mean health care

expenditures in the following year under each model, we fit the overall mean model

specified as:

E ðYiÞ ¼ exp b0 þ b1xi1 þ b2xi2 þ b3xi3 þ b4xi4ð Þ;

where xi1 ¼ 1 if individual i was enrolled in MOVE! and 0 otherwise, and we additionally

adjusted for xi2, xi3, and xi4, individual i’s BMI, age, and DCG score, respectively. For the

binary part of the MTP models, we included the same covariates:

logitðpiÞ ¼ a0 þ a1xi1 þ a2xi2 þ a3xi3 þ a4xi4:

To compare fit across models, we calculated the mean squared error (MSE) for each.

Table 2 presents the parameter estimates, standard errors, and MSE from each of the

models. Figure 8 presents the model-estimated multiplicative effects of MOVE! enroll-

ment on mean health care expenditures, calculated by exponentiating b1, with 95% con-

fidence intervals.

Parameter estimates from the LSN and GG MTP models were quite similar. While the

parameter estimates from the GLMs were similar to each other, they differed from those of

the MTP models. In particular, the one-part GLMs provided estimates of the effect of

MOVE! enrollment that were noticeably lower in magnitude than those estimated by the

MTP models. Specifically, both MTP models estimated that MOVE! enrollment was

associated with 20% higher mean health care expenditures in the year following

Table 2 Overall mean parameter estimates (standard errors) and mean squared error from each of the five
models compared

Parameter LSN GG GLM GLM GLM
MTP MTP k ¼ 0 k ¼ 1 k ¼ 2

Intercept b0 9.11 9.11 9.51 9.42 9.43

(0.087) (0.087) (0.173) (0.156) (0.156)

MOVE! enrollment b1 0.18 0.18 0.06 0.07 0.07

(0.014) (0.015) (0.034) (0.029) (0.027)

Age b2 0.01 0.01 -0.003 0.002 -0.02

(0.002) (0.002) (0.004) (0.004) (0.004)

BMI b3 -0.02 -0.02 -0.02 -0.02 -0.02

(0.001) (0.001) (0.002) (0.001) (0.001)

DCG score b4 1.29 1.29 1.20 1.28 1.29

(0.044) (0.044) (0.082) (0.085) (0.098)

Scale parameter r 1.41 1.21 – – –

(0.018) (0.005)

Shape parameter j 0.84 -0.09 – – –

(0.048) (0.012)

Mean squared error 348,107,503 348,133,800 397,489,839 397,489,878 397,489,865
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enrollment, while the one-part models estimated a much smaller effect, ranging from 6 to

8%. Further, the 95% confidence intervals for the effect of MOVE! enrollment from the

MTP models and GLMs do not overlap. The LSN MTP model provided the lowest MSE

among all five models. The GG MTP model was the next best fitting model, and all GLMs

performed similarly with much higher MSE values than those of the MTP models.

6 Discussion

Our results suggest that, in general, one-part GLMs are not appropriate for use with data

including a significant proportion of zeros. The one-part GLMs incurred increased bias,

lower than nominal coverage, and increased type I error rates in all scenarios with 20 or

40% zeros, and for the sample size of n ¼ 200 with 10% zeros. Results improved with

larger sample sizes but, particularly with 40% zeros, even a sample size of 50,000 was not

large enough for the one-part GLMs to overcome the bias and low coverage. This con-

clusion differs from that provided in Buntin and Zaslavsky (2004), which was based on a

dataset with 8.6% zeros and over 10,000 individuals. For datasets with[10% zeros, we

advise that one-part GLMs be avoided as they provide biased and unreliable results.

Despite reliance on a parametric model, the MTP models, and in particular the LSN

MTP model, appeared to be fairly robust to distributional misspecification in covariate

effect estimation. Specifically, and conversely to the GLMs, the MTP models appeared

particularly robust in the smaller sample sizes. At sample sizes of 200 and 1000, both MTP

models maintained low bias and appropriate coverage and type I error rates for covariate

effects, regardless of whether the distribution was correctly specified. In larger sample

sizes, the LSN MTP continued to perform well for covariate effects, with low bias and

appropriate coverage and type I error rates, regardless of the data-generating distribution.

The GG MTP model, however, suffered lower coverage and high type I error rates with

larger sample sizes (10,000 and 50,000) when the distribution was incorrectly specified,

likely due in large part to underestimated standard errors.

Fig. 8 Multiplicative effects of MOVE! enrollment overall mean parameter estimates (95% confidence
intervals) estimated from each of the five models compared
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With regards to prediction, results were more nuanced. The MTP models fit with the

distribution incorrectly specified provided biased predictions with lower than nominal

coverage probabilities, particularly for larger sample sizes. If an analyst is interested in

both estimation of covariate effects and in outcome prediction, specification testing to

determine the most appropriate distribution is crucial. While the semi-parametric nature of

the one-part GLMs has often been viewed as an appealing alternative to avoid distribu-

tional dependence, our results suggest that this is not a reliable option for semicontinuous

data with a significant proportion of zeros. Examination of skewness parameters, residual

plots, and plots of observed versus predicted values can inform distributional decisions for

parametric models.

Results from the MOVE! analysis showed that the GLMs estimated a much smaller

effect of MOVE! enrollment on mean health care expenditures in the following year than

did the MTP models. This pattern matches that seen in the simulation results, in which the

GLMs provided negatively biased treatment effect estimates. The MOVE! analysis con-

tained 17% zeros, slightly less than the lowest percentage considered in our simulation

studies, and had a sample size of 36,428. While our simulation results showed improve-

ment in the performance of the GLMs with larger sample sizes, the sample size needed to

alleviate problems with bias and coverage may be quite large and may depend upon other

aspects of the data, such as skewness and the heaviness of the long tail covering higher

expenditures, and not only the percentage of zeros.

This study is subject to several limitations. We focus primarily on the estimation of

covariate effects as opposed to prediction, and thus we consider only models that provide

direct, homogeneous covariate effects on the overall mean, including both the zero and

positive valued outcomes. As such, models such as the conventional two-part model (Duan

et al. 1983; Manning et al. 1981) were not considered as it does not, in most cases, provide

estimates of homogeneous covariate effects on the marginal mean. Rather, the covariate

effects estimated from conventional two-part models typically vary based on the values

specified for the other covariates in the model, making such estimates non-comparable with

those of the one-part GLMs and MTP models (Smith et al. 2014). Additionally, other

specifications of the GLMs could be considered. We focused on GLMs with a log link so as

to fit the correct mean model in the simulation studies, but other link functions could be

evaluated. Additional mean-variance relationships or link functions could also be estimated

from the data, such as proposed by Basu and Rathouz (2005).

Additionally, we did not examine effects of covariate misspecification. As when fitting

any model, attention must be paid to correct covariate specification, and the two parts of

the MTP may take different covariates in each part. Which covariates to consider should

generally be based upon a combination of subject matter expertise and standard covariate

selection processes, such as forward or backward selection, comparison of AIC values or

likelihood ratio tests. Asymptotically, if the model is overspecified, correct inference will

still be obtained, but computational issues could arise, particularly for smaller datasets.

Alternatively, when a large number of covariates are all deemed relevant, they may all be

included in a shared-parameter model like that of Preisser et al. (2016). In the case of

under-specification, or omission of necessary covariates, biased parameter estimates may

result in any of the models examined.

Limitations notwithstanding, MTP models present a significant breakthrough in the next

generation of analytic options for semicontinuous data. MTP models achieve accurate and

precise analyses of covariate effects on marginal mean expenditures with interpretations

based on the original scale without the need for post-modeling computations. Future work

may be needed to find methods that accommodate a large proportion of zeros with less
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reliance on parametric assumptions, particularly when interest in is prediction of mean or

total expenditures. The MTP model could be extended to additional distributions or

mixtures of distributions, and addition of empirical standard errors to the MTP model may

increase coverage probabilities for predictions under questionable distributional assump-

tions. The MTP models could also be extended to allow heteroscedasticity by specifying

the scale parameter to depend on covariates following Liu et al. (2010). Regardless of

modeling approach chosen, analysts will continue to need to carefully balance trade-offs in

model fit, robustness, and interpretability with their specific analytic goals in mind.
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